
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

Lightweight Machine Learning for Real-Time Gear
Change Prediction in Autonomous Parking

Ahmed A. Kamel*, Reda Alkhoribi, M. Shoman, Mohammed A. A. Refaey
Faculty of Computers and AI, Cairo University, Egypt

Abstract—Real-time motion planning for autonomous park-
ing on embedded advanced driver-assistance system (ADAS)
platforms faces a fundamental computational bottleneck:
transformer-based approaches (e.g., Motion Planning Trans-
former, Diffusion-based planners) achieve strong performance
but incur prohibitive computational costs unsuitable for resource-
constrained automotive systems. This work proposes a lightweight
alternative machine learning approach using Random Forest
classifiers and regressors to predict parking trajectory regions
and vehicle orientations, enabling accelerated Rapidly-exploring
Random Trees (RRT) planning without sacrificing robustness.
The approach is trained on a dataset of 10,725 synthetic per-
pendicular backward parking scenarios generated via Rapidly-
exploring Random Tree Star (RRT*) in the Reeds-Shepp con-
figuration space. Using Random Forests with 20 trees and
maximum depth 8, the method achieves 98.3–100% success rate
in multi-direction-change scenarios with planning times of 0.15–
0.25 seconds, compared to 2.81 seconds for unconstrained RRT.
In scenarios with insufficient prediction guidance, the constrained
planner can maintain a fallback mechanism that preserves RRT’s
probabilistic completeness guarantees. This work demonstrates
that simpler machine learning models can match transformer-
based approaches while remaining practical for embedded de-
ployment.

Keywords—Autonomous parking; direction change detection;
embedded systems; machine learning; motion planning; random
forest; rapidly-exploring random trees; rapidly-exploring random
tree star

I. INTRODUCTION

Autonomous parking represents a critical advanced driver-
assistance system (ADAS) capability that enhances vehicle us-
ability and road safety. The task requires generating collision-
free, kinematically feasible trajectories that navigate vehicles
into parking spaces under strict real-time constraints. Perpen-
dicular backward parking, the most common real-world sce-
nario, demands multiple direction reversals (gear changes) and
precise trajectory execution, presenting a non-trivial motion
planning challenge.

Sampling-based motion planners (SBMPs) such as
Rapidly-exploring Random Trees (RRT) [1] and Rapidly-
exploring Random Tree Star (RRT*) [2] provide probabilistic
completeness guarantees—if a collision-free path exists, these
algorithms will find it given sufficient computation time. RRT*
additionally offers asymptotic optimality, enabling generation
of near-optimal parking trajectories. However, computational
requirements for these algorithms often reach several seconds
per planning instance, exceeding real-time requirements of
automotive systems. Current ADAS processors allocate com-
putational budgets primarily to perception tasks (computer

*Corresponding author.

vision, LiDAR processing) and end-to-end learning models
for driving decisions, leaving minimal resources for classical
motion planning.

Recent advances have demonstrated that learning-
augmented planning can bridge this efficiency gap. The
Motion Planning Transformer (MPT) framework learns
spatial path structure from SBMP outputs [3], enabling faster
RRT exploration through intelligent guidance. Transformer-
Enhanced Motion Planner (TEMP) extends this with
environmental encoders [4] that further reduce search space.
Concurrently, diffusion-based approaches (e.g., Diffusion-
based Parking Planner, MultiPark) have shown promise in
learning complex parking distributions. However, all these
approaches introduce substantial computational overhead:
transformer inference requires millions of parameters and
iterative attention mechanisms, while diffusion models
necessitate multiple denoising iterations. For ADAS platforms
where transformer or diffusion inference could dominate the
planning budget, these solutions remain impractical.

This work addresses this gap by proposing a lightweight,
learning-augmented planning framework specifically opti-
mized for autonomous parking on embedded systems. Rather
than employing global transformer models or diffusion pro-
cesses, the approach trains per-grid-cell Random Forest clas-
sifiers and regressors to predict path occupancy (0=empty,
1=path, 2=state change, 3=direction change) and vehicle ori-
entation. These lightweight models (20 trees, maximum depth
8) require minimal inference time while providing spatial
guidance that accelerates RRT exploration. The framework
may also preserve the theoretical completeness properties of
RRT through a fallback mechanism that permits unconstrained
exploration when learned guidance is insufficient.

The main contributions of this work are:

• A large-scale synthetic dataset of 10,725 perpendic-
ular backward parking scenarios with ground-truth
RRT* trajectories in the Reeds-Shepp configuration
space [5];

• A lightweight two-tier learning framework combining
Random Forest classifiers [6] for spatial path occu-
pancy prediction with regressors for vehicle orienta-
tion estimation;

• An enhanced RRT algorithm that integrates learning-
based predictions to constrain state sampling while
maintaining probabilistic completeness;

• Comprehensive experimental validation demonstrating
17-fold planning time reduction (2.81 to 0.16 seconds)

www.ijacsa.thesai.org 915 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

and improved success rates (98–100%) in direction-
change-intensive scenarios, with performance scaling
as a function of prediction confidence;

• Evidence that lightweight machine learning mod-
els achieve comparable benefits to transformer-based
methods while remaining feasible for embedded
ADAS deployment.

The remainder of this paper is organized as follows.
Section II reviews related work in sampling-based motion
planning, learning-augmented approaches, and autonomous
parking systems. Section III presents the methodology, includ-
ing dataset generation, model architecture, and the constrained
RRT algorithm. Section IV presents experimental results with
quantitative performance breakdown by prediction confidence.
Section V discusses findings, computational feasibility, limi-
tations, and future research directions. Section VI concludes
with a summary of contributions and practical implications.

II. RELATED WORK

A. Classical Sampling-Based Motion Planning

Sampling-based motion planners have dominated robotic
and autonomous vehicle path planning for over two decades.
The Rapidly-exploring Random Tree (RRT) algorithm [1] pro-
vides probabilistic completeness and handles high-dimensional
configuration spaces effectively. RRT* [2] extends this frame-
work with rewiring to achieve asymptotic optimality. For ve-
hicles with kinematic constraints (e.g., non-holonomic differ-
ential steering), variants incorporating Dubins [7] and Reeds-
Shepp [5] steering enable feasible trajectory generation. While
theoretically robust, classical SBMPs typically require seconds
to minutes on embedded platforms, limiting real-time automo-
tive applications.

B. Learning-Augmented Motion Planning

Recent research has explored augmenting classical plan-
ners with learned models. The Motion Planning Transformer
(MPT) [3] demonstrates that transformer networks trained on
SBMP outputs can generalize motion planning constraints to
novel configurations and environments. By predicting feasible
regions, MPT enables RRT to focus exploration on high-
probability areas, achieving substantial acceleration. Build-
ing on this work, Transformer-Enhanced Motion Planner
(TEMP) [4] introduces an Environmental Information Seman-
tic Encoder (EISE) to further reduce required search space
through semantic understanding of scene structure.

However, transformer-based approaches incur significant
computational costs. A typical transformer model contains
millions of parameters and requires forward passes involv-
ing matrix multiplications across multiple attention layers,
often necessitating seconds of inference time on embedded
platforms. In ADAS systems where a single processing chip
allocates computational budget across perception (computer
vision, object detection, tracking) and driving decision models
(end-to-end learning, reinforcement learning), the overhead
of transformer inference can exceed motion planning itself,
making such approaches impractical for real-time deployment.

C. Diffusion Models in Motion Planning

Emerging diffusion-based planning approaches have shown
promise in complex motion planning tasks. Diffusion-based
planning models [8] [9] leverage learned score functions to
generate collision-free trajectories by iterative refinement. In
the parking domain, models such as Diffusion-based Parking
Planner [8] and MultiPark [9] apply diffusion processes to
learn parking distributions from expert demonstrations. While
effective, these methods similarly suffer from computational
cost: each planning instance requires multiple denoising itera-
tions (typically 10–50 steps), each involving forward passes
through the neural network, rendering real-time inference
infeasible on embedded platforms.

D. Lightweight and Embedded Planning Approaches

Prior work on embedded motion planning has explored
heuristic-based methods (e.g., Hybrid A* [10] with hand-
crafted heuristics) and simplified geometric approaches. While
computationally efficient, these methods sacrifice generality
and theoretical guarantees. The current work bridges this
gap by demonstrating that lightweight supervised learning
models (Random Forests with limited tree depth and count)
can provide sufficient spatial structure to accelerate sampling-
based planning while maintaining theoretical guarantees and
remaining practical for embedded systems.

III. MATERIALS AND METHODS

A. Problem Formulation

This work addresses motion planning in perpendicu-
lar backward parking scenarios. The configuration space
is defined as C = SE(2) × {F,B}, where a configu-
ration x = (x, y, θ, g) ∈ C represents vehicle position
(x, y) ∈ R2, heading angle θ ∈ [0, 2π], and gear state
g ∈ {F (forward), B (backward)}. The parking task is spec-
ified by start configuration xs and goal configuration xg .
The environment contains polygonal obstacles representing
adjacent vehicles and parking lot boundaries.

B. Dataset Generation

1) Vehicle and scene parameterization: A vehicle model
based on the Audi A4 sedan was parameterized with the fol-
lowing specifications: length 4.76 m, width 1.84 m, wheelbase
2.82 m. Each parking scenario is geometrically described by
a feature vector f ∈ R26 containing:

• Ten vertices (20 coordinates) representing obstacle
boundaries: two triangular regions flanking the parking
slot (shown in magenta in Fig. 1), one rear boundary
line, and one forward maneuvering boundary line
(both shown in grey in Fig. 1).

• Start frame position (2 coordinates) and orientation (1
angle): 3 values total.

• Goal frame position (2 coordinates) and orientation (1
angle): 3 values total.

Data augmentation was performed by randomly translating
obstacles within a bounded region [−10,+10] m2 and rotat-
ing obstacle configurations. This procedure generated 10,725
unique parking scenarios, with failed path generations (path
not found within 30-second timeout) filtered post-generation.

www.ijacsa.thesai.org 916 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

Fig. 1. Representation of the parking scene obstacles.

2) Path generation and preprocessing: For each scenario,
a ground-truth parking trajectory was computed using the
Open Motion Planning Library (OMPL) [11] with the RRT*
algorithm and Reeds-Shepp steering to respect vehicle kine-
matics. Path generation was limited to a 30-second timeout
per scenario.

Each resulting path was represented as a sequence of states
in the Reeds-Shepp space and uniformly interpolated to exactly
100 waypoints for standardization across all scenarios (Fig.
2a).

From these interpolated waypoints all the direction/gear
changes are extracted as well (Fig. 2b).

Of the initial 10,725 scenarios attempted, the 2,252 scenar-
ios where RRT* failed to generate valid paths (e.g., scenarios
with insufficient maneuvering space) were excluded from
further analysis. The remaining 8,473 valid scenarios were
split into training (80%, 6778 scenarios) and test (20%, 1695
scenarios) sets prior to feature extraction.

C. Grid-Based Learning Framework

1) Spatial grid representation and labeling: A uniform
spatial grid of 1 m × 1 m cells was overlaid on each parking
scenario. Grid resolution was selected based on preliminary
experiments: coarser resolutions (2 m) provided insufficient
spatial discrimination, while finer resolutions (0.5 m, 0.25
m) increased model complexity and inference latency without
improving planning success rates.

For each grid cell, the following information was extracted
from the RRT* reference path:

• Occupancy class (Displayed in Fig. 3a)
ci ∈ {0, 1, 2, 3}: Maximum class among cells
crossed by the path, where:

◦ Class 0 (empty): cell contains no path
waypoints

◦ Class 1 (path): cell contains interpolated
waypoints

(a) Representation of the 100-waypoint interpolated parking path.

(b) Representation of direction changes in the path.

Fig. 2. Extracted information from parking path.

◦ Class 2 (state change): cell contains a
configuration where the path generates or
ends a Reeds-Shepp curve (this includes the
start and end locations)

◦ Class 3 (direction change): cell contains a
gear change

• Orientation (Displayed in Fig. 3b) θi: Average heading
angle of all waypoints within the cell

A direction change is formally defined as a transition in
gear state (forward → backward or backward → forward),
equivalent to a reversal in driving direction.

2) Model architecture and training: For each grid cell, a
separate Random Forest classifier was trained using the feature
vector f ∈ R26 as input and the occupancy class ci as target.
Random Forest models were selected for their non-parametric
nature, robustness to feature scaling, and minimal inference
overhead—critical for embedded deployment. The hyperpa-
rameter selection was: 20 decision trees with maximum tree
depth of 8.

www.ijacsa.thesai.org 917 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

(a) Representation of the path grid overlay.

(b) Representation of the orientation overlay.

Fig. 3. Representation of the path data after preprocessing.

Orientation prediction was performed separately. Initial
cells lacking waypoint coverage were marked as missing. A
K-Nearest Neighbors imputer (k = 5) was applied to estimate
missing orientations from neighboring cells. Subsequently, a
separate Random Forest regressor (20 trees, maximum depth
8) was trained for each grid cell to predict heading angles from
the feature vector f , using the imputed orientations as training
targets. This output data is displayed in Fig. 4.

D. Constrained RRT with Learned Guidance

The proposed planning algorithm augments standard RRT
with a custom state sampler that integrates predictions from
the trained models:

• Given a parking scenario, extract the feature vector f

• Query the trained classifiers to obtain per-cell occu-
pancy predictions: ĉi for all grid cells i

• Query the trained regressors to obtain per-cell orien-
tation predictions: θ̂i for all grid cells i

Fig. 4. Representation of the output vector data.

• During RRT tree expansion:

◦ (Standard RRT sampling) Generate a random
configuration xrand in the configuration space

◦ (Guided sampling) If xrand projects to a
grid cell with predicted occupancy ĉi > 2
(gear change) or part of the start/end cells,
accept the state; otherwise, reject and resample

◦ (Orientation constraint) If accepted, perturb
the heading component of xrand to lie within
[θ̂i − 45◦, θ̂i + 45◦]

◦ (Fallback mechanism) If valid state sampling
fails after N = 100 consecutive rejection
attempts, switch to unconstrained uniform
sampling for a configurable n sampling
attempts

• Continue standard RRT tree extension toward the goal
configuration

This formulation preserves the probabilistic completeness
of RRT: if a solution exists and sufficient time remains, the
fallback mechanism ensures that the algorithm explores the
full configuration space and eventually discovers a path.

E. Experimental Validation Protocol

For each of the 1695 test scenarios:

• Execute unconstrained RRT (baseline) with 30-second
planning timeout

• Execute constrained RRT (proposed method) with
identical timeout

• Record: success/failure, planning duration, number of
tree nodes created

• Post-hoc: count number of direction changes predicted
in that scenario’s grid

Success is defined as finding any collision-free path within
the timeout. All experiments were conducted on a standard

www.ijacsa.thesai.org 918 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

desktop workstation (AMD Ryzen 5 CPU, 32 GB RAM, no
GPU acceleration) using OMPL with Python bindings and
scikit-learn [12] for model training and inference.

IV. RESULTS

A. Overall Performance Summary

Table I presents aggregate results across all 1695 test
scenarios. Unconstrained RRT achieved 96.4% success rate
with mean success time of 2.81 seconds and overall mean time
of 3.79 seconds (including failed attempts). The constrained
RRT approach achieved 71.9% overall success with a mean
success time of 0.35 seconds and an overall mean time of 8.68
seconds; however, this aggregate masks important performance
variation correlated with prediction confidence (detailed in
Section IV-B).

The low overall success rate and high mean time for
constrained RRT in the aggregate reflect scenarios with sparse
or no direction change predictions (detailed in Section IV-C).
These scenarios comprise approximately 40.18% of the test set,
where prediction guidance is unreliable, and the constrained
sampler restricts exploration too severely, causing timeout
failures.

B. Performance Breakdown by Prediction Confidence

The key insight emerges when analyzing performance
conditional on the number of direction change predictions pro-
vided by the learned model. Table II presents results grouped
by direction change prediction count.

We can see in Fig. 5a the positive trend of success rate with
number of predictions and in Fig. 5b we can see the inverse
relation in runtime as the number of predictions increase.

Performance exhibits a clear correlation with prediction
confidence:

• No predictions (0 cells): 33.2% success. In these
scenarios, the constrained sampler restricts states to
empty grid cells, preventing effective exploration.
Timeout failures dominate.

• Single prediction (1 cell): 98.3% success, 0.15 s mean
time. Minimal guidance proves sufficient to accelerate
planning significantly.

• Two predictions: 99.7% success, 0.15 s mean time.

• Multiple predictions (3–5 cells): 100% success, 0.17–
0.25 s mean time.

For scenarios with at least one direction change prediction,
the constrained RRT dramatically outperforms unconstrained
RRT in both success rate and planning time, achieving 17-fold
speedup (2.81 to 0.16 seconds).

C. Failure Mode Analysis

Two distinct failure modes emerge:

(a) Success graph with respect to number of predictions.

(b) Timing graph with respect to number of predictions.

Fig. 5. Constrained RRT performance with respect to number of predictions.

1) Constrained RRT failures: Occur primarily when di-
rection change predictions are sparse or absent (0-1 cells).
In these scenarios, the learned model failed to capture the
true solution structure, either because 1) the test scenario
poorly matches the training distribution, or 2) the direction
change count is inherently low, providing minimal guidance to
the state sampler. The fallback mechanism prevents complete
failure but provides no advantage over unconstrained search,
explaining the degraded performance.

2) Unconstrained RRT failures: 3.6% of scenarios exceed
the 30-second timeout without finding a valid path. These are
intrinsically difficult configurations (e.g., very tight parking
spaces) that require extensive exploration.

V. DISCUSSION

A. Interpretation and Trade-offs

The results reveal a fundamental trade-off between search
coverage and computational efficiency. Unconstrained RRT
explores the entire configuration space uniformly, providing
robust coverage but requiring extensive computation. Con-
strained RRT leverages learned predictions to focus exploration
toward high-probability path regions, dramatically reducing
computational cost but at a loss of coverage in low-prediction
scenarios.

The strong performance in high-prediction scenarios (98.3–
100% success with 0.15–0.25 s planning) demonstrates that
direction changes create a highly structured planning problem.
The learned models effectively capture this structure, provid-
ing guidance that exceeds random exploration in value. This
supports the hypothesis that parking geometry imposes strong
constraints on feasible solution paths—constraints that modest
machine learning models can capture with reasonable accuracy.

www.ijacsa.thesai.org 919 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

TABLE I. OVERALL PLANNING PERFORMANCE (ALL TEST SCENARIOS)

Method Success Rate Mean Success Time Mean Overall Time
Unconstrained RRT 96.4% 2.81 s 3.79 s

Constrained RRT (Proposed) 71.9% 0.35 s 8.68 s

TABLE II. PERFORMANCE BY NUMBER OF DIRECTION CHANGE PREDICTIONS

Prediction Count Percentage of Scenarios Success Rate Mean Success Time Mean Overall Time
0 (no prediction) 40.18% 31.2% 1.22 s 21.05 s

1 21.30% 98.3% 0.15 s 0.65 s
2 19.82% 99.7% 0.15 s 0.24 s

3-5 18.70% 100.0% 0.17–0.25 s 0.17–0.25 s

All >0 predictions 59.82% 99.3% 0.16 s 0.37 s

B. Computational Feasibility for Embedded ADAS

Studies on the deployment of Random Forest (RF) models
in embedded environments have demonstrated their suitability
for embedded ADAS applications. Kuppers et al. reported
achieving an inference time of approximately 700 microsec-
onds per RF classifier on a test platform [13]. Accordingly,
the 400 RF classifiers used in this work result in a total
inference time of about 0.28 seconds. The analysis further
indicates that many grid cells remain unutilized, suggesting
that targeted grid pruning could reduce computational overhead
and enhance runtime efficiency. While this overhead remains
negligible compared to the overall planning time observed in
unconstrained RRT, the models retain a lightweight footprint,
as summarized below:

• Model size: Daghero et al. successfully deployed RF
models on microcontrollers with only 520 kB of
available memory [14]. Also, recent work by Kochel
et al. demostrates efficient tree ensemble inference
(including Random Forest) on ARM-based embedded
devices [15].

• Memory access pattern: Tree traversal operations
demonstrate high CPU cache locality.

• No specialized hardware required: Inference executes
efficiently on standard CPUs, reducing both power
consumption and thermal load.

In contrast, transformer-based approaches require millions
of parameters and iterative attention computations, often ne-
cessitating GPU acceleration and power budgets unsuitable
for ADAS platforms. Diffusion-based methods similarly re-
quire multiple denoising iterations, compounding computa-
tional overhead. The lightweight Random Forest framework
enables deployment on resource-constrained embedded pro-
cessors currently used in many production ADAS systems.

C. Comparison with Learning-Based Planning Methods

The proposed method achieves competitive results rela-
tive to transformer-based approaches while remaining prac-
tical for embedded deployment. MPT and TEMP require
transformer inference, estimated at 50–500 ms per planning
instance on embedded platforms (depending on model size
and hardware). MultiPark and diffusion-based methods require
multiple denoising iterations, further increasing latency. The

proposed constrained RRT achieves 0.15–0.25 s planning in
high-prediction scenarios, comparable to or better than these
methods.

This efficiency gain comes from task specialization: unlike
MPT (general motion planning) or diffusion models (learning
complex distributions), the current work targets a narrower
domain (parking) with a simpler learning objective (binary
occupancy and continuous orientation prediction). This trade-
off—generality for efficiency—is appropriate for ADAS ap-
plications where parking represents a well-defined, repeatedly
executed task.

D. Limitations

Several important limitations merit discussion:

• Parking type specificity: Models are trained exclu-
sively on perpendicular backward parking. Generaliza-
tion to parallel, angled, or diagonal parking requires
retraining on scenario-specific data. The 10,725 sce-
nario budget was chosen for manageable training time;
larger datasets could improve robustness but at higher
computational cost.

• Vehicle specificity: Models are parameterized for the
Audi A4 sedan. Vehicles with different wheelbase
lengths, turning radii, or dimensions require new
training. Transfer learning approaches (pre-training
on diverse geometries, fine-tuning) may mitigate this
limitation but were not explored here.

• Prediction reliability in distribution shift: When test
scenarios poorly match the training distribution (e.g.,
parking slots with unusual obstacle arrangements not
seen during training), learned predictions become
unreliable, degrading constrained RRT performance
below baseline.

• Grid resolution trade-off: The 1 m grid balances spa-
tial accuracy with model complexity. Finer grids (0.5
m, 0.25 m) could improve precision but increase the
number of per-cell models proportionally, increasing
inference latency and memory footprint. Coarser grids
reduce models but sacrifice spatial resolution.

• Baseline comparison limitation: Comparison is against
unconstrained RRT only. Quantitative comparisons
with transformer-based methods (MPT, TEMP) or

www.ijacsa.thesai.org 920 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

diffusion models on identical scenarios are not avail-
able, limiting direct competitive assessment. These
comparisons would require access to proprietary im-
plementations.

• Hyperparameter sensitivity not analyzed: The choice
of 20 trees and depth 8 was based on quick manual
comparisons but ablation studies comparing alterna-
tive configurations (5 trees, 50 trees, varying depths)
are not presented, limiting understanding of sensitivity
to these choices.

E. Future Research Directions

Future work should address:

• Multi-parking-type unification: Development of a sin-
gle learning model that handles perpendicular, parallel,
and angled parking simultaneously, trading per-type
accuracy for unified generality.

• Grid Cell Predictor Pruning: In depth analysis of grid
cell predictor utility for pruning and possibly explore
a learning model to determine which grid cells are
worth inference.

• Transfer learning: Pre-training on diverse synthetic
vehicle geometries and parking types, then fine-tuning
for specific vehicles, to reduce per-vehicle training
data requirements.

• Adaptive constraint relaxation: Dynamic adjustment of
sampling constraints (grid cell restrictions, orientation
bounds) based on prediction confidence, maintaining
completeness while improving robustness.

• Alternative SBMP variants: Extension to RRT*, Bidi-
rectional RRT, and other planners to assess whether
learned predictions similarly accelerate different algo-
rithm variants.

• Real-world validation: Deployment on actual au-
tonomous vehicles with real sensor data, dynamic
obstacles, and sensor noise to assess practical perfor-
mance beyond simulation.

• Hardware implementation: Optimization of inference
on actual ADAS processors (e.g., Qualcomm Snap-
dragon, NVIDIA DRIVE) to quantify practical de-
ployment feasibility.

VI. CONCLUSION

This paper presented a lightweight, learning-augmented
motion planning framework for real-time autonomous parking
on embedded ADAS platforms. By training Random Forest
classifiers and regressors to predict parking trajectory structure
(occupancy classes and vehicle orientation) from scenario
geometry, the approach enables accelerated RRT planning
without sacrificing theoretical completeness guarantees. Exper-
imental validation on 1695 test scenarios demonstrated that
scenarios with sufficient prediction guidance achieve 98.3–
100% success rates with 17-fold planning time reduction (2.81
to 0.15–0.25 seconds) compared to unconstrained RRT.

The core contribution is demonstrating that lightweight
supervised learning models (20 trees, maximum depth 8)

can achieve planning acceleration comparable to transformer-
based approaches while remaining practical for embedded
automotive deployment. This addresses a critical gap in current
ADAS systems, where computational budgets are dominated
by perception and end-to-end learning, leaving minimal re-
sources for classical motion planning.

As autonomous parking systems mature toward production
deployment, efficient planning methods that balance computa-
tional constraint, memory footprint, and solution quality will
become increasingly critical. This work demonstrates a prac-
tical path toward real-time, reliable parking planning suitable
for resource-constrained ADAS platforms, with clear pathways
toward generalization to multiple parking types and vehicle
platforms through transfer learning and multi-task approaches.

ACKNOWLEDGMENT

The authors gratefully acknowledge the Open Motion Plan-
ning Library (OMPL) developers for providing a comprehen-
sive, open-source motion planning framework essential for this
research.

REFERENCES

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” IEEE Computer Society, vol. 98, no. 11, pp. 1–4, 1998,
technical Report 98-11.

[2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[3] J. J. Johnson, U. S. Kalra, A. Bhatia, L. Li, A. H. Qureshi, and M. C.
Yip, “Motion planning transformers: A motion planning framework for
mobile robots,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 1–7.

[4] L. Zhuang et al., “Transformer-enhanced motion planner,” IEEE
Robotics and Automation Letters, 2024.

[5] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[6] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[7] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[8] M. Jiang, Y. Li, J. Zhang, S. Zhang, and M. Yang, “A diffusion-refined
planner with reinforcement learning priors for confined-space parking,”
arXiv preprint arXiv:2510.14000, 2025.

[9] H. Zheng, Z. Zhou et al., “Multipark: Multimodal parking transformer
with next-segment prediction,” arXiv preprint arXiv:2508.11537, 2025.

[10] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
The International Journal of Robotics Research, vol. 29, no. 5, pp.
485–501, 2010.

[11] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learn-
ing Research, vol. 12, pp. 2825–2830, 2011.

[13] F. Küppers, J. Kronenberger, A. Shantia, and A. Haselhoff, “Multivariate
confidence calibration for object detection,” in 2020 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2020, pp. 1322–1328.

www.ijacsa.thesai.org 921 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

[14] F. Daghero, A. Burrello, C. Xie, L. Benini, A. Calimera, E. Macii, and
M. Poncino, “Adaptive random forests for energy-efficient inference on
microcontrollers,” IEEE Transactions on Computers, vol. 71, no. 11,
pp. 2924–2937, 2022.

[15] S. Koschel, S. Buschjäger, C. Lucchese, and K. Morik, “Fast inference
of tree ensembles on arm devices,” arXiv preprint arXiv:2305.08579,
2023.

APPENDIX A
DATASET STATISTICS AND DISTRIBUTION

The parking scenario dataset exhibits the following detailed
characteristics:

• Initial scenarios generated: 10,725

• Waypoints per trajectory: 100 (uniformly interpo-
lated)

• Scenarios with valid paths: 8,473 (79% after filtering
failures)

• Training set: 6778 scenarios (80% of valid paths)

• Test set: 1695 scenarios (20% of valid paths)

• Feature dimension: 26 {10 obstacle vertices (x, y) +
1 start frame (x, y, θ) + 1 goal frame (x, y, θ)}

• Spatial domain: [−10,+10] m2

• Grid cells per scenario: 400 (20×20 cells with 1 m
resolution)

APPENDIX B
HYPERPARAMETER SELECTION AND MODEL

PERFORMANCE

Random Forest models were trained using scikit-learn

• Number of trees: 20; 100 trees tested as alternative

• Maximum tree depth: 8

• Minimum samples per leaf: 1

• Feature sampling: (
√
nfeatures) for classification;

(nfeatures) for regression

• KNN imputer neighbors: k = 5

APPENDIX C
IMPLEMENTATION DETAILS AND REPRODUCIBILITY

A. Software and Hardware

Training and inference experiments were conducted using:

• Motion Planning: OMPL 1.7.0 with Python 3.9 bind-
ings

• Machine Learning: scikit-learn 1.7.2, NumPy 2.3.2,
Pandas 2.3.1

• Hardware: AMD Ryzen 5 CPU, 32 GB RAM

• Operating System: Ubuntu 24.04 LTS

B. Computational Time Breakdown

• Reference path generation (RRT*): 90 hours total
(exhausting 30-second timeout per scenario for 10,725
scenarios)

• Data preprocessing (waypoint interpolation, grid
generation): 2–3 hours

• Model training (KNN imputation + RF classi-
fier/regressor): 15–30 minutes

C. Code Availability

Custom RRT state samplers were implemented as ex-
tensions to OMPL’s C++ API. All code is modular, well-
documented, and available upon request for reproducibility and
future research.

www.ijacsa.thesai.org 922 | P a g e


