
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, September 2010

10 | P a g e

http://ijacsa.thesai.org/

Multiphase Scalable Grid Scheduler Based on
Multi-QoS Using Min-Min Heuristic

Nawfal A. Mehdi, Ali Mamat, Hamidah Ibrahim, Shamala A/P K
Faculty of Computer Science and Information Technology

University Putra Malaysia,

 Serdang, 43400,Selangor, Malaysia

Abstract—In scheduling, the main factor that affects searching

speed and mapping performance is the number of resources or

the size of search space. In grid computing, the scheduler

performance plays an essential role in the overall performance.

So, it is obvious the need for scalable scheduler that can manage

the growing in resources (i.e. scalable). With the assumption that

each resource has its own specifications and each job has its own

requirements; then searching the whole search space (all the

resources) can waste plenty of scheduling time. In this paper, we

propose a two-phase scheduler that uses min-min algorithm to

speed up the mapping time with almost the same efficiency. The

scheduler is also based on the assumption that the resources in

grid computing can be classified into clusters. The scheduler tries

first to schedule the jobs to the suitable cluster (i.e. first phase)

and then each cluster schedule the incoming jobs to the suitable

resources (i.e. second phase). The scheduler is based on

multidimensional QoS to enhance the mapping as much as it can.

The simulation results show that the use of two-phase strategy

can support the scalable scheduler.

Keywords- Multi-phase; QoS; Grid Scheduling.

I. INTRODUCTION

With the development of the network technology, grid
computing used to solve larger scale complex problems
becomes a focus technology. The goal of schedulers is to
utilize all available computational resources to overcome
difficulties brought about by complicated tasks with enormous
computing workloads.[1]

One of the nearest grid definition to our work is given by
Ian Foster [2] “The real and specific problem that underlies
the Grid concept is coordinated resource sharing and problem
solving in dynamic, multi-institutional Virtual Organizations
(VO)”[2]. We can conclude from Foster’s definition: although
the Grid has the characteristics of heterogeneity and
dynamicity, these features are not flatly distributed in
resources, but are rather distributed hierarchically and locally
in many cases, due to the composition of the Grid resources.
Current Grid resources are usually distributed in a clustered
fashion[3]. The key technologies that affect the Grid
efficiency involve Grid resource allocation, management and
task scheduling algorithm.

Task scheduling is a challenging problem in grid
computing environment [4] and has shown to be NP-complete
in its general as well as in some restricted forms[5]. According
to [6], a valid schedule is the assignment of tasks to specific
time intervals of resources, such that no two tasks use any

resource simultaneously, or such that the capacity of the
resource is not exceeded by the tasks. The schedule of tasks is
optimal if it minimizes a given optimality criterion (objective
function).

Grid scheduler (GS) receives applications from grid users,
selects feasible resources for these applications according to
the acquired information from the Grid Information Service
module, and finally generates application-to-resource
mappings based on certain objective functions and predicted
resource performance. Unlike their counterparts in traditional
parallel and distributed systems, Grid schedulers usually
cannot control Grid resources directly, but they work like
brokers or agents[7]. One of the most issues in grid scheduling
is the QoS; the quality of services (QoS) becomes a big
concern of many Grid applications in such a non-dedicated
dynamic environment. The meaning of QoS is highly
dependent on particular applications, from hardware capacity
to software existence. Usually, QoS is a constraint imposed on
the scheduling process instead of the final objective
function.[3]

This paper addresses the problem of resources growing in
one search space and the ability of the main scheduler to
control this growing by two phase mapping. The work in this
paper is concerned with scheduling computing intensive
independent task; each task requires multi QoS specification.
Each task should be mapped to a cluster that can fulfill its
requirement with a minimum completion time.

This work introduces the ability to schedule the tasks to a
cluster to be scheduled later by the cluster’s local scheduler.
The main scheduler should have full information about the
clusters starting from number of resources in each one to the
common characteristics of the resources. Also, the main
scheduler receives a set of tasks from the clients each one (i.e.
task) with its QoS constraints to be mapped to the best fit
cluster that can give the minimum execution time with the
respect to its restrictions.

The remainder of this paper is organized as follows: in the
next section II, we provide the related works. Section III,
introduces task problem modeling and the new algorithm and
its time complexity analysis. Section IV, shows the
implementation and experiments results. Recommendations
and future plan are given in section V.

http://ijacsa.thesai.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, September 2010

11 | P a g e

http://ijacsa.thesai.org/

II. RELATED WORKS

Over the years, task scheduling problem has become a well-
recognized discipline in Grid computing and is identified as NP
complete problem[8]. Many scheduling heuristics have been
proposed to solve the mapping process in grid computing. Min-
min heuristic depends on the minimum completion time, such
that the task that has the minimum completion time is executed
first. X. He et al.[9], proposed a QoS Guided Min-Min
heuristic which can guarantee the QoS requirements of
particular tasks and minimize the makespan at the same time.
Wu, Shu and Zhang[10], proposed an algorithm that ordered
tasks list by completion time, then segmenting the ordered list
to be applied in Min-Min algorithm. They show in their results
that, the algorithm can outperform the typical Min-Min.
Another popular heuristic for independent scheduling is called
Suffrage. The rationale behind Suffrage is that a task should be
assigned to a certain host and if it does not go to that host, it
will suffer the most. This algorithm has been studied by
Maheswaran et al [11]. Muthuvelu et al [12] proposed a
dynamic task grouping scheduling algorithm to deal with these
cases. Once a set of fine grained tasks are received, the
scheduler groups them according to their requirements for
computation (measured in number of instructions) and the
processing capability that a grid resource can provide in a
certain time period. All tasks at same group are submitted to
the same resource which can finish them all in the given time.
Hence, the overhead for scheduling and job launching is
reduced and resource utilization is increased. S´ebastien Noel
et al[13], studied the use of a framework called YML for
developing HPC applications on Grids, and proposed a multi-
level scheduling architecture for it. K. Etminani and M.
Naghibzadeh introduced a new scheduling algorithm based on
two conventional scheduling algorithms, Min-Min and Max-
Min, to use their cons and at the same time, cover their pros. It
selects between the two algorithms based on the standard
deviation of the expected completion time of tasks on
resources. They evaluated their scheduling heuristic, the
selective algorithm, within a grid simulator called GridSim.
They also compared their approach to its two basic heuristics.
F. M. Ciorba et al [15], studied the problem of scheduling
loops with iteration dependencies for heterogeneous (dedicated
and non-dedicated) clusters. The presence of iteration
dependencies incurs an extra degree of difficulty and makes the
development of such schemes quite a challenge. They extended
three well known dynamic schemes (CSS, TSS and DTSS) by
introducing synchronization points at certain intervals so that
processors compute in pipelined fashion. Their scheme is
called Dynamic Multi-Phase Scheduling (DMPS) and they
applied it to loops with iteration dependencies. They
implemented their new scheme on a network of heterogeneous
computers and studied its performance. Through extensive
testing on two real-life applications (the heat equation and the
Floyd-Steinberg algorithm), they showed that the proposed
method is efficient for parallelizing nested loops with
dependencies on heterogeneous systems.

III. TASK SCHEDULING PROBLEM

This work is based on scheduling the tasks in two phases to
reduce the search space for the scheduler. The proposed

algorithm should already have the set of clusters that is
available at that time. Each cluster should come with its
specifications that is used to fit with user’s QoS restrictions.
Also, the algorithm takes a set of tasks, each one with its QoS
restrictions.

A. Problem Modeling

We model the scheduling problem by Ei=(Ji,Cj) , where Ji
is a job, Cj is a cluster and Ei is the mapping.

Jobs are defined in this work as:

 J is the set of M jobs such that J={J1,J=,…,JM}.
Each job Ji has four QoS characteristics that are
described in details in the next point.

 Q is the set of QoS dimensions that is attached
with each job Ji such that Q={Li, Si, SEi,
BWi},where

 Li is the length of the job Ji.

 Si is the maximum cost that can be paid
by job Ji.

 SFi is the security value that represents
the amount of security needed by Ji.

 BWi is the amount of network bandwidth
that is needed by Ji.

Clusters are defined in this work as:

 C is the set of N clusters such that
C={C1,C2,….,CN}. Each cluster Ci has four
properties.

 P is the set of five properties attached with each
cluster Ci such that, Pi={SPi,CBi,CCi,CSi,Zi}
where:

 SPj is the speed of cluster Cj.

 CBj is the bandwidth offered by cluster
Cj.

 CCj is the cost/hour offered by cluster Cj.

 CSj is the security value that represents
the amount of security offered by Cj.

 Zj is the size of cluster Ci (i.e. the number
of resources)

 Rj is a set of size Zj represent the resources’ ready
time for cluster Cj.

To model the servers in our work, we suppose:-

 RS is the set of W resources such that
RS={RS1,RS2,….,RSW}. Each resource RSi has four
properties.

 PS is the set of five properties attached with each
resource RSi such that, PSi={SPi,RNi,RCi,RSi,RDi}
where:

 RSPj is the speed of Resource RSi.

http://ijacsa.thesai.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, September 2010

12 | P a g e

http://ijacsa.thesai.org/

 RBi is the bandwidth offered by Resource
RSi.

 RCi is the cost/hour offered by Resource
RSi.

 RSi is the security flag that is set if the
Resource RSi offered security.

 RDi is the ready time for resource RSi.

In the cluster’s class there is an Rj field that is responsible
for holding the ready time for each host inside the cluster. This
list should be always in ascending order to facilitate selecting
the best cluster. Initialed to zero, this list is firstly. Each job’s
class has two fields, first one (TCT) is responsible for holding
the best completion time offered by a cluster that its address is
held in the second field cluster index (Clr_ndx).

In this work, ETij represents the expected completion time
of task Ji on a host in cluster Cj. First(Rj) represents the best
ready time for cluster Cj. CEij represents the expected
completion time of task Ji on a host in cluster Cj. ECij
represents the expected cost to execute job Ji in cluster Cj.

This algorithm computes the expected completion time for
all tasks on all clusters using these equations:

 (1)

 (2)

Then it computes the expected cost using (3):

 (3)

This algorithm has loop Ji (line 4..line 12) that finds the
best cluster that fulfill Ji QoS constraints and has the minimum
completion time by using equations (1,2,3). After the loop Ji,
an If condition (line 13) checks if the Ji got any host that can
fulfill its constraints. If there is no such a host then delete this
job (Ji) from the job list, otherwise check again (line 18) if this
Ji has the minimum execution time and save its index if true. At
line 23 we have JMin_job that holds the index for the minimum
completion time job, so we map it to its cluster CMin_Clstr. Line
25 is responsible for updating the list R in such a way it stays in
ascending order.

B. Algorithm Analysis

The time complexity of the proposed algorithm is:

 (4)

Where m is the number of jobs and n is the number of
clusters. From above, we can see that this algorithm has a little
effect by the increase in the number of servers inside the
clusters because updating servers list required just log(Zj)
where Zj is the number of servers inside cluster Cj.

In comparison with this algorithm, the time complexity for
the old algorithm is:

 (5)

Where w is the number of servers in the cluster.

Therefore, it is quite clear the effect of increasing the number

of servers on the proposed algorithm is not that much intense.

C. Quality of Service (QoS)

This work uses QoS restriction to find the suitable cluster
that can execute user’s tasks. Multi-dimensions QoS have
been used so that the users should submit their tasks with
many parameters. These parameters are:

 Bandwidth: The user should submit his task with the
minimum amount of bandwidth needed to execute it.
Bandwidth is set to zero in case it does not need any
bandwidth.

 Security: These days, the most important issue in
distributed system is the security and its type. In this
work, we proposed a multi-type QoS security check. It
means the algorithm can check for the user the
suitable type that he needs to execute the task.
Security parameter is an integer value, where each
value represents a type or level of security.

 Cost: Budget cost is the amount of payment from a
user to a resource for its service. Here the user should
specify the maximum cost, which can be afforded.

1. While (J is not empty) do

2. For each job Ji in J do
3. Ji.TCT=Double.Max_value //TCT= Temporary Completion Time

4. For each cluster Cj do

5. ETij=Li/SPj
6. CTij=ETij+first(Ri)

7. ECij=(Li /SPi)* CCi

8. If (Ji.TCT>CTij) and (Ji.SF=Cj.CS) and (Ji.S<= ECij)
and(Ji.BW<=Cj.CB) then

9. Ji.TCT= CTij

10. Ji.Clr_ndx=j
11. End if

12. End For

13. If (there is no match) then
14. Print out Job Ji has no match

15. Delete Ji from J

16. End if
17. Else

18. If (Ji has minimum Completion time) then

19. Set Min_Clstr=j
20. Set Min_Job=i

21. End if

22. End For
23. Map JMin_job to CMin_Clstr

24. Delete JMin_job from J

25. Update RMin_Clstr such that the set should stay sorted in ascending

order.

26. End While

Figure 1. Global grid Scheduler Algorithm

http://ijacsa.thesai.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, September 2010

13 | P a g e

http://ijacsa.thesai.org/

IV. IMPLEMENTATION AND EXPERMENT RESULTS

This algorithm is used in the first or higher level, while in
the second level, the normal MM is used.

We use Java programming language in order to implement
the simulator to test the proposed algorithm. The
implementation consists of several classes, these are:

 Create population: This class is responsible for
creating the set of tasks with its QoS restrictions, set
of clusters with their specifications and a set of
servers to be used as for old algorithm. The size of set
of servers is equal to the number of clusters
multiplied by the number of servers in each cluster.
The number of tasks, clusters and servers/cluster are
fixed, and the QoS restrictions and the clusters
specifications are generated randomly.

 New Min-Min: this class is an implementation for
the improved min-min that (2PMM) is responsible
for mapping the tasks to the appropriate cluster.

 Old Min-Min: this class is an implementation for the
old algorithm to be used for performance comparison.

Firstly, Create population class generates 1000 tasks in one
list, N clusters each one with Z servers and list of W servers
such that:

 (6)

Secondly, Old Min-Min and New Min-Min start working to
make the mapping and compute the performance metrics which
is the makespan. Makespan can be define as the time spent
from the beginning of the first job to the end of the last job.

Two experiments have been made to test the performance
of 2PMM algorithm. Each experiment consists of six sizes (i.e.
number of clusters and servers). The test for each size is made
ten times and the average has been taken for the comparison.

The first experiment compares the performance and cost in
both old and new algorithms (figure 2). This figure shows the
effect of increasing of servers on mapping time. The Y-axis in
this figure represents the total execution time for the mapping
process, while the x-axis represents the number of servers and
it is written in form of equation (6)(i.e. 10*5=50 means, 10
clusters and 5 servers in each cluster as a test bed for the new
algorithm and 50 servers as a test bed for the old algorithm). In
this experiment, we fixed the number of tasks to 1000 and the
number of clusters to 10 and changed the number of servers in
each cluster. It is quite clear that the effect of increasing the
number of servers (i.e. increasing the search space) on the
execution time of the scheduler is not that much intense. Figure
(4) shows the improvement mapping time between 2PMM and
MM algorithms.

The second experiment (figure 3) shows the influence of
increasing the number clusters on the new algorithm. As in
figure (2), the y-axis represents the mapping execution time
while the x-axis represents the number of clusters, number of
servers for each cluster and total number of servers. We can see

that the total execution time is directly affected by the number
of clusters in its search space but its time is still far from the
time needed in the old algorithm.

V. CONCLUSION AND FUTURE WORK

This paper investigates the job scheduling algorithm in grid
environments as an optimization problem. The proposal is to
minimize the scheduling time for urgent jobs, by mapping the
jobs to the best cluster as the first phase and then reschedule to
the best resource in the selected cluster.

The algorithm is developed based on Min-Min Algorithm
to find the proper cluster that can execute the job with
minimum execution time with respect to QoS job requirements.
The improved algorithm is compared with the previous Min-
Min algorithm. The results show a better performance in
scheduling time point of view. It can map the jobs faster than
the normal Min-Min. The future work will focus on clustering
algorithms and study the effect of three phase clustering on the
system.

Figure 2. The effect of increasing the number of clusters with fixed
number of servers on makespan

Figure 3. The effect of increasing the number of servers with fixed
number of clusters on Makespan.

http://ijacsa.thesai.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, September 2010

14 | P a g e

http://ijacsa.thesai.org/

Figure 4. The percentage of makespan improvement when increasing
the number of clusters with fixed number of servers.

Figure 5. The percentage of makespan improvement when increasing
the number of servers with fixed number of clusters

REFERENCES

[1] Ehsan Ullah Munir, Jianzhong Li, and Shengfei Shi, "QoS Sufferage
Heuristic for Independent Task Scheduling in Grid," Information
Technology, vol. 6, no. 7. pp.1166-1179, 2007.

[2] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid:
Enabling Scalable Virtual Organizations," International Journal of High
Performance Computing Applications, vol. 15, no. 3. pp.200, 2001.

[3] F. Dong and S. G. Akl, "Scheduling Algorithms for Grid Computing:
State of the Art and Open Problems," Queen's University School of
Computing.January, 2006.

[4] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure: Morgan Kaufmann, 2004.

[5] H. El-Rewini, T. G. Lewis, and H. H. Ali, Task scheduling in parallel
and distributed systems, 1994.

[6] P. Fibich, L. Matyska, and H. Rudovb, "Model of Grid Scheduling
Problem," Exploring Planning and Scheduling for Web Services, Grid
and Autonomic Computing. pp.05-03

[7] F. Berman, R. Wolski, H. Casanova et al., "Adaptive computing on the
Grid using AppLeS," Parallel and Distributed Systems, IEEE
Transactions on, vol. 14, no. 4. pp.369-382, 2003.

[8] O. Sinnen and I. NetLibrary,Task Scheduling for Parallel Systems:
Wiley-Interscience, 2007.

[9] H. E. XiaoShan, S. U. N. XianHe, and G. von Laszewski, "QoS Guided
Min-Min Heuristic for Grid Task Scheduling," Journal of Computer
Science and Technology, vol. 18, no. 4, 2003.

[10] M. Y. Wu, W. Shu, and H. Zhang, "Segmented min-min: A static
mapping algorithm for meta-tasks on heterogeneous computing
systems." 9th IEEE Heterogeneous Computing Workshop (HCW 2000) ,
pp. 375-385. 2000.

[11] M. Maheswaran, S. Ali, H. J. Siegel et al., "Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous
computing systems." 8th Heterogeneous Computing Workshop
(HCWÆ99) , pp. 30-44. 1999.

[12] N. Muthuvelu, J. Liu, N. L. Soe et al., "A dynamic job grouping-based
scheduling for deploying applications with fine-grained tasks on global
grids." Proceedings of the 2005 Australasian workshop on Grid
computing and e-research-Volume 44 , pp. 41-48. 2005. Australian
Computer Society, Inc. Darlinghurst, Australia, Australia.

[13] S. Noel, O. Delannoy, N. Emad et al., "A Multi-level Scheduler for the
Grid Computing YML Framework," LECTURE NOTES IN
COMPUTER SCIENCE, vol. 4375. pp.87, 2007.

[14] K. Etminani and M. Naghibzadeh, "A Min-Min Max-Min selective
algorihtm for grid task scheduling." Internet, 2007.ICI 2007.3rd
IEEE/IFIP International Conference in Central Asia on , pp. 1-7. 2007.

[15] F. M. Ciorba, T. Andronikos, I. Riakiotakis et al., "Dynamic Multi Phase
Scheduling for Heterogeneous Clusters." Proc.of the 20th IEEE IntÆl
Par.& Dist.Proc.Symp.(IPDPSÆ06), Greece . 2006.

http://ijacsa.thesai.org/

