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Abstract—Vehicle gate access, in general, still relies heavily on
manual inspection of identification cards and visual verification
by security guards, which is slow, tedious, and susceptible
to spoofing. Single-modality, computerized systems that utilize
license plates, vehicle appearance, and facial recognition can
partially alleviate this difficulty. Still, they are prone to spoofing
and generally perform poorly in real-world scenarios (e.g., glare,
occlusion, and tinted glass). This study presents TRI-GATE, a
tri-modal anti-spoofing framework that unifies vehicle, license
plate, and face recognition within a single, real-time decision
pipeline. The system employs YOLOv4-tiny for vehicle detection
and a MobileNetV2-based classifier for make-model recognition,
a retrained MTCNN and LPRNet pair for license plate detection
and recognition on Saudi-specific datasets (17,000 images for
detection and 35,000 for recognition), and RetinaFace with
InsightFace embeddings, along with a linear SVM, for driver
identification. An IoU-based best-frame selection scheme reduces
latency by forwarding only the most informative frame to the
recognition modules. Score-level fusion is then performed by a
linear SVM that learns the relative importance of each modality
for the final access decision. Evaluated on a dedicated tri-modal
dataset, TRI-GATE achieves 97% gate-level accuracy with an
end-to-end latency of 66 ms per frame (=~ 15.15 FPS), and demon-
strates robust performance in a real-world gate-like deployment,
substantially improving both security and operational efficiency
over existing single- and bi-modal solutions.
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I. INTRODUCTION

In most conventional vehicle gate access setups, verifi-
cation still depends largely on manual inspection. Security
officers typically visually inspect vehicles and confirm entry
permits or identification cards by hand. While simple in
principle, this routine often becomes slow, physically demand-
ing, and susceptible to both fatigue and oversight. Delays
accumulate during busy hours, creating traffic queues at the
gate and inconsistent enforcement of security procedures. What
raises greater concern is how easily such systems can be
deceived—people with no authorization might convincingly
pose as legitimate staff or slip through the gate using falsified
documents.

Although automation has made considerable progress,
many existing gate systems remain limited to a single mode
of recognition—commonly license plate detection or facial
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identification. Systems built around a single identity marker
are easy to compromise: plates can be cloned, and faces may
go undetected under tinted glass, dim lighting, or awkward
camera angles. Such limitations highlight a crucial shortfall:
the absence of a unified, multimodal verification framework
capable of confirming both vehicle and driver identity consis-
tently, even amid the unpredictable and imperfect conditions
of real-world environments.

This study tackles existing limitations by developing an Al-
driven anti-spoofing framework that unifies vehicle detection
and classification, license plate recognition, and facial recog-
nition within a single decision pipeline. Using computer vision
methods such as YOLO (You Only Look Once) and OpenCV
(Open Computer Vision library), along with a Support Vector
Machine (SVM) classifier, the system processes and integrates
outputs from multiple models to generate intelligent access
control decisions. The fusion strategy not only boosts accuracy
and processing speed but also makes gate access more robust
against spoofing attempts, thereby reducing unauthorized ac-
cess and improving the operational efficiency and security of
facility gate management.

A. Related Work

In recent years, researchers have devoted significant at-
tention to improving the reliability of automated vehicle
gate systems. Early systems mainly relied on single data
sources—most often license plate recognition or basic vehi-
cle appearance matching. These systems worked reasonably
well in controlled environments but struggled when lighting
changed, the camera angle shifted, or spoofing was attempted.
As listed in Table I, more recent work has shifted toward
multimodal approaches that combine license plate data, ve-
hicle signatures, and even driver identity cues. This transition
reflects an effort to create systems that not only identify but
also verify vehicles under real-world variability. Despite these
developments, many solutions still face trade-offs between
speed, cost, and recognition stability, especially in real-time
gate scenarios where decisions must be made in fractions of a
second.

1) License Plate Recognition (LPR): License plate recog-
nition has been studied for years and continues to play a central
role in automated gate systems. Early neural models, such
as WPOD-NET, demonstrated that end-to-end detection and
segmentation were feasible, achieving about 89% accuracy on
benchmarks such as SSIG and AOLP [1]. But while that was
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TABLE I. REVIEW OF VISION-BASED RECOGNITION APPROACHES FOR AUTOMATED GATE ENTRY

Dataset(s)

Best Reported Performance

Cars Dataset, SSIG, AOLP, OpenALPR
(EU and BR), and newly created
CD-HARD dataset

89.33% (average accuracy)

CCPD

96.6% mAP @ 43.86 FPS, and
Parameters = 5.07 M

EALPR (for detection) + Arabic Letters
& Numbers OCR (for recognition)

99.42% accuracy (CNN-based
recognition), and YOLOv8
detection mAP 94.26%

CCPD

99.4% accuracy @ 159.8 FPS

VERI-Wild dataset (main), plus
VehicleID and VeRi-776 for comparison

Best (on VeRi-776): mAP =
55.49%, Rank-1 = 84.27%, and
Rank-5 = 92.43%

VeRi-776 and VehicleID

VeRi-776: mAP = 80.7%, and
Rank-1 = 96.6%; VehicleID: up to
mAP = 89.8%, and Rank-1 = 84.5%

VehiclelD, Vehicle-1M, and VeRi-776

Best (on VeRi-776): mAP = 76.3%,
and Rank-1 = 94.8%

VeRi-776 and VehicleID

Best (on VeRi-776): mAP = 80.8%,
Rank-1 = 96.4%, and Rank-5 =
98.5%

VeRi-776 and VehicleID (+ Market-1501,
DukeMTMC-relD, and MSMT17)

VeRi-776: mAP = 83.4%, and
Rank-1 = 97.2%; VehicleID: Rank-1
= 87.8/83.1/81.4%; SOTA on
pedestrian sets

WiderFace (for face detection), and
custom Turkish LP dataset

Accuracy = 97.34% (LPR), AP =
0.926/0.908/0.765 (FD), and 13 FPS
combined

Custom dataset (vehicle plates &
individual faces)

Accuracy = 96.54% (Face), 88.67%
(ANPR)

8 visitors (faces & number plates, and
Universitas Andalas)

Success rate = 62.5%

Combination of 3 open Indian number
plate datasets + custom Devanagari
dataset

ANPR: mAP@50 = 98.35%, OCR:
88.14%, and Face Recognition:
98.34%

COCO, Stanford Car Dataset, and Firat
University dataset

97.5% (overall accuracy)

UC3M-LP and UC3M-VRI

mAP = 0.893 (detection), 0.764
(OCR), accuracy = 0.979 (re-ID),
and ~ 58.1 ms per image
(real-time capable)

In-house multi-labelled dataset (1555
images) + synthetic augmentation using
TRDG

mAPsy = 0.778 (OCR), 0.963 (LP),
0.881 (VCR); Average = 0.874

258-image Malaysian license plate
dataset (Tapway Sdn Bhd) + 600
synthetic images (for fine-tuning)

87.6% (plate accuracy), and 97.66%
(character accuracy)

Author(s) Year Model/System Fusion Type
Silva et al. [1] 2018 WPOD-NET License plate only
Zhu et al. [2] 2023 SYOLOvVSs + GAM + FEM License plate only

Sarhan ez al. [3] 2024 YOLOvV8 + Easy-OCR + CNN License plate only
Tao et al. [4] 2024 YOLOvV5-PDLPR License plate only
Lou et al. [5] 2019 FDA-Net Vehicle only
Yu et al. [6] 2023 SOFCT Vehicle only
Zhu et al. [7] 2023 DSN Vehicle only

Liang et al. [8] 2023 S-TVRelID Vehicle only
Lian et al. [9] 2023 MED Vehicle only

Alim ez al. [10] 2023 YOLOV3 + YOLOV5 + LPRNet License plate +

driver information

. ANPR (KNN + CNN) + Face License plate +
Teja et al. [11] 2024 Recognition (LBPH) driver information

Face Recognition + EasyOCR + License plate +

AKbar et al. [12] 2024 Haar Cascade Classifier driver information
Iyer ef al. [13] 2024 YOLOVS + EasyOCR + dlib (CNN) ~License plaie +

driver information
MobileNet-V2 + YOLOx + License plate +
Mustafa et al. [14] 2024 YOLOv4-tiny + PaddleOCR + P
. Vehicle
SVTR-tiny
Ramajo-Ballester et 2024 YOLOVS + EfficientNetBO License plate +
al. [15] (FastRelD) Vehicle
Multi-Task YOLOVS (multi-head License plate +
Khor et al. [16] 2024 YOLOvV8 for OCR, LP detection, P
Vehicle
and VCR)
AlDahoul e al. [17] 2025 VehiclePaliGemma License plate +
Vehicle
Fusion of SIFT + DoG + License plate +
Saadouli et al. [18] 2020 o driver information

Viola—Jones modules

+ vehicle

Qatar University car surveillance dataset
(225 images and 24 car types)

74.63% accuracy (real dataset)

quite good for its time, accuracy often dropped under glare or
distortion.

Later studies started chasing speed as much as precision.
One of the more interesting attempts came from Zhu and col-
leagues [2], who developed a lightweight version of YOLOVS,
called SYOLOvSs. They added a small attention mechanism to
help the model focus on fine details on plates rather than get
distracted by car reflections. The approach achieved a mean
average precision (mAP) of 96.6% on the CCPD dataset at
roughly 40-45 FPS, which is impressive for an embedded
setup.

In a similar direction, Sarhan er al. [3] paired YOLOvS
with Easy-OCR and a compact CNN to recognize Egyptian
plates. Their system achieved 94.26% mAP and about 99.4%
recognition accuracy. A slightly later work by Tao et al. [4]
pushed further with YOLOvVS-PDLPR, achieving close to 160
FPS while maintaining roughly 99.4% accuracy.

These results look great on clean datasets, but in real life,
the story changes. Two identical plates on different vehicles or
even a printed photo of a plate can easily pass. The problem is
that plate-based identification only tells what plate it sees—it
says nothing about who is driving or whether that plate really
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belongs on that car.

2) Vehicle recognition and re-identification (Re-ID): As
license-plate models reached maturity, attention began shifting
to the vehicle’s physical appearance. The idea was that the
combination of color, make, and shape could help track or
verify vehicles across cameras. Lou et al. [5] developed FDA-
Net, an early method for feature disentanglement that achieved
mAP of 5549% and Rank-1 of 84.27% on the VeRi-776
benchmark. Though not perfect, it was a turning point.

Later, transformer-based models changed the landscape. Yu
et al. [6] proposed SOFCT, a transformer that couples features
across views, boosting accuracy to mAP 80.7% and Rank-
1 96.6%. Liang et al. [8] followed with a spatial-temporal
transformer (S-TVRelD) that achieved nearly identical results,
while Lian et al. [9] introduced a multi-branch model (MED)
that squeezed out a bit more, reporting mAP of 83.4% and
Rank-1 of 97.2%.

Around the same time, Zhu et al. [7] suggested a dual self-
attention network (DSN). Instead of relying on a single global
attention layer, they used two complementary self-attention
stages to capture both coarse and fine details. The model
achieved a mAP of 76.3% and a Rank-1 accuracy of 94.8%,
indicating that a thoughtfully designed attention mechanism
can match the performance of more complex architectures.

Altogether, these advances make vehicle appearance recog-
nition highly reliable, but it still doesn’t answer the key
security question—who is inside the vehicle? Appearance cues
alone can’t guarantee authorized access.

3) Fusion of license plate and driver information: A natu-
ral next step was to include the driver’s identity. Several works
explored this idea, often combining a license-plate detector
with facial recognition. Alim er al. [10] proposed an edge-
based model using YOLOvV3/YOLOvS and LPRNet, achieving
roughly 97% plate accuracy and solid face detection results.
Teja et al. [11] mixed a KNN/CNN ANPR approach with
LBPH facial recognition, scoring 96.54% for the face and
88.67% for the plate.

Other studies followed, but under more constrained setups.
Akbar et al. [12] tested a prototype using Haar cascades and
EasyOCR for visitor entry, but accuracy dropped to around
62%, mostly due to variable lighting and glass reflections.
Iyer and Dhavale. [13] later improved on this with YOLOVS,
EasyOCR, and dlib-CNN, achieving about 98% accuracy for
faces and 88.14% for plates.

Despite encouraging results, most of these projects were
small-scale and tested in fairly controlled conditions. Problems
like tinted windshields, poor lighting, or the driver’s head
turned away still cause big accuracy swings. Moreover, few
systems tried to fuse both cues into a single, reliable decision.

4) Fusion of license plate and vehicle features: Some
researchers instead checked whether the vehicle’s appear-
ance matched its plate. Mustafa and Karabatak [14] pro-
posed a multi-stage design combining MobileNet-V2, YOLOXx,
YOLOvV4-tiny, PaddleOCR, and SVTR-tiny, with an overall
accuracy near 97.5%. Ramajo-Ballester et al. [15] merged
YOLOVS, EfficientNetBO, and FastRelD, reporting mAP of
0.893 for license-plate detection and 97.9% re-identification
accuracy, all running at roughly 58 ms per frame.

Vol. 17, No. 1, 2026

Khor et al. [16] developed a multitask YOLOvV8 with
shared layers and separate heads for OCR, plate detection,
and vehicle recognition, achieving an average mAP of 0.874.
Later, AlDahoul et al. [17] introduced VehiclePaliGemma,
which used a vision-language approach and achieved 87.6%
plate accuracy and 97.66% character accuracy on Malaysian
datasets.

These multi-modal systems make it easier to spot mis-
matched or fake plates, but they stop short of confirming driver
identity. That gap still allows a legitimate vehicle to be driven
by an unauthorized person.

5) Tri-modal fusion of plate, vehicle, and driver: A handful
of earlier works did try to combine all three components.
Saadouli ef al. [18] developed a system that combined SIFT,
Difference-of-Gaussian, and Viola-Jones methods to fuse plate,
vehicle, and face information. Tested on a small dataset from
Qatar University, the setup achieved about 74.6% accuracy.
Although modest, that study demonstrated the concept was
feasible and hinted at what future models could achieve with
deep learning.

However, since then, the tri-modal direction has received
surprisingly little attention. Most newer works still treat plates,
vehicles, and faces as separate modules rather than fusing
them into a single coherent anti-spoofing decision.

6) Research gap and motivation: From reviewing this body
of work, a few consistent gaps appear. Nearly all systems rely
on one or two cues rather than combining all three, leaving
them vulnerable to spoofing or substitution attacks. Models
trained on datasets such as CCPD or VeRi-776 often struggle to
generalize to Saudi or GCC license plates, which vary in color,
shape, and script. Another issue is that most papers report
part-level metrics—such as mAP or recognition rate—without
testing full gate-level performance, including false acceptance
and false rejection under real attack conditions.

To tackle these problems, the present study develops a deep
tri-modal anti-spoofing system that merges three complemen-
tary sources: the license plate, the vehicle’s visual signature,
and the driver’s identity. The system uses YOLOv4-tiny [19]
for vehicle detection, MobileNetV2 [20] for vehicle classifica-
tion, MTCNN [21] for license plate detection, LPRNet [22] for
license plate recognition, RetinaFace [23] for face detection
and alignment, and the InsightFace framework [24] (trained
with the ArcFace loss [25] for feature extraction) combined
with a linear SVM [26] for face recognition. The recognition
results (plate, face, and vehicle) are then combined with a
simple linear SVM that learns how much to trust each output
based on its confidence. The dataset itself was built around
Saudi license plates, so it’s tuned to the region. In the end,
the goal is to narrow the long-standing gap between strong
recognition results in experiments and the reliability needed
for real gate security.

B. Contributions

The principal contributions of this work are outlined below:

e A real-time, integrated anti-spoofing system: Unlike
traditional gate access mechanisms that rely solely on
a single recognition model—be it facial, vehicle, or
license plate recognition—our system unifies all three
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within a single, real-time framework. This integration
not only strengthens security but also minimizes unau-
thorized entries and prevents unnecessary traffic delay
at the gate.

e A new labeled dataset for license plate detection: We
introduce a fully annotated dataset of 17,000 Saudi
Arabian license plate images for detection tasks. To
the best of our knowledge, no previous study has
provided such a dataset. A visual example of this
dataset is shown in Fig. 4.

e A new labeled dataset for license plate recognition:
Another dataset, consisting of 35,000 labeled images
of Saudi license plates, is presented for recognition
purposes. This collection is also newly introduced to
the literature, and a representative sample is provided
in Fig. 5.

e Public release and implementation details: Both
datasets, along with the complete system, are openly
available through our GitHub repository [27]. The
implementation is clearly documented and designed
with scalability and flexibility in mind, allowing it to
be adapted or extended to fit a range of deployment
environments.

Together, these contributions emphasize the originality and
practical value of our study. By merging multiple recognition
techniques within a single system and grounding them in
newly developed datasets, this work lays a strong foundation
for improving automated vehicle access control in real-world
conditions.

II. PROPOSED MODEL
A. Overview

The primary goal of this research is to make vehicle entry
systems faster, smarter, and less dependent on manual checks.
In many facilities, access is still verified by guards, which
often slows things down and sometimes leads to errors or
even security breaches. The problem becomes more obvious
during rush hours when the number of vehicles increases and
human attention starts to slip. To solve this, we developed
an automated model that works in real time and removes the
need for constant supervision. The system relies on three main
visual features: the driver’s face, the vehicle, and its license
plate. Our proposed system fuses these features to create a
stronger, more reliable decision-making model that speeds
up entry validation and makes it safer, without adding more
human effort.

Our proposed model, shown in Fig. 1, illustrates how the
anti-spoofing gate access system operates as a complete pro-
cess, from video capture to the final decision. When a vehicle
approaches, the system records live video and automatically
selects the clearest frame using the intersection-over-union
(IoU) method to ensure the vehicle is properly captured. From
that frame, the YOLOv4-tiny model [19] detects the car, while
MobileNetV2 [20] classifies its make and model. The license
plate area is then located using a modified MTCNN [21],
and LPRNet [22] reads the characters on it. At the same
time, RetinaFace [23] detects and aligns the driver’s face,
and InsightFace [24], [25]—together with a linear SVM [26]
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classifier—identifies who the person is. These three recognition
results (vehicle, plate, and face) are then combined using a
weighted linear SVM, which calculates an overall score to
determine whether access should be allowed. In short, the
figure illustrates a smooth, Al-based workflow that combines
detection, recognition, and decision-making into one unified,
real-time security system. The following subsections elaborate
on every step in this proposed pipeline.

B. Vehicle Detection

In the proposed anti-spoofing gate access system, identify-
ing vehicles in each video frame is the central operation. To
meet real-time requirements without overloading the system,
a lightweight detection model was used. In this case, the
YOLOv4-tiny network [19] was chosen because it strikes a
reasonable balance between detection accuracy and processing
speed. Compared to the full YOLOv4 version [28], it runs
faster due to its reduced parameter count and simpler convo-
lutional layers. These characteristics make it practical for edge
or embedded systems, where memory and processing resources
are limited.

Before the detection stage, each input image is processed
using OpenCV [29], which handles basic preprocessing tasks
such as reading the image, resizing it, and converting it to the
correct color space. Once that is done, YOLOv4-tiny divides
the image into an S x S grid. Every cell in this grid predicts
several bounding boxes, each one represented by five numeric
values and a set of class probabilities. These values describe
the position, size, and confidence level associated with each
possible vehicle in the frame, defined as:

where,

e P.: Confidence score indicating the probability of an
object’s presence within the bounding box.

e b, b,: Normalized center coordinates of the bounding
box.

e  bp,by,: Normalized height and width of the bounding
box.

e (;: Class probabilities for the object categories (via
softmax).

The extracted bounding box parameters are shown in Fig. 2.

After the network finishes predicting several possible
bounding boxes, the raw output still needs some cleanup.
The goal of this step is to keep the detections that actually
matter and discard the ones that don’t. Two standard techniques
handle this refinement:
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Fig. 1. Workflow of the proposed Al-based anti-spoofing gate access tri-modal system, combining vehicle, license plate, and facial recognition for robust and
unified real-time verification.
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Fig. 2. Bounding box parameters (bz, by, by, bw) predicted by
YOLOV4-tiny, defining each detected vehicle’s position and size.

e  Score thresholding: Any bounding box whose confi-
dence value falls below a chosen threshold is simply
dropped. This first filter removes weak forecasts, al-
lowing the next phases to focus on stronger ones.

e Non-maximum suppression (NMS): If several boxes
overlap on the same object, only the one with the
highest confidence is kept. The rest are removed
whenever their intersection-over-union (IoU) with the
highest-scoring box exceeds a predefined threshold.

Working together, these two steps result in each object
being represented by a single, clean bounding box. They also
lighten the computational load and help the model reach its
decision faster. As illustrated in Fig. 3, NMS trims away
overlapping boxes, leaving the final, precise outline.

The use of YOLOv4-tiny comes down to its balance
between speed and accuracy. Running approximately 83.33
frames per second on an NVIDIA GeForce RTX 2080 Ti GPU,
it can manage real-time monitoring at a gate or checkpoint.
Even though it’s a smaller variant of YOLOv4, it performs
reliably under difficult lighting, partial occlusion, and awkward
vehicle angles.

Before non-max suppression After non-max suppression

Non-Max
Suppression

Fig. 3. Illustration of non-maximum suppression (NMS) removing
overlapping bounding boxes and keeping only the highest-confidence
detection per vehicle.

With YOLOv4-tiny handling vehicle detection, later
components—vehicle classification, license-plate recognition,
and face identification—receive neatly cropped regions of
interest. That early precision keeps the entire tri-modal anti-
spoofing system steady, fast, and dependable in live operation.

C. Best-Frame Selection for Low-Latency Vehicle Gating

In real-time video, a moving vehicle appears across several
consecutive frames at different positions and scales. Processing
every frame is wasteful—it drives up latency without signif-
icantly improving accuracy. A better strategy is to select a
single best frame that preserves the most useful visual detail
while keeping computation lean.

As the vehicle approaches the gate, each frame provides
a slightly different view. We aim to select the moment when
the vehicle is most prominent and least occluded—typically
the frame with the largest, well-centered bounding box—so
that downstream modules (vehicle classification, license plate
recognition, and driver or occupant cues) receive the cleanest
signal.

We formalize this with the intersection over union (IoU)
between the detected bounding box B; in frame ¢ and a
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predefined reference box B* that encodes the desired on-screen
extent:

_|B:n B

, th= argmtaXIoU(Bt,B*).

This simple rule favors frames where the target is closest
and best aligned with the expected view. Crucially, if two dif-
ferent vehicles enter the scene simultaneously, the method still
yields a single, unambiguous selection: among all detections
across frames, only the vehicle whose bounding box achieves
the largest IoU with B* is chosen, and only its best frame is
forwarded downstream. This ensures that the system detects
and processes only one vehicle at a time, eliminating multi-
vehicle conflicts. Then the procedure per short time window:

e Detect vehicle candidates and obtain B; for each
frame.

e  Compute IoU(B;, B*) for all candidates.

e Select t = arg max; [oU(B;, B*); export only frame
tt and its associated vehicle.

By emitting exactly one, high-quality frame, the system
trims redundant computation and preserves recognition ac-
curacy. In practice, this best-frame gate reduces end-to-end
latency and strengthens anti-spoofing behavior, making it a
robust solution for real-time vehicle access control.

D. Vehicle Classification

Following detection, the vehicle crop is forwarded to the
make—model classifier. We employ the off-the-shelf model in
[30], which is built on MobileNetV2 [20] and trained using
transfer learning similar to [31]. Concretely, MobileNetV2
serves as the backbone feature extractor, and the resulting
classifier operates in real-time on gate imagery. Vehicle crops
are first resized to 224 x 224 pixels; in practice, reliable
inference is obtained for objects as small as 30 x 30 pixels
after pre-processing. The model’s training coverage comprises
approximately 400 brands and 7,000 car models, with canon-
ical viewpoints limited to front, rear, and side. Under these
conditions, the reported top-1 accuracy reaches about 95%.
We selected this module for its real-time operation and strong
accuracy, which is backed by training that covers every car
make and model in Saudi Arabia. The module integrates with
the upstream detector by consuming the refined bounding box
for each candidate (see Fig. 2), and its system-level role is
consistent with the end-to-end workflow (see Fig. 1).

E. License Plate Detection

After vehicle detection and best-frame selection, the system
localizes the license plate using a retrained variant of the
multi-task cascaded convolutional network (MTCNN) [21].
Although MTCNN is conventionally used for face detection
and alignment, prior work shows that, with suitable retraining
and loss-function tuning, it can be adapted to license plate
detection under diverse viewpoints and backgrounds [32].
Following this approach, we fine-tuned the network on Saudi
Arabian plates to enhance its robustness under challenging
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capture conditions (e.g., strong illumination, oblique angles,
and cluttered scenes).

Because no large, open datasets exist for Saudi plates, we
constructed a dedicated detection corpus. Images were cap-
tured manually and gathered from public social-media sources
(programmatically fetched with Instaloader [33]), yielding
approximately 17,000 annotated images that span all Saudi
plate types and a broad range of environments (appearance,
background, lighting, scale, and viewpoint). Representative
examples and detector outputs of our novel dataset are shown
in Fig. 4.

Annotations were created using the computer vision anno-
tation tool (CVAT), where plate bounding boxes were produced
and exported as XML for training. The novel curated dataset
(images and ground truths) is organized with clear documen-
tation to support reproducibility and is publicly available on
our GitHub repository cite [27].

After assembling the dataset, the next step is to train the
license plate detector. Given MTCNN’s cascaded design, we
retained the proposal (P-Net) and output (O-Net) stages. We
omitted the refinement (R-Net) stage after empirical testing
indicated no degradation in accuracy for this task. Training
hyperparameters for P-Net and O-Net are summarized in
Table II. Our end-to-end system achieved an overall accuracy
of 99.2%.

TABLE II. TRAINING HYPERPARAMETERS FOR THE LICENSE-PLATE
DETECTION MODEL (RETRAINED MTCNN WITH P-NET AND O-NET

STAGES)
Parameter Value
Number of epochs 50
Learning rate 0.001
Initial weight 0.1
Batch size 64

Dataset split 70% train, 20% validation, 10% test

For classification at each retained stage, we used the stan-
dard cross-entropy (log-loss) objective [Eq. (1)]. For bounding-
box regression, we minimized mean-squared error [Eq. (2)]
against the ground-truth coordinates. This combination yielded
stable convergence and accurate plate localization in practice.

N
L(y,p) = —% Z [yi log(p:) + (1 — y;) log(1 —pi)], (1)

where,

e L(y,p) represents the log loss function.
e N is the number of samples.
e  y; is the true label of the i-th sample.

e  p; is the predicted probability of the ¢-th sample being
of the positive class.

N
. 1 A
L(y,9) = ﬁZIIyz-—yz-ll2~ 2
=1
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Fig. 4. Examples from our Saudi license-plate detection dataset (17,000 images), covering diverse backgrounds, lighting conditions, scales, viewpoints, and all
official plate types. Green boxes indicate detections from the retrained MTCNN detector.

F. License Plate Recognition

Following license-plate detection, character recognition
is performed using LPRNet [22], which has been retrained
specifically on Saudi Arabian plates. Prior to training, the label
space was constrained to reflect national plate conventions:
strings were limited to at most seven characters (up to three
letters and up to four digits), and characters not present on
Saudi plates—C, F, I, M, O, P, Q, W, and Y—were removed.
This pruning reduces ambiguity and improves convergence
without altering the inference pipeline.

Because a large open dataset for Saudi plates is unavailable,
we assembled a dedicated corpus. Data were drawn from
three sources: 1) self-captured images, 2) publicly available
social-media imagery, and 3) crops automatically harvested
by our retrained MTCNN plate detector, which we used to
detect and crop Saudi plates to expand further coverage across
styles, viewpoints, and illumination conditions. Fig. 5 provides
samples of our novel dataset alongside LPRNet predictions.

Annotation was streamlined with a lightweight Python
tool that renames each image to its alphanumeric ground
truth. Given the fixed mapping between Arabic and English
characters on Saudi plates, labels were stored in English to
simplify recognition. In total, the recognition dataset com-
prises approximately 35,000 labeled plate images. The curated
dataset (images and ground-truth labels) is documented for
reproducibility and is publicly available via our GitHub repos-
itory cite [27]. After collecting and pre-processing the dataset,
we retained the LPRNet model, with key hyperparameters

summarized in Table III. We achieved an overall accuracy of
93.1%, with a loss of 0.0059 at epoch 25, as shown in Fig. 6.

TABLE III. TRAINING HYPERPARAMETERS FOR THE LICENSE-PLATE
RECOGNITION MODEL (RETRAINED LPRNET)

Parameter Value

Number of epochs 50

Learning rate 0.001

Learning rate schedule at epochs 4, 8, 12, 16, 32, and 45

Batch size 128
Dataset split 70% train, 20% validation, 10% test

G. Face Detection and Alignment

Within the vehicle region of interest, faces are local-
ized using RetinaFace [23]. This single-shot detector jointly
predicts bounding boxes and sparse facial landmarks (e.g.,
eye centers, nose tip, mouth corners). This joint formulation
enhances robustness to scale changes, partial occlusions, and
challenging illumination conditions, which are common in
in-vehicle imagery. As illustrated in Fig. 7, the detected
landmarks are subsequently used to geometrically normalize
the crop, producing an upright, aligned face that is forwarded
to the recognition backend. In practice, this alignment step
reduces pose variability and stabilizes the downstream feature
extraction stage.
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R —

Fig. 5. Samples from the Saudi license-plate recognition dataset (35,000 images) encompass a diverse range of backgrounds, lighting conditions, scales,
viewpoints, and official plate types. LPRNet predictions are shown above each plate.

Loss at the End of Each Epoch Over 50 Epochs

Epoch

Fig. 6. Training loss of the retrained LPRNet across 50 epochs; the
minimum loss (0.0059) occurs at epoch 25, coinciding with a 93.1% test
accuracy on Saudi license plates.

H. Face Recognition

Following detection and geometric alignment (Fig. 7),
identity is inferred using the InsightFace pipeline [24], trained
with the ArcFace additive angular-margin loss [25], to obtain
a compact and discriminative embedding for each detected
face. To reduce computational cost and mitigate redundancy
in the embedding space, dimensionality reduction methods
such as principal component analysis (PCA) can be applied
prior to classification [34]. The resulting feature vectors are
classified using a one-vs-rest linear SVM [26], an approach
chosen for its low latency, stable generalization in small-
sample regimes, and straightforward score calibration in the
tri-modal setting (see also related ensemble/OvR usage in
[35]). Within our dataset of 30 subjects with 20 images each

*20 %21 %24 *25 408

#19 2 %23
#18

38 %39 *44 %45
37, 4ox 41" 40 434 454 47446

*2 *31

#3233, 34+ 38 %0 *15
*3

#51 452 53

*50 L6 +63 x64 "4
+49¢61 #65¢55
%68 g7 %66

*4

#60 *56

*5 450 L gg #57

Fig. 7. RetinaFace-detected facial landmarks (eye centers, nose tip, mouth
corners) and the resulting geometric alignment prior to face recognition.

(600 total; 70/20/10 train/validation/test split), this module
achieved ~ 99.5% identification accuracy on the closed set.
The classifier’s confidence score is exported to the fusion stage
as the face term in the linear decision function, consistent with
the end-to-end workflow illustrated in Fig. 1 and the global
formulation described earlier.

1. Tri-Modal Score Fusion for End-to-End Access Classifica-
tion

To convert per-modality predictions into a single access
decision, the system fuses confidence scores from the vehicle
make and model classifier, the license plate recognizer, and
the face recognizer. Let the score vector be:

ZLyehicle
A
T = | Tplate | ,

Tface
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where, each component denotes the corresponding model’s
confidence. A linear support vector machine (SVM) [26] is
employed to learn a separating hyperplane over x, chosen for
its computational simplicity in real-time settings and its stable
behavior with limited training data.

The decision function is:

f(m) = me + b = W1 Tyehicle + W2 Tplate + W3 Tace + b7 3)

with w = [wy, we, w3]" and b learned from labeled training
samples. Access is granted when

and denied otherwise. This linear fusion enables the clas-
sifier to weight each modality according to its discriminative
value at the operating point, yielding a single, consistent
pass/fail verdict suitable for real-time gate control.

III. RESULTS AND DISCUSSION

In this section, we present the training of our tri-modal
system and report its overall performance (quantitative results).
We also provide a real-world demonstration of the proposed
model (qualitative results).

A. Tri-Modal System Training and Performance

The tri-modal fusion classifier maps modality
confidences—vehicle make/model, license plate recognition,
and face recognition—-into a single access decision using
a linear SVM operating on the score vector with decision
function, as shown in Eq. (3). The training corpus comprises
1,000 images spanning a diverse range of vehicles, license
plates, and driver appearances. The dataset was partitioned into
70%/15%/15% for training/validation/testing, respectively.
Under this protocol, the fused classifier attained an overall
accuracy of 97% with an end-to-end latency of 66 ms per
frame (approximately 15.15 FPS). All experiments were
conducted on an NVIDIA GeForce RTX 2080 Ti GPU. The
learned parameters are w; = 2.103 (vehicle), wy = 6.270
(plate), ws = 3.392 (face), and b = —7.588; the separating
hyperplane and score geometry are illustrated in Fig. 8.

The weight magnitudes follow an intuitive ordering. The
license-plate stream receives the largest weight, reflecting
the high distinctiveness of plate identities; the face stream
is second—useful but occasionally ambiguous (e.g., similar
appearance)—and the vehicle make/model stream is weighted
lowest, consistent with the possibility of visually similar trims
across brands. This ranking provides a straightforward inter-
pretation of how the fusion balances complementary cues at
inference time.

At the system level, 66 ms/frame is compatible with near-
stop gate operation, where vehicles either halt or approach
slowly (< 15 km/h). Numerically, 15 km/h ~ 4.17 m/s,
so a 15.15 FPS stream observes frames every ~ 66 ms;
the vehicle advances only ~ 4.17 x z= ~ 0.28 meters
between frames. This inter-frame motion is sufficiently small
to maintain detector stability and OCR legibility as the vehicle
settles at the barrier, while preserving temporal continuity

Vol. 17, No. 1, 2026
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Fig. 8. Linear SVM decision boundary in the tri-modal confidence space.

for the face pipeline inside the cabin. The operating point,
therefore, satisfies the real-time constraint for access control.
The end-to-end frame time is directly determined by the per-
module (subsystem) runtimes that execute in sequence. The
speeds of these subsystems are summarized in Table IV.

TABLE IV. PER-MODULE RUNTIME AND THROUGHPUT (MS AND FPS)
FOR THE SEQUENTIAL TRI-MODAL PIPELINE—VEHICLE
DETECTION/RECOGNITION, PLATE DETECTION/RECOGNITION, AND FACE
DETECTION/RECOGNITION—ALONG WITH THE OVERALL END-TO-END
LATENCY

Model Speed

Vehicle Detector

Vehicle Recognizer
License Plate Detector
License Plate Recognizer
Face Detector

Face Recognizer

12ms (= 83.33 FPS)
9ms (&~ 111.11 FPS)
11ms (= 90.91 FPS)
9ms (&~ 111.11 FPS)
15ms (= 66.67 FPS)
10ms (100 FPS)

66ms (= 15.15 FPS)

End-to-end

B. A Real-World Demonstration

To examine how the proposed tri-modal pipeline behaves
outside controlled datasets, we recorded a 23-second video
sequence at a gate-like entrance, as illustrated in Fig. 9. The
scenario involves a Toyota Camry approaching the barrier at
low speed, bearing the Saudi license plate 1812SGD and driven
by an enrolled subject (Muhannad). The raw video stream is
fed directly to the system described in Section II, with no
manual frame selection or offline post-processing.

As the vehicle moves through the field of view, the
YOLOvV4-tiny detector produces a set of candidate bounding
boxes B; over successive frames. The best-frame selection
module (Subsection II-C) evaluates IoU(B;, B*) with respect
to a fixed reference box B* centred in the image, and selects
the frame t' that maximizes this overlap. In the recorded
sequence, the chosen frame corresponds to the instant when
the Camry is nearly frontal and occupies most of the reference
region, as shown in Fig. 10. The resulting bounding box tightly
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Fig. 9. Input video sequence recorded at a gate-like entrance; click the
image (or the link) to view the full clip.

encloses the vehicle, suppressing background clutter and pro-
viding a clean region of interest (ROI) for the downstream
modules. This step is consistent with the low-latency strategy
adopted in the proposed model, where only a single, high-
quality frame is propagated to the rest of the pipeline.

Fig. 10. Best frame selected by the IoU-based gating module, showing the
detected vehicle together with the reference bounding box.

Once the best frame is fixed, the corresponding vehicle
crop is forwarded to the MobileNetV2-based make-model
classifier described in Subsection II-D. In this experiment, the
classifier correctly identifies the vehicle as a Toyota Camry
with a confidence score of 0.9417, as depicted in Fig. 11. This
result aligns with the high accuracy reported for the vehicle-
recognition component under real-time operating conditions.

The same ROI is then passed to the license plate branch.
The retrained MTCNN detector localizes the Saudi plate with a
precise bounding box, and LPRNet decodes the alphanumeric
content. The predicted string matches the ground-truth plate
number 1812SGD with a confidence of 0.97 (Fig. 12), demon-
strating that the dataset and retraining strategy introduced in
Subsection II-E and Subsection II-F generalize well to real
capture conditions.

In parallel, the face-analysis branch operates inside the
vehicle ROI. RetinaFace searches for a driver, estimates facial
landmarks, and produces an aligned face crop, as outlined
in Subsection II-G. InsightFace then maps this crop into a
feature embedding, which is classified by the one-vs-rest linear
SVM trained on enrolled personnel (Subsection II-H). In the

Fig. 11. Output of the vehicle make—model classifier, correctly identifying
the car as a Toyota Camry with a confidence score of 0.9417.

Fig. 12. License-plate recognition result for the selected frame, correctly
decoding the plate number 1812SGD with a confidence score of 0.97.

recorded sequence, the system correctly recognizes the driver
as Muhannad, but with a relatively modest confidence score
of 0.35 (Fig. 13). This lower margin is consistent with the
challenging imaging conditions: the face is partially occluded
by the windshield, affected by sunlight reflections, and drawn
from a comparatively small in-cabin dataset that does not yet
fully capture these variations.

Although the confidence of the face recognizer is low, it
only contributes partially to the final access decision, since
the tri-modal SVM assigns it a smaller weight whenever
the vehicle and license-plate cues are more reliable. This
demonstrates the robustness of our model, as it does not rely on
a single feature; instead, it fuses three heterogeneous features
to make a coherent vehicle-access decision, thereby reducing
the impact of occasional failures in any individual modality.
Additionally, the face recognizer can be improved by auto-
matically collecting more in-the-wild data each time a person
passes through the gate, particularly under varying lighting,
weather, and viewing conditions. A growing set of face crops
captured at different times of day, with different windshield
states and head poses—can then be used to periodically retrain
the face-recognition branch, making it more tolerant to glare,
occlusion, and motion blur. Over time, this continuous update
loop helps close the gap between facial and non-facial cues
and stabilizes the fused decision in real-world gate-control
deployments.

The three scalar confidences from the previous stages:
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Fig. 13. In-vehicle face detection and recognition result, identifying the
enrolled driver (Muhannad) with a confidence score of 0.35.

ZLvehicle — 09417, Tplate = 097, Tface — 035,
are then combined by the tri-modal fusion SVM introduced
in Subsection II-I and trained, as detailed in Subsection III-A.

Using the learned parameters:

(w1, we, ws) = (2.103, 6.270, 3.392), b= —7.588,

the decision function in Eq. (3) yields a positive fused score
f(z), and the system grants access. This outcome is consis-
tent with the ground-truth label for the scenario (authorized
vehicle and authorized driver). A representative frame from
the processed video shows the intermediate decisions (vehicle
class, plate text, and identity label) overlaid alongside the final
“access granted” indicator, as shown in Fig. 14. You can click
on the figure to watch the processed video or on the link
provided in the figure caption.

Muhannad:  31.64%

1812S6D: 91.11%

Fig. 14. Combined output of the proposed tri-modal system for the test
sequence, including vehicle class, license-plate text, driver identity, and the
final “access granted” decision; click the image (or the link) to view the full
processed video.

Finally, this qualitative demonstration highlights several
aspects of the proposed model working together in practice.
First, the best-frame selection mechanism reduces redundant
computation while still capturing a view in which all three
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modalities—vehicle appearance, license plate, and face—are
informative. Second, the fusion stage naturally compensates
for the lower face-recognition confidence by assigning higher
weight to the more distinctive license-plate and make-model
scores, as reflected in the relative magnitudes of wy and wy.
Third, when combined with the measured end-to-end latency
of 66 ms per frame (approximately 15.15 FPS) reported in
Subsection III-A, the experiment confirms that the full tri-
modal pipeline can operate in real time at a physical gate,
where vehicles approach slowly and can be stopped or released
based on a single, coherent anti-spoofing decision.

C. Comparison with the Tri-Modal Benchmark

As summarized in Table I, vision-based gate systems
typically rely on one or two cues—most often the license
plate, sometimes combined with vehicle appearance or driver
information. Only a small number of works attempt a full tri-
modal design. Among these, the study by Saadouli et al. [18]
is particularly relevant, as it also fuses vehicle, license plate,
and face information to control an electronic gate.

In their framework, car make and model are recognized
from handcrafted features based on Difference-of-Gaussians
and SIFT descriptors, while license plates are processed with
connected-components analysis and OCR; driver verification
relies on a Viola—Jones face detector. The system is evaluated
on a small surveillance dataset collected at Qatar University
(225 images, 24 vehicle types), where the make—-model sub-
system attains an accuracy of approximately 74.6%. Although
this work demonstrates that combining the three modalities is
feasible, it remains constrained by classical computer vision
methods, limited data diversity, and a processing time of
approximately two seconds per vehicle in the prototype.

The tri-modal system proposed in this paper revisits the
same high-level objective but with a modern deep-learning
pipeline and a significantly larger, region-specific data foun-
dation. Vehicle detection is handled by YOLOv4-tiny, vehicle
make-model recognition by a MobileNetV2-based classifier
trained on roughly 400 brands and 7000 models, and Saudi
license plates are processed by retrained MTCNN and LPR-
Net modules using newly curated detection and recognition
datasets (17000 and 35000 images, respectively). Faces are
localized with RetinaFace and recognized via InsightFace
embeddings with a linear SVM backend. All three confidence
scores are then fused through a learned linear SVM, which
automatically assigns a higher weight to the more distinctive
license-plate and face streams while still exploiting the vehicle
signature.

Quantitatively, the proposed gate-level classifier reaches
97% overall accuracy with an end-to-end latency of 66 ms
per frame (approximately 15.15FPS), which is compatible
with real-time deployment at a physical barrier. By contrast,
Saadouli et al. report an accuracy of approximately 74.6% on
their make—model benchmark and a per-vehicle decision time
of about two seconds in the prototype. In practical terms, our
system delivers both higher recognition performance and sub-
stantially lower latency under more challenging and diverse
operating conditions.

Another important distinction lies in reproducibility. The
datasets used in [18] are institution-specific and not publicly
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distributed, which makes direct comparison and follow-on
studies difficult. In this work, both Saudi license-plate datasets,
together with the implementation of all modules and the tri-
modal fusion logic, are made openly available through a public
repository, enabling independent validation and adaptation to
other gate environments. Overall, the proposed system can
therefore be viewed as a deep-learning-based, real-time ex-
tension of the earlier tri-modal concept, closing much of the
gap between proof-of-concept prototypes and deployable anti-
spoofing vehicle gate solutions.

IV. CONCLUSION

This work introduced TRI-GATE, a tri-modal, Al-based
anti-spoofing system that integrates vehicle, license plate, and
facial information into a unified framework for secure, real-
time gate access. Unlike traditional gate setups that depend
on human guards or on a single recognition cue, TRI-GATE
leverages complementary visual signals and fuses them using a
linear SVM at the score level, thereby reducing the likelihood
that a single point of failure—such as a cloned plate or a
partially occluded face—can be exploited to gain unauthorized
entry.

At the subsystem level, each component is tailored for prac-
tical deployment in Saudi and GCC environments. YOLOv4-
tiny and a MobileNetV2-based make—model classifier deliver
accurate vehicle detection and recognition in real time. A
retrained MTCNN paired with LPRNet operates on two newly
curated Saudi plate datasets (17,000 images for detection
and 35,000 for recognition), achieving 99.2% detection accu-
racy and 93.1% recognition accuracy, respectively. For driver
identity, RetinaFace and InsightFace embeddings combined
with a linear SVM reach approximately 99.5% accuracy on
the collected subject set. These modules are tied together
by an IoU-based best-frame selection strategy that forwards
only a single, high-quality frame, enabling the overall system
to maintain an end-to-end latency of 66 ms per frame, or
approximately 15.15 FPS, under realistic gate conditions.

Beyond component-level metrics, TRI-GATE was eval-
vated as a complete gate-control solution. On a tri-modal
dataset of 1,000 images, the fused classifier achieves 97%
accuracy, utilizing learned fusion weights that naturally em-
phasize license plate and face cues while still leveraging
the discriminative power of vehicle appearance. A real-world
demonstration involving an approaching vehicle confirmed
that the system can reliably select the best frame, recognize
the vehicle and its license plate, identify the enrolled driver,
and issue a coherent “access granted” decision in real-time.
Compared with prior tri-modal work built on handcrafted
features and slower processing pipelines, TRI-GATE offers
both higher accuracy and substantially reduced decision time,
moving the tri-modal concept from prototype-level feasibility
to deployable practice.

Future work will focus on turning TRI-GATE into a more
general and deployment-ready platform. A first step is to
expand the training datasets with additional subjects, wider
geographic coverage, night-time recordings, and more varied
weather and windshield conditions. This should help reduce
overfitting to specific sites and make the face and vehicle
modules more stable in day-to-day operation. A second step
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is to incorporate open-set recognition and anomaly detection,
allowing the system to explicitly flag vehicles or drivers that
do not belong to the enrolled population, rather than forcing a
hard decision.

In parallel, we plan to investigate privacy-aware data
handling, secure storage, and auditable logging, so that TRI-
GATE can better align with regulatory and organizational
requirements in sensitive infrastructures. Finally, extending
the framework to multi-lane, high-throughput checkpoints and
optimizing it for edge or embedded hardware would further
increase its practical usefulness and scalability. Together, these
directions outline a natural path from the current prototype
toward a robust, multimodal gate access solution suitable for
long-term field deployment.
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