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Abstract—Semantic segmentation is a fundamental compo-
nent of autonomous driving systems, enabling accurate scene
understanding and object-level perception. However, achieving
precise instance-level delineation while maintaining real-time
performance on resource-constrained platforms remains a signif-
icant challenge, particularly for edge deployment scenarios. This
paper proposes a lightweight dual-YOLOVS fusion framework
for instance-aware semantic segmentation in autonomous driving
applications. The proposed approach integrates YOLOv8n-seg
and YOLOv8s-seg through a multi-scale fusion strategy that
exploits their complementary feature representations to improve
the segmentation of road-relevant objects, including cars, buses,
trucks, and motorcycles. The framework is evaluated on the
Reetiquetado de Vehiculos dataset using standard instance-level
segmentation metrics. Experimental results demonstrate strong
performance, achieving an overall mAP@0.5 of 92.9% and
mAP@0.5:0.95 of 80.8%, while maintaining real-time inference
with an average processing time of 7.9 ms per image (126 FPS)
on an NVIDIA RTX 3050 GPU. Class-wise and confidence-
based analyses confirm consistent segmentation accuracy across
vehicle categories, highlighting the robustness of the proposed
fusion strategy in handling scale variation, occlusions, and ob-
ject diversity. In addition, an embedded deployment analysis
provides insight into the feasibility and practical constraints
of deploying the proposed framework on representative edge
platforms. Overall, the proposed dual-YOLOVS fusion framework
achieves an effective balance between segmentation accuracy
and computational efficiency, making it suitable for real-time
autonomous driving perception on edge ARM/GPU platforms and
Advanced Driver Assistance Systems (ADAS).

Keywords—Autonomous driving; instance-aware semantic seg-
mentation; real-time instance segmentation; YOLOvS; dual-model
fusion; edge deployment

I. INTRODUCTION

Autonomous driving systems rely heavily on accurate and
real-time perception to ensure safe navigation in complex
and dynamic environments. Among perception tasks, seman-
tic and instance-aware segmentation play a crucial role by
enabling fine-grained scene understanding and precise local-
ization of surrounding objects, such as vehicles, pedestrians,
and road elements. Unlike object detection, which provides
coarse bounding boxes, instance-aware semantic segmentation

delivers pixel-level object delineation while preserving indi-
vidual object identities, making it particularly valuable for
downstream tasks including tracking, motion prediction, and
decision making in autonomous driving systems [1], [2].

Recent advances in deep learning have significantly im-
proved segmentation performance in autonomous driving sce-
narios. Early approaches focused on semantic segmentation
using convolutional neural networks, while more recent meth-
ods emphasize instance-aware segmentation to better handle
crowded scenes and overlapping objects [3], [4]. However,
achieving high segmentation accuracy often comes at the
cost of increased computational complexity, which limits real-
time deployment on resource-constrained platforms commonly
used in autonomous vehicles and Advanced Driver Assistance
Systems (ADAS).

To address this challenge, lightweight and real-time in-
stance segmentation models have gained increasing attention.
YOLO-based architectures have emerged as a promising so-
Iution due to their unified design and high inference speed.
Methods such as YOLACT [3] and Insta-YOLO [5] demon-
strated that real-time instance segmentation is feasible, while
subsequent works further improved efficiency and robustness
through architectural refinements and task-specific optimiza-
tions [6], [7]. More recently, YOLOvS8-based segmentation
models have shown strong performance across various applica-
tions, motivating their adoption for real-time perception tasks

(81, [9].

Despite these advances, existing instance-aware semantic
segmentation approaches typically rely on a single segmenta-
tion model and tend to optimize either segmentation accuracy
or inference speed in isolation. As a result, such designs
often struggle to simultaneously maintain high accuracy and
low latency across diverse object scales, frequent occlusions,
and dense urban traffic scenes, particularly when deployed
on resource-constrained edge ARM/GPU platforms. Although
multimodal fusion strategies combining heterogeneous sensors
such as cameras and LiDAR have been explored, model-level
fusion within a single visual modality remains largely under-
investigated for real-time autonomous driving. Consequently,
there exists a clear gap for lightweight fusion strategies that can
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exploit complementary representations from multiple compact
models to improve segmentation robustness without sacrificing
real-time performance or deployability.

In this work, we address the above limitations by proposing
a lightweight dual-YOLOvS8 fusion framework for instance-
aware semantic segmentation in autonomous driving, specifi-
cally designed to balance accuracy, real-time performance, and
edge deployability.

The main contributions of this paper are summarized as
follows:

e A lightweight dual-YOLOvS fusion framework
for instance-aware semantic segmentation that ex-
ploits complementary multi-scale representations from
YOLOv8n-seg and YOLOv8s-seg while preserving
real-time performance.

e A comprehensive experimental analysis of accu-
racy-latency trade-offs for instance-level segmentation
in autonomous driving scenarios, including class-wise,
confidence-based, and qualitative evaluations.

e  Anembedded deployment-oriented study that analyzes
the feasibility and limitations of deploying dual-model
segmentation pipelines on edge ARM CPU and low-
power GPU platforms.

e  Empirical insights into model-level fusion strategies
for real-time perception, providing reusable design
guidelines for other resource-constrained segmentation
tasks.

The remainder of this paper is organized as follows.
Section II reviews related work on instance-aware semantic
segmentation and real-time perception in autonomous driving.
Section III details the proposed dual-YOLOVS fusion frame-
work. Section IV describes the experimental setup, including
the training platform and implementation details, training
configuration, dataset description, and evaluation metrics. Sec-
tion V presents the experimental results and provides an in-
depth analysis and discussion, encompassing dataset character-
istics, training dynamics, class-wise performance, quantitative
and qualitative segmentation results, embedded deployment
considerations, and a comparative study with state-of-the-art
methods. Finally, Section VI concludes the paper and outlines
directions for future research.

II. RELATED WORK
A. Instance-Aware Semantic Segmentation

Instance-aware semantic segmentation has been widely
studied in the context of autonomous driving due to its ability
to provide detailed scene understanding. Early works explored
clustering-based and embedding-based approaches to separate
object instances within semantic classes [1]. Later, end-to-
end deep learning architectures capable of jointly predicting
object instances and semantic labels significantly improved
segmentation quality in complex driving scenes [3], [4].

Several studies addressed challenges such as occlusions,
class imbalance, and missed detections in autonomous driving
environments. Completelnst [10] proposed an efficient network
for handling missed detections, while joint detection and
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segmentation frameworks improved consistency between local-
ization and segmentation outputs [11]. Recent surveys further
highlight the importance of instance-aware segmentation and
summarize advances in architectures, evaluation metrics, and
applications [2], [12].

B. YOLO-Based Real-Time Instance Segmentation

YOLO-based models have gained popularity for real-
time instance segmentation due to their unified detection
and segmentation pipelines and high computational efficiency.
YOLACT [3] and YOLACT++ demonstrated competitive real-
time performance by decoupling mask generation from detec-
tion. Insta-YOLO [5] further explored lightweight designs for
real-time instance segmentation.

More recent works extended YOLO architectures to im-
prove segmentation accuracy through contour regression,
multi-task learning, and architectural refinements [6], [7].
With the introduction of YOLOVS, several studies proposed
enhanced segmentation variants for real-time applications, in-
cluding construction site monitoring and debris detection [8],
[9]. These studies demonstrate the flexibility and effectiveness
of YOLOvS8-based segmentation models.

C. Fusion Strategies and Advanced Segmentation Models

Beyond single-model approaches, fusion strategies have
been explored to enhance segmentation robustness. While
many works focus on multimodal fusion using camera and
LiDAR data [13], model-level fusion within a single modality
remains less explored for real-time instance-aware segmenta-
tion in autonomous driving. Transformer-based segmentation
models such as Mask2Former [14] and foundation models like
AD-SAM [15] have shown strong performance but remain
computationally expensive for real-time deployment.

D. Positioning of the Proposed Approach

In contrast to existing YOLO-based instance segmentation
methods that typically rely on a single network architecture,
this work introduces a fusion-based dual-YOLOvS8 framework
that integrates two lightweight segmentation models operating
at complementary scales. While prior approaches primarily
focus on architectural refinements within a single model to
improve either accuracy or speed, such designs may struggle
to maintain robustness under significant object scale variation,
occlusions, and complex urban traffic scenes.

By jointly leveraging YOLOv8n-seg for efficient and low-
latency inference and YOLOv8s-seg for richer multi-scale
feature representation, the proposed framework exploits model-
level complementarity to enhance instance-aware semantic
segmentation performance without incurring substantial com-
putational overhead. Unlike multimodal fusion strategies that
combine heterogeneous sensor inputs such as camera and
LiDAR data, the proposed approach operates within a single
visual modality, making it particularly suitable for real-time
and edge deployment in autonomous driving and ADAS ap-
plications.

Unlike conventional ensemble approaches that indepen-
dently aggregate predictions from multiple models, the pro-
posed framework introduces a deployment-oriented dual-
network fusion strategy explicitly designed for real-time
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instance-aware segmentation. Rather than modifying individual
YOLO architectures, this work demonstrates that fusing two
carefully selected lightweight segmentation models enables
cross-model scale complementarity that cannot be achieved
by a single network without significantly increasing complex-
ity. This design choice distinguishes the proposed approach
from prior YOLO-based enhancements focused on single-
model architectural refinement and provides a practical and
generalizable fusion paradigm for real-time perception systems
under strict latency and resource constraints.

As a result, the proposed dual-YOLOvVS fusion strategy
addresses a key limitation of current real-time instance seg-
mentation methods by improving segmentation robustness and
accuracy while preserving practical real-time performance on
resource-constrained platforms.

III. PROPOSED WORK

To address the growing demand for accurate, real-time, and
edge-deployable perception in autonomous driving systems,
this work proposes a lightweight dual-network fusion frame-
work for instance-aware semantic segmentation of vehicles.
The primary objective of the proposed approach is to achieve
precise pixel-level object delineation while maintaining com-
putational efficiency suitable for real-time deployment on
resource-constrained platforms. An overview of the proposed
framework is illustrated in Fig. 1, which integrates dataset
preparation, a dual-network segmentation architecture, and
representative qualitative outputs within a unified perception
pipeline.

The framework is built upon the Reetiquetado de Vehiculos
dataset (version 2), hosted on Roboflow Universe, which pro-
vides instance-level segmentation annotations for five vehicle
categories: car, bus, motorcycle, truck, and truck3. As depicted
in the upper-left part of Fig. 1, the dataset includes images
captured under diverse real-world traffic conditions, encom-
passing variations in illumination, viewpoint, vehicle scale,
and background complexity. Such diversity is essential for
training segmentation models capable of robust generalization
across complex urban environments. The dataset is divided into
training, validation, and test subsets to ensure a consistent and
reproducible evaluation protocol.

At the core of the proposed framework lies a dual-YOLOVS
segmentation architecture that integrates the complementary
strengths of the lightweight YOLOv8n-seg and the more
expressive YOLOvS8s-seg models through a model-level fu-
sion strategy. Unlike conventional single-model approaches,
the proposed design exploits the heterogeneity of lightweight
and moderately scaled networks to improve robustness across
varying object sizes and scene complexities. YOLOv8n-seg
emphasizes fast inference and low computational cost, while
YOLOvV8s-seg provides richer multi-scale feature representa-
tions that enhance segmentation accuracy. Their integration
enables the framework to capture both fine-grained local details
and higher-level contextual information.

Each YOLOvV8 segmentation model consists of a CSP-
Darknet backbone for efficient feature extraction, a Path Ag-
gregation Feature Pyramid Network (PAFPN) for enhanced
multi-scale feature aggregation, and a decoupled segmentation
head that jointly optimizes object localization, classification,
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and instance-level mask prediction. This architectural design
facilitates accurate separation of individual vehicle instances
while preserving semantic class information, thereby fulfilling
the requirements of instance-aware semantic segmentation.
The proposed dual-network fusion strategy leverages comple-
mentary feature representations from both models, improving
robustness to object scale variation, partial occlusions, and
visually cluttered backgrounds.

Finally, the bottom-right section of Fig. 1 presents quali-
tative segmentation results across multiple driving scenarios.
The visual examples demonstrate the ability of the proposed
framework to generate accurate and consistent instance-level
segmentations for different vehicle categories, even under
challenging conditions such as partial occlusions and complex
urban backgrounds. These qualitative observations confirm
that the proposed dual-YOLOVS fusion framework achieves
a favorable balance between segmentation accuracy and com-
putational efficiency.

In summary, the proposed framework provides an efficient,
scalable, and edge-friendly solution for instance-aware se-
mantic segmentation in autonomous driving, combining com-
plementary YOLOv8 segmentation models and high-quality
instance annotations to address key perception challenges in
real-world traffic environments.

IV. EXPERIMENTAL SETUP
A. Training Platform and Implementation Details

All experiments were conducted on a workstation running
Ubuntu 24.04, equipped with an 11th Gen Intel(R) Core(TM)
17-11800H CPU operating at 2.30 GHz, 16 GB of RAM,
and an NVIDIA GeForce RTX 3050 GPU. The proposed
framework was implemented using the Python programming
language and trained using the PyTorch deep learning frame-
work with CUDA acceleration. Automatic Mixed Precision
(AMP) was enabled to improve training efficiency and reduce
memory usage.

The instance-aware semantic segmentation models, namely
YOLOv8n-seg and YOLOVS8s-seg, were implemented based on
the official YOLOVS repositories. The use of official imple-
mentations ensures correctness, reproducibility, and practical
relevance of the experimental results.

B. Training Configuration

The proposed framework was trained for a total of 100
epochs using a batch size of 8 and an input resolution of
640 x 640 pixels. Optimization was performed using the Adam
optimizer with an initial learning rate of 0.01. A cosine
learning-rate scheduling strategy was employed to progres-
sively reduce the learning rate during training, promoting sta-
ble convergence. An early-stopping mechanism with a patience
of 20 epochs was applied to prevent overfitting by terminating
training when no improvement in validation performance was
observed.

Automatic Mixed Precision (AMP) was enabled to accel-
erate training and reduce memory consumption. Pretrained
weights were utilized to initialize the models, facilitating faster
convergence and improved generalization. Data augmentation
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Fig. 1. Overview of the proposed dual-YOLOVS8 fusion framework for instance-aware semantic segmentation.

techniques, including blurring, grayscale conversion, contrast-
limited adaptive histogram equalization (CLAHE), mosaic
augmentation, mixup, and random erasing, were applied during
training to enhance robustness against variations in scale,
illumination, and appearance.

C. Dataset Description

The experiments were conducted using the Reetiquetado de
Vehiculos dataset (version 2), a publicly available benchmark
hosted on Roboflow Universe [16]. The dataset contains an-
notated images representing five vehicle categories: bus, car,
motorcycle, truck, and truck3. It is organized into three subsets,
namely training, validation, and test splits, enabling a consis-
tent and reproducible evaluation protocol. The Reetiquetado
de Vehiculos dataset was selected due to its vehicle-centric
focus, instance-level annotations, and suitability for evaluating
real-time segmentation performance in autonomous driving
scenarios.

The dataset includes complete instance-aware semantic
segmentation annotations for all vehicle classes, allowing
pixel-level delineation of individual object instances. The di-
versity of vehicle types and balanced class distribution make it
suitable for evaluating segmentation performance on both fre-
quently occurring and less-represented vehicle categories. No
additional re-annotation was performed, and the dataset was

used as provided, ensuring fair and reproducible experimental
conditions.

D. Evaluation Metrics and Performance Measures

The proposed dual-YOLOVS fusion framework is evaluated
using standard metrics for instance-aware semantic segmenta-
tion. Performance is assessed at the instance level using pre-
cision, recall, Fl-score, and mean Average Precision (mAP),
all computed on the predicted segmentation masks.

Precision (P) measures the proportion of correctly pre-
dicted instances among all predicted instances, while recall
(R) reflects the proportion of ground-truth instances that are
correctly detected. These metrics are defined as [17], [18]:

TP
P_TP+FP’ M
TP
i 2
R TP+ FN’ 2

where, TP, F'P, and FFN denote the numbers of true
positives, false positives, and false negatives, respectively.

To provide a balanced evaluation of segmentation perfor-
mance, the Fl-score is computed as the harmonic mean of
precision and recall:
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Segmentation accuracy is further quantified using the Inter-
section over Union (IoU), which measures the overlap between
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Based on the IoU criterion, the mean Average Precision
(mAP) is employed to summarize overall segmentation perfor-
mance. The Average Precision (AP) is computed as the area
under the Precision—Recall curve for each class, and the mAP
is obtained by averaging AP values across all C' object classes:

C
1
mAP = e ; AP.. (5)

Following the standard COCO evaluation protocol, seg-
mentation performance is reported at an IoU threshold of 0.5
(mAP@0.5) as well as averaged over multiple IoU thresholds
ranging from 0.5 to 0.95 in steps of 0.05 (mAP@0.5:0.95),
thereby capturing both localization accuracy and mask quality.

In addition, confidence-based performance curves, in-
cluding Precision—Confidence, Recall-Confidence, Precision—
Recall, and F1-Confidence curves, are analyzed to examine the
behavior of the segmentation model under varying confidence
thresholds. This analysis provides insights into the trade-off
between detection reliability and instance coverage, which
is particularly important for real-time autonomous driving
applications.

V. RESULTS ANALYSIS AND DISCUSSION

This section presents a comprehensive analysis and dis-
cussion of the experimental results obtained with the proposed
dual-YOLOVS8 fusion framework, highlighting its performance
in terms of segmentation accuracy, robustness, and computa-
tional efficiency.

A. Statistical and Spatial Characteristics of the Dataset

Fig. 2 illustrates the distribution and spatial characteristics
of the annotated instances in the Reetiquetado de Vehiculos
dataset. The class distribution, shown in the upper-left plot,
reveals a moderate class imbalance, with car instances being
the most frequent, followed by truck and truck3, while bus
and motorcycle appear less frequently. This imbalance reflects
realistic traffic conditions and motivates the need for robust
segmentation models capable of handling both dominant and
under-represented classes.

The upper-right visualization overlays normalized bound-
ing boxes of all instances, highlighting the diversity in object
scales and aspect ratios present in the dataset. The lower-left
plot shows the spatial distribution of object centers, indicating
that vehicles are predominantly located near the central and
lower regions of the images, which is consistent with typical
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on-road camera viewpoints. Finally, the lower-right plot depicts
the relationship between object width and height, demonstrat-
ing a wide variation in vehicle sizes and shapes. Together,
these statistics confirm that the dataset captures substantial
variability in object position, scale, and class frequency, pre-
senting a challenging and realistic benchmark for instance-
aware semantic segmentation in autonomous driving scenarios.
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Fig. 2. Statistical analysis of the Reetiquetado de Vehiculos dataset, including
class distribution, normalized bounding-box overlap, spatial distribution of
object centers, and width—height relationships of annotated vehicle instances.

B. Correlation Analysis of Bounding-Box Attributes

Fig. 3 presents a correlogram illustrating the relationships
among normalized bounding-box attributes in the Reetique-
tado de Vehiculos dataset, including object center coordinates
(z,y), width, and height. The diagonal histograms reveal the
marginal distributions of each attribute, showing that object
centers are predominantly concentrated near the central regions
of the images, while width and height values span a broad
range. Off-diagonal plots highlight the correlations between
variables, most notably a strong positive relationship between
bounding-box width and height, indicating consistent aspect
ratios across vehicle types. The joint distributions involving
spatial coordinates further confirm that larger objects tend to
appear closer to the camera viewpoint, while smaller instances
are more dispersed. Overall, this analysis demonstrates the
structural diversity and realistic spatial correlations present in
the dataset, reinforcing its suitability as a challenging bench-
mark for instance-aware semantic segmentation in autonomous
driving scenarios.

C. Training Dynamics and Convergence Analysis

The learning curves presented in Fig. 4 demonstrate a
stable and well-behaved convergence of the YOLOvVS8-seg
training process over 100 epochs. All training loss components,
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Fig. 3. Correlogram of normalized bounding-box attributes showing marginal
distributions and pairwise correlations between object center coordinates,
width, and height.

including bounding box regression loss, segmentation loss,
classification loss, and distribution focal loss (DFL), exhibit
a smooth and monotonic decrease throughout training. This
behavior indicates effective optimization of both localization
accuracy and pixel-level mask prediction, without oscillations
or sudden instabilities that would suggest optimization diffi-
culties. A similar decreasing trend is observed for the valida-
tion losses, which closely follow their corresponding training
curves. The absence of sustained divergence between training
and validation losses suggests that the model generalizes well
to unseen data and does not suffer from significant overfitting.
Minor fluctuations in the validation curves, particularly for
classification and segmentation losses, can be attributed to the
inherent complexity of UAV urban scenes and class imbalance,
but these variations remain controlled and diminish as training
progresses. From a performance perspective, both detection
and segmentation metrics improve rapidly during the early
training epochs, reflecting fast learning of low-level and mid-
level visual features. Precision and recall for bounding boxes
increase steadily before reaching a plateau, indicating that the
model achieves a stable balance between false positives and
false negatives. A similar trend is observed for mask precision
and recall, confirming that improvements in object localiza-
tion directly translate into better instance-level segmentation
quality. The mAP@0.5 and mAP@0.5:0.95 curves for both
bounding boxes and masks show consistent growth followed
by gradual saturation after approximately 70-80 epochs. This
saturation behavior indicates that the model approaches its
optimal representational capacity under the given architecture
and training configuration, with diminishing returns beyond
this point. Notably, the close alignment between box-level and
mask-level mAP curves highlights the strong coupling between
detection and segmentation heads in the proposed framework.
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Overall, these training dynamics confirm that the adopted
optimization strategy, loss formulation, and architectural de-
sign lead to reliable convergence, stable validation perfor-
mance, and balanced improvement across detection and in-
stance segmentation tasks. This stability is particularly impor-
tant for UAV-based applications, where robustness and gener-
alization under challenging imaging conditions are critical.

D. Class-wise Performance Analysis

Fig. 5 presents the normalized confusion matrix of the
proposed instance-aware semantic segmentation framework
across the five vehicle categories. The strong diagonal dom-
inance indicates high classification accuracy for all classes,
with particularly strong performance for car (0.93), bus (0.89),
motorcycle (0.87), truck3 (0.85), and truck (0.81). These results
confirm that the framework effectively distinguishes between
different vehicle categories despite variations in appearance
and scale.

Most misclassifications arise between visually similar cat-
egories, particularly truck and truck3, which exhibit closely
related geometric structures and appearance patterns. A limited
degree of confusion with the background class is also observed,
mainly for large-scale vehicles, and can be attributed to partial
occlusions, truncated instances, or ambiguous object bound-
aries in complex traffic scenes. Despite these challenges, the
predominantly low off-diagonal values in the confusion ma-
trix indicate strong class separability and consistent semantic
discrimination. Overall, this analysis confirms the robustness
of the proposed dual-YOLOV8 fusion framework in effec-
tively managing inter-class similarity while preserving accurate
instance-level segmentation performance.

E. Mask Precision-Recall Analysis

Fig. 6 shows the mask precision—recall curves for each
vehicle category and for all classes combined. The curves
exhibit strong performance across a wide range of recall
values, indicating that the proposed framework maintains high
precision while successfully retrieving most object instances.
The aggregated curve achieves an overall mAP@0.5 of 92.9%,
confirming the effectiveness of the proposed dual-YOLOvVS
fusion approach for instance-aware semantic segmentation.
Class-wise results demonstrate particularly strong performance
for car and bus, while slightly lower precision is observed
for visually challenging categories such as fruck. Overall,
the curves indicate a favorable balance between precision
and recall, highlighting the robustness of the segmentation
framework across different vehicle types.

F. Mask Precision-Confidence Analysis

Fig. 7 illustrates the mask precision—confidence curves for
each vehicle class and for all classes combined. Precision
increases steadily as the confidence threshold rises, indicat-
ing a progressive reduction in false-positive segmentation
predictions. The aggregated curve shows that the proposed
framework achieves near-perfect precision at high confidence
levels, reaching a precision of 1.00 at a confidence threshold
of approximately 0.98. Class-wise curves exhibit consistent
behavior, with minor variations reflecting differences in object
appearance and class frequency. These results demonstrate the
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Fig. 4. Training and validation curves of YOLOvS8-seg, over 100 epochs, for Bounding Box Prediction (B) and Segmentation Outputs (M).
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Fig. 6. Mask precision-recall curves analysis.

reliability of the proposed instance-aware semantic segmen-
tation framework in producing highly accurate segmentation
outputs when appropriate confidence thresholds are applied.

trade-off between recall and confidence threshold selection in
instance-aware semantic segmentation.

H. Mask F1-Confidence Analysis

Fig. 9 presents the mask Fl-confidence curves for in-
dividual vehicle classes and for all classes combined. The
F1 score increases rapidly at low confidence thresholds and
remains stable over a broad confidence range, indicating a bal-
anced trade-off between precision and recall. The aggregated
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Fig. 8. Mask recall-confidence curves analysis.

curve reaches a maximum F1 score of approximately 0.87
at a confidence threshold of 0.77, which can be considered
an optimal operating point for the proposed instance-aware
semantic segmentation framework. Class-wise curves exhibit
similar trends, with minor variations reflecting differences in
object appearance and class distribution. These results provide
a practical guideline for selecting confidence thresholds that
balance segmentation accuracy and completeness in real-time
applications.
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Fig. 9. Mask Fl-confidence analysis.

1. Embedded Deployment: ARM vs. GPU

Although the proposed Dual-YOLOvS8 fusion framework
achieves strong segmentation accuracy and real-time inference
on a desktop GPU, embedded deployment introduces stricter
constraints in compute throughput, memory bandwidth, and
runtime overhead. On the workstation platform used in this
study (Intel i7-11800H + NVIDIA RTX 3050), the proposed
method attains an overall mask mAPj 5 of 92.9 (mAPg 5.0.95 of
80.8) with an average processing time of approximately 7.9 ms
per image at 640 x 640, corresponding to about 126 FPS.

To contextualize deployment on resource-constrained de-
vices, we consider two representative edge targets: 1) an

Vol. 17, No. 1, 2026

ARM CPU-only platform (Raspberry Pi 5) and 2) a low-
power GPU platform (NVIDIA Jetson Nano). Raspberry Pi 5
is built around the Broadcom BCM2712 SoC featuring a quad-
core Arm Cortex-A76 CPU operating at 2.4 GHz. Jetson Nano
integrates a 128-core NVIDIA Maxwell GPU and a quad-core
Arm Cortex-A57 CPU, and is advertised at 472 GFLOPS Al
performance. For a fair real-time characterization on embedded
systems, end-to-end latency is defined as:

Tere = Tpre + Thet + Tposh (6)

where, T includes resize/letterbox and normalization,
Thet is the model forward pass, and T} includes confidence
filtering, NMS, and mask decoding. Unless explicitly stated,
visualization/overlay rendering and camera/video I/O are ex-
cluded, since they depend heavily on the application pipeline
rather than the model itself.

Table I reports the desktop reference (measured in this
paper) and estimated end-to-end timing on Raspberry Pi 5
and Jetson Nano for batch=1 and 640 x 640. The embedded
results are estimates (not directly measured in this study) and
are provided to guide the expected order of magnitude when
selecting an appropriate deployment target and optimization
strategy.

The GPU-accelerated Jetson Nano is expected to provide
substantially lower end-to-end latency than CPU-only exe-
cution due to CUDA/TensorRT acceleration, making it the
more suitable target for running the full dual-model fusion
pipeline at 640 x 640 when near real-time constraints are
required. However, Jetson Nano lacks comprehensive support
for INT8 across all layers in TensorRT workflows on this
class of hardware, so FP16 (or FP32) is typically the practical
deployment choice.

In contrast, Raspberry Pi 5 inference is dominated by Tj,
on CPU, and thus benefits most from 1) quantization and
2) reducing input size and/or simplifying the model. Quan-
tized inference on Raspberry Pi-class devices is commonly
performed using INT8 arithmetic to reduce model size and
improve runtime performance, but it may introduce a small
accuracy drop, motivating either post-training quantization
with calibration data (PTQ) or quantization-aware training

(QAD).

Finally, these embedded estimates reinforce the main
conclusion drawn from the workstation experiments: while
the proposed fusion strategy offers an excellent accuracy—
efficiency balance on a desktop GPU (929 mAPy5 at
7.9 ms/image), deployment on CPU-only embedded de-
vices typically requires additional compression (quantiza-
tion/pruning) and/or architectural simplification to meet strict
real-time constraints.

J. Qualitative Segmentation Results

In addition to quantitative metrics, qualitative results on
unseen validation images further demonstrate the robustness
and visual consistency of the proposed framework.

Fig. 10 presents qualitative instance-aware semantic seg-
mentation results obtained on the validation set using the
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TABLE 1. END-TO-END LATENCY BREAKDOWN

Platform Precision Tpre (ms) Thet (ms) Thost (ms) Teze (ms) FPS
RTX 3050 (reference) FP16/AMP - - - 79 126
Jetson Nano (GPU) FP16 (TensorRT) 4-7 35-60 8-15 50-82 12-20
FP32 4-7 55-90 10-18 69-115 9-14
Raspberry Pi 5 (CPU) FP32 25-45 600-1000 70-120 695-1165  0.9-1.4
INT8 (PTQ/QAT) 25-45 280-520 60-100 365-665 1.5-2.7

proposed fusion-based dual-YOLOvVS8 framework. The exam-
ples demonstrate accurate segmentation of multiple vehicle
categories, including cars, buses, trucks, and motorcycles,
across diverse traffic scenes. The model successfully delineates
vehicle boundaries at the pixel level while preserving correct
semantic labels and high confidence scores. Notably, the
framework handles variations in object scale, partial occlu-
sions, and complex backgrounds, such as roadside vegetation
and shadows, with consistent segmentation quality. The results
also show reliable separation of adjacent objects and stable
predictions for both near-field and distant vehicles. These
qualitative observations corroborate the quantitative evaluation,
confirming the robustness and visual consistency of the pro-
posed instance-aware semantic segmentation approach in real-
world driving scenarios.

Fig. 10. Qualitative instance-aware semantic segmentation results on the
validation set produced by the proposed fusion-based dual-YOLOv8
framework.

K. Comparative Study with State-of-the-Art

Table II presents an indicative comparison between the
proposed dual-YOLOvVS fusion framework and representative
real-time instance segmentation methods reported in the lit-
erature. Early one-stage approaches such as YOLACT and
YOLACT++ achieve moderate segmentation accuracy on the

COCO benchmark, with Mask AP values of 29.8% and 34.1%,
respectively, while operating at approximately 33-34 FPS.
Subsequent YOLO-based methods, including Insta-YOLO and
YOLO-Core, improve inference speed and segmentation per-
formance through architectural refinements, with YOLO-Core
reaching 38.6% COCO Mask AP at 45 FPS. More recent
lightweight designs tailored for traffic and urban perception,
such as PSC-YOLO and UDS-YOLO, emphasize efficiency
and robustness in complex road scenes. PSC-YOLO reports a
relative improvement of 2.0% in mask average precision over
YOLOv8n-seg while maintaining real-time performance at
approximately 91 FPS, whereas UDS-YOLO achieves 39.5%
mAP@0.5 on the Cityscapes dataset with a processing speed
of 106.6 FPS. In contrast, the proposed dual-YOLOvVS fu-
sion framework attains a substantially higher segmentation
accuracy, achieving 92.9% mAP@0.5 while sustaining real-
time inference at 126 FPS on the evaluated dataset. Although
the reported results are obtained under different datasets and
evaluation protocols, the comparison highlights the favorable
accuracy—efficiency trade-off of the proposed approach and its
suitability for real-time autonomous driving applications.

Overall, the experimental findings and comparative anal-
ysis confirm that the proposed approach achieves a favorable
balance between segmentation accuracy and real-time perfor-
mance, reinforcing its suitability for practical deployment in
autonomous driving and ADAS applications.

VI. CONCLUSION AND FUTURE WORK

In this paper, a lightweight dual-YOLOVS fusion frame-
work for instance-aware semantic segmentation in autonomous
driving scenarios has been presented. By combining the com-
plementary strengths of YOLOv8n-seg and YOLOvS8s-seg,
the proposed approach enhances robustness to object scale
variation and occlusions while maintaining real-time inference
performance. Experimental results on a vehicle-centric dataset
demonstrate the effectiveness of the framework, achieving an
overall mAP@0.5 of 92.9% with an average inference time of
7.9 ms per image (126 FPS) on an NVIDIA RTX 3050 GPU.
Both quantitative and qualitative evaluations confirm accurate
and consistent instance-level segmentation in challenging traf-
fic scenes.

While the proposed framework demonstrates strong per-
formance, several limitations should be acknowledged. The
experimental evaluation is limited to vehicle categories and
does not yet include vulnerable road users such as pedestrians
or cyclists. In addition, the embedded deployment analysis
on ARM and low-power GPU platforms is indicative, with
latency figures partially based on estimated performance rather
than exhaustive hardware benchmarking. The current fusion
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TABLE II. INDICATIVE COMPARISON WITH REAL-TIME INSTANCE SEGMENTATION METHODS

Method Backbone Reported Metric Speed (FPS)
YOLACT [3] ResNet-101 29.8 (COCO Mask AP) 33
YOLACT++ [19] ResNet-101 34.1 (COCO Mask AP) 34
Insta-YOLO [5] YOLOvV3 - 30
YOLO-Core [6] CSP-based 38.6 (COCO Mask AP) 45
PSC-YOLO [20] YOLOv8n-based +2.0% Mask AP vs YOLOv8n-seg ~91
UDS-YOLO [21] YOLOV8-seg 39.5 / 24.0 (Cityscapes) 106.6
YOLOv8-seg [9] YOLOv8s Dataset-specific 120
Proposed Method  Dual-YOLOvVS Fusion 92.9 (mAP@0.5) 126

strategy also employs fixed model combinations and does not
dynamically adapt to scene complexity.

Beyond quantitative performance, this study highlights the
potential of model-level fusion as a practical design strategy
for real-time perception systems in autonomous driving and
ADAS. By demonstrating that complementary lightweight net-
works can outperform single-model designs under strict latency
constraints, the proposed framework provides insights for
future perception architectures targeting resource-constrained
and safety-critical environments.

Future work will explore extensions to multimodal percep-
tion by incorporating additional sensors such as LiDAR or
radar, as well as adaptive fusion mechanisms with confidence-
aware weighting to dynamically balance model contributions
across varying scene complexities.
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