
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 6, December 2010

108 | P a g e

http://ijacsa.thesai.org/

Model Based Test Case Prioritization for Testing

Component Dependency in CBSD Using UML

Sequence Diagram

Arup Abhinna Acharya

School of Computer Engineering

KIIT University Bhubaneswar,

India

aacharyafcs@kiit.ac.in

Durga Prasad Mohapatra

Department of Computer Science

& Engineering

National Institute of Technology

Rourkela, India

durga@nitrkl.ac.in

Namita Panda

School of Computer Engineering

KIIT University

Bhubaneswar, India

npandafcs@kiit.ac.in

Abstract—Software maintenance is an important and costly

activity of the software development lifecycle. To ensure

proper maintenance the software undergoes regression testing.

It is very inefficient to re execute every test case in regression

testing for small changes. Hence test case prioritization is a

technique to schedule the test case in an order that maximizes

some objective function. A variety of objective functions are

applicable, one such function involves rate of fault detection - a

measure of how quickly faults are detected within the testing

process. Early fault detection can provide a faster feedback

generating a scope for debuggers to carry out their task at an

early stage. In this paper we propose a method to prioritize the

test cases for testing component dependency in a Component

Based Software Development (CBSD) environment using

Greedy Approach. An Object Interaction Graph (OIG) is

being generated from the UML sequence diagrams for

interdependent components. The OIG is traversed to calculate

the total number of inter component object interactions and

intra component object interactions. Depending upon the

number of interactions the objective function is calculated and

the test cases are ordered accordingly. This technique is

applied to components developed in Java for a software system

and found to be very effective in early fault detection as

compared to non-prioritize approach.

Keywords- Regression Testing, Object Interaction Graph, Test

Cases, CBSD

I. INTRODUCTION

Nowadays software development is quality oriented
development. Quality can be ensured by very good testing
techniques. So optimizing time and cost of testing process is
really a challenge for test engineers. Regression testing is a
kind of testing which requires maximum effort, time and
cost. In fact, it might be hard to run the whole application
unattended and to simulate any asynchronous input (e.g.,
interactive inputs) the application may receive. In such
cases, regression testing can last days or weeks and can
involve substantial human effort. Hence a technique like

Test case prioritization has to be devised which will lead to
early fault detection.

 Test case prioritization aims at finding an
execution order for the test cases which maximizes a given
objective function. Among the others, the most important
prioritization objective is probably discovering faults as
early as possible that is, maximizing the rate of fault
detection. In fact, early feedback about faults allows
anticipating the costly activities of debugging and corrective
maintenance, with a related economical return. When the
time necessary to execute all test cases is long, prioritizing
them so as to discover most faults early might save
substantial time, since bug fixing can start earlier.

The major challenges in CBSD are testing component
dependency. CBSD uses the reusable components as the
building blocks for constructing the complex software
system (component based system). Component based
system promotes the software quality and productive. This
building block approach has been increasingly adopted for
software development, especially for large-scale software
systems. A component based software often consists of a set
of self contained and loosely coupled components allowing
plugand- play. The components may be implemented by
using different programming languages, executed in various
operational platforms distributed across geographic
distances; some components may be developed in-house,
while others may be the third party off-the-shelf
components of which the source code may not be available
to the developers. So the cost of maintaining the component
based software is comparatively more than the maintenance
of conventional software system. So when we want to
modify or add a component and apply the regression testing,
it incurs more cost and time. So to reduce these two factors
we use a test prioritization technique which is based on a
criterion like maximum interactions between the
components performed due to a test case during component
interaction. The test case having maximum interactions
given higher priority and executed first so that the debugger

mailto:aacharyafcs@kiit.ac.in
mailto:durga@nitrkl.ac.in
mailto:npandafcs@kiit.ac.in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 6, December 2010

109 | P a g e

http://ijacsa.thesai.org/

will not sit idle as a result fault will be detected early. In this
paper for describing each component we have taken the help
of sequence diagrams, then a Object Interaction Graph
(OIG) from sequence diagrams is constructed which shows
the interrelation among the components. A new test
prioritization algorithm is presented which is applied on
OIG to count the maximum number of inter component
interactions and intra component interactions made by the
test cases.

Previous work on test case prioritization [1, 2, 3, 4, 5] is
based on the computation of a prioritization index, which
determines the ordering of the test cases (e.g., by decreasing
values of the index). For example, the coverage level
achieved by each test case was used as a prioritization index
[3]. Another example is a fault proneness index computed
from a set of software metrics for the functions exercised by
each test case [1].

P.R. Srivastava [18] suggested prioritizing test cases
according to the criterion of increased APFD(Average
percentage of Faults detected) value. He proposed a new
algorithm which could be able to calculate the average
number of faults found per minute by a test case and using
this value sorts the test cases in decreasing order. He also
determined the effectiveness of prioritized test case(more
APFD value) compared to non-prioritized test case(less
APFD value). G. Rothermel et. al. [19] have described
several techniques for test case prioritization and
empirically examined their relative abilities to improve how
quickly faults can be detected by those suites. Here more
importance is given to coverage based prioritization. The
authors applied these techniques to the base version of a
program rather than the modified version of a program,
hence these techniques are otherwise known as”general
prioritization techniques”. The objective is to detect faults as
early as possible so that the debugger will not sit idle. B.
Korel et.al.[9] proposed a new prioritization technique to
prioritize the test cases by using several model-based test
case prioritization heuristics. Model-based test prioritization
methods use the information about the system model and its
behaviour to prioritize the test suite for system retesting. An
experimental study has been conducted to investigate the
effectiveness of those methods with respect to early fault
detection. The results from the experiment suggest that
system models may improve the effectiveness of test
prioritization. The prioritization techniques so proposed are
used in traditional software retesting, but in this work we try
to use the prioritization techniques in component-based
software retesting.

The test case prioritization methods can be categorized
in to code-based testing and model based technique. In the
code based test prioritization, source code of the system is
used to prioritize the test cases. Most of the test
prioritization methods [6, 10, 11, 12, 13, 14] are code based.
In several test prioritization criteria were presented and their
influence on the improvement of the rate of fault detection
was investigated.

In model-based test prioritization [7,9] a system’s
model(s) is used to prioritize tests. System modelling is
widely used to model state-based systems, e.g., real time
systems. System models are used to capture some aspects of
the system behaviour. One type of model-based test
prioritization methods [7,8] are appropriate for
modifications that involve changes in the model and then in
the source code. The second type of model-based test
prioritization methods [9] are appropriate for modifications
that do not involve any changes in models (changes are only
made in the source code). In this paper, we have used UML
2.0 for modelling to concentrate on the second type of
model-based prioritization method.

Though several priotization techniques have been
proposed previously, but the interdependency issues present
in component composition in CBSD, while finding the
prioritized test suit, has not been taken care of. Regression
testing mainly involves testing the changes occurred in
software due to addition of new components. During
component composition in CBSD, the inter component
dependency leads to lot of errors. So the authors have taken
in to consideration the above criteria while generating the
prioritized test suit to increase the APFD.

The rest of the paper is organized as follows: Section II
describes the problem statement for prioritization along with
a brief introduction to CBSD. The proposed model along
with a case study and a comparative study are described in
Section III and Section IV .The paper concludes in Section
V. with the discussion on continuing work in this direction
in Section VI. Due to space constraints, this paper does not
include descriptions of a system model such as notations
and their semantics. Interested readers are referred to any
UML book such as [16] or UML manual published by OMG
[15].

II. PROBLEM STATEMENT

In CBSD Component interface is defined as, it is the
only way that a component communicates with the external
environment. There are two kinds of interface: service
providing and service required. When the services are
provided by an interface it is called service providing
interface and when the interface of a component requiring a
service it is called service required interface. All
components should be plug-compatible i.e a service
required interface can be connected to a service providing
interface. We have defined a Component as follows:
Component C = (P, R) , where P=P1, P2, Pn is the set of
providing services interface,

R = R1, R2, Rm is the set of required services interface.
The providing and required services of a component C is
denoted by C.P and C.R respectively and C.P∩C.R=∅. [17]

There are two kinds of special components, one is the
component without the required services, the other is the
one without the providing services for other components.
According to the fact the numbers of two kinds of
components can be one or more.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 6, December 2010

110 | P a g e

http://ijacsa.thesai.org/

In the Fig.1 the required services of C1P C2 are the
union of C1.R1 and C2.R2 with the remove of satisfied
services in S. With the definition of composition the
providing and required services are propagated to the
interface of composed component, so the composition could
be carried parallel. A Component interaction graph (OIG) is
used to describe the interrelation of components. A
complete component interaction graph (OIG) makes the
testing quite easy. A OIG is a directed graph where OIG =
(V, E), V represents a set of nodes. V = VI U VC, VI is the
set of interface nodes and VC is the set of component nodes,
E represents the set of directed edges.

The interface is denoted by an ellipse and a component
with dashed square. The interaction among components can
be gained from the OIG directly.

There are two kinds of special components, one is the
component without the required services, the other is the
one without the providing services for other components.
According to the fact the numbers of two kinds of
components can be one or more.

The OIG illustration is given in figure 1:

 Fig. 1. Object Interaction Graph(OIG)

If there is an existing edge form C1.P1 to C2.R1 in the
CIG it means the required service R1 of C2 has been
satisfied by the providing service P1 of C1, which is
C2.R1= C1.P1.

Practically it is not possible to perform rigorous testing.
Tester has to select subset of test cases from the original test
suite. This makes test case selection quite challenging. This
selected regression suite should cover all the functionality
i.e. adequate functional coverage and greater fault exposing
potential. Due to squeezed test schedule, testing team may
not able to execute all test cases from the selected regression
suite. Sequencing of test cases based on some criteria helps
testing team to achieve the goals whilst reducing testing
cycles. Rothermel at el. [3] defines the test case
prioritization problem as follows: Given: T, a testsuite; PT,
the set of permutations of T; f, a function from PT to the
real numbers.

Problem: Find T’ belongs to PT such that (for all T”) (T”

belongs to PT) (T” = T’) [f (T’)≥ f(T”)].
Here, PT represents the set of all possible prioritizations

(orderings) of T and f is a function that, applied to any such
ordering, yields an award value for that ordering [3]. The
objective of this research is to develop a test case
prioritization technique that prioritizes test cases on the
basis of detection of fault rate.

III. PROPOSED MODEL

To facilitate regression testing by optimizing the time
and cost, we propose a method to prioritize the test cases by
using model based prioritization method by extracting the
benefits of Unified Modelling Language(UML). UML
provides lifecycle support in software development and is
widely used to describe analysis and design specifications of
software. It is a big challenge to study the test case
generation from UML diagram. In case of a Object Oriented
System Design (OOSD), each component is represented by
collection of objects. Due to encapsulation, the only way
objects can communicate is through message passing.
Whenever an event occurs, it is executed through a
sequence of occurrence of message passing. We have used
sequence diagram from the set of diagrams present in UML
2.0. As Sequence diagram represents various object
interactions through message passing, it can act as an input
to the proposed model. We are generating an Object
Interaction Graph (OIG) from the sequence diagrams
present. The methodology we have used for generating the
graph has been discussed in Section III(A) Further in
Section III(B) we have discussed how to traverse the OIG to
calculate the number of inter component object interaction
and intra component object interaction. Section III(B)
describes about objective function evaluation and the
prioritization technique.

 Fig. 2. A Frame Work For Generating Prioritized Test Cases

A. Generating OIG form System Models

We have used sequence diagram for system modelling.
The object interactions can be very well identified using a
sequence diagram. During regression testing any
modification in the code will have no effect on the sequence
diagram. The object interaction can be categorized into two
different types. One of them is intra component object
interactions and the other one is inter component object
interactions. In case of intra component object interaction,
the interaction between objects present within a component
is considered where as in case of inter component object
interaction we consider the object interactions present

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 6, December 2010

111 | P a g e

http://ijacsa.thesai.org/

between two different components. A sequence diagrams in
UML are used to model how an object communicate with
other objects in its life time i.e. it is used to capture the
dynamic behaviour of a system. The basic elements of a
sequence diagram are object s and messages [Booch, Rum-
baugh and Jacobson 1998] and it shows a state machine
which emphasizes the flow of control from state to state.

A Object Interaction Graph (OIG) is used to describe the
interrelation of components. A complete object interaction
graph (OIG) makes the testing quite easy. A OIG is a
directed graph where OIG = (V, E), V represents a set of
nodes. For generating Object Interaction Graph (OIG), each
object present in the sequence diagram is represented as a
node in the graph. The intra component object interactions
form the edges of the graph and represented in BLACK
color. The inter component object interactions form the
edges of the graph and represented in RED color.

Algorithm: GENERATE OIG

Input: Sequence Diagrams of various components of the

system representing message passing between objects

Output: Object Interaction Graph (OIG)// It is a directed

graph

1. Initialize OIG to be empty

2. for i=1 to n//n is the total number of objects

3. Add a node Ni to OIG == Ni represents ith node.

Object shared by different components treated as a

single node.

4. for i=1 to n

5. for j=1 to n

6. for each incoming message from object Oi to Oj

==All guard conditions are ignored

7. if (interaction type==intra)Establish an edge

between Oi to Oj (i.e. Ni and Nj) and color it as

”BLACK” as well as append the pre and post

conditions.

8. Else Establish an edge between Oi to Oj (i.e. Ni

and Nj)and color it as ”RED” as well as append the

pre and post conditions.

9. The possible start and end of the scenario

sequences are represented with solid arrows.

B. Traversing OIG

When the OIG is generated from the system models, it
has to be traversed to count the number of inter component
and intra component object interactions. NOIi represents the
number of Object Interactions discovered by test case ti with
in one component of the software and NIi represents the
number of Object Interactions discovered by test case ti
between two different components of the software. We
follow the depth first search (DFS) methodology for
traversing the graph. The type of interaction is decided
depending upon the color of the edge in the graph. If the
edge color is found to be ”BLACK”, it represents an intra
component object interaction, where as edges colored as
”RED” represents inter component object interaction

Algorithm: IN_CALCULATE

Input: Test case ti & Object Interaction Graph (OIG)

Output: NOIi and NIi

1. Initialize both NOIi and NIi to 0.

2. Traverse each interaction in the OIG for ti in DFS

3. if (edge color ==’BLACK’ && current edge is not

visited already)

4. NOIi + + ==Increment the value for intra

component interaction

5. Else

6. NIi + + == Increment the value for inter

component interaction

7. Return NOIi and NIi

C. Generating Prioritized Test Cases

Once we get the value for NIi and NOIi by using the
algorithm described in Section III(B), prioritization process
starts. For each test case ti, the value of NIi and NOIi are
added. We have considered the total number of intra
component interaction where as the total number of inter
component object interactions is found out by multiplying it
with RP i.e. total number of providing service interface and
required service interface . If the faults due to component
integration are detected early, it will give a better coverage.

The added result is divided with unit time U to
determine value of the objective function i.e. factor criteria
FCi. We try to maximize the objective function using a
Greedy approach.

Algorithm: TEST_PRI

Input: Regression Test Suite T

Output: Prioritize Test Suite T’

1. Traverse the test suite T, for each test case ti

present, call IN_CALCULATE (ti) to calculate

NOIi and NIi

2. Define some unit time U

3. Calculate objective function (FCi) for test case ti

as FCi= (NOIi+RP*NIi)/U. (1)

// RP represents total number of providing

service interface.

4. Generate T’ by Sorting the test suit T in ascending

order of FCi for each ti .

5. Store T’ in the test case repository for regression

testing.

IV. CASE STUDY- A CELLULAR NETWORK MANAGER

We have taken the case study of a Cellular Network
Manager to explain the proposed model. We have taken into
consideration two components i.e.”Dialing a Phone” and
”Cellular Network Connection”. From the sequence diagram
of both the components given in Fig.3 and Fig.4,
corresponding OIG are designed as given in Fig.5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 6, December 2010

112 | P a g e

http://ijacsa.thesai.org/

 Fig. 3. Sequence Diagram for dialing the number

 Fig. 4. Sequence Diagram for cellular phone connection

 Fig. 5. OIG for a Cellular Network Manager

A: Digit Button F: Send Button

B: Digit Button Adapter G: Send Button Adapter (P)

C: Dialer Display H: Cellular Radio(R)

D: Dialer (Both P&R) J: Cellular Radio Display

E: Speaker

Three test cases are considered to test the prioritization

algorithm. The test cases are designed to test the Dialer
Display(t1), to test the Speaker(t2) and to test the Cellular
Radio Display(t3). The following table contains the value of
NOIi, NIi and FCi. Here the unit time U is considered to be 1
unit.

TABLE I: OBJECTIVE FUNCTION (FCi) EVALUATION

Test

Cases

NOIi NIi FCi

t1 3 0 3

t2 3 0 3

t3 2 4 6

From the table I we conclude that the prioritized test

sequence is: t3, t2, t1 or t3, t1, t2

 The proposed model found to be very effective as it
increases the Average Percentage of Fault Detection
(APFD) when it is compared with generalized model based
method and few code based methods like LOC count and
Function count. The comparison made is summarized in
Table-II.

 TABLE II

 A COMPARATIVE STUDY

Name of Prioritized

Technique

Approximate Increase in

APFD value(%)

Code based Approach (LOC

count, Function count etc.)
30

Model based Approach 35

Model Based Approach using

the Dependency Criteria in

CBSD

45

V. CONCLUSION

The cost and time required for regression testing can be
minimized by using the prioritization technique discussed in
this paper. Here we have proposed a model based
prioritization method by considering the number of Object
Interactions per unit time as the objective function. Here
more importance is given to number of inter component
object interactions present because maximum faults are
expected to be present when components interact with each
other. The proposed model found to be very effective as it
increases the Average Percentage of Fault Detection
(APFD) when it is applied to few of the projects developed
in Java by java 45%-50%. This approach is mainly
applicable to test the component composition in case of
component based software maintenance.

VI. CONTINUING WORK

The proposed method can further be extended to
prioritize test cases to perform regression testing for real
time systems and distributed systems. Here the authors
prioritize the test case using a model based approach. The
authors are also working on adding new criterion like
frequency of data base access number of state changes in
UML state chart diagram etc. Two different modelling
diagrams can also be integrated to find criterion to generate
test cases Requirement specifications can also be used to
prioritize the test cases. Test case prioritization for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 1, No. 6, December 2010

113 | P a g e

http://ijacsa.thesai.org/

concurrent systems is also a very challenging area of
research due to its dynamic behaviour

REFERENCES

[1] S. Elbaum, A. Malishevsky, and G. Rothermel.Test case prioritization:
A family of empirical studies., IEEE Transactions on Software
Engineering, 28(2):159-182, February 2002.

[2] J. M. Kim and A. A. Porter.A history-based test prioritization technique
for regression testing in resource constrained environments., In
Proceedings of the International Conference on Software Engineering
(ICSE), pages 119-129. ACM Press, May 2002.

[3] G. Rothermel, R. Untch, C. Chu, and M. J. HarroldTest case
prioritization., IEEE Transactions on Software Engineering,
27(10):929-948, October 2001.

[4] H. Srikanth, L. Williams, and J. Osborne.System test case prioritization
of new and regression test cases., In Proceedings of the 4th
International Symposium on Empirical Software Engineering
(ISESE), pages 62-71. IEEE Computer Society, November 2005.

[5] A. Srivastava and J. Thiagarajan.Effectively prioritizing tests in
development environment, In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), pages 97-
106. ACM Press, July 2002.

[6] J. Kim, A. Porter, ”A History-Based Test Prioritization Technique for
Regression Testing in Resource Constraint Environments,”, Proc. 24th
International Conference on Software Engineering, pp. 119-129,
2002.

[7] B. Korel, L. Tahat, M. Harman, ”Test prioritization Using System
Models”, 21st IEEE International Conference Software Maintenance
(ICSM ’05), pp. 559-568, 2005.

[8] B. Korel, G. Koutsogiannakis, L. Tahat,”Model-Based Test
Prioritization Heuristic Methods and Their Evaluation”, 3rd ACM
Workshop on Advances in Model Based Testing, A-MOST, 2007.

[9] B. Korel, G. Koutsogiannakis, L. Tahat,”Application of System Models
in Regression Test Suite Prioritization,”,Proc. 24st IEEE
International Conference Software Maintenance (ICSM ’08), pp. 247-
256, 2008.

[10] Z. Li, M. Harman, R. Hierons,”Search Algorithms for Regression Test
Case Prioritization,”,IEEE Transactions on Software Engineering,
vol. 33, No. 4, pp. 225-237, 2007.

[11] G. Rothermel, R. Untch, C. Chu, M. Harrold,”Test Case
Prioritization: An Empirical Study,”,Proc. IEEE International
Conference on Software Maintenance, pp. 179-188, 1999.

[12] G. Rothermel, R. Untch, M. Harrold,”Prioritizing Test Cases For
Regression Testing,”,IEEE Transactions on Software Engineering,
vol. 27, No. 10, pp. 929-948, 2001.

[13] A. Srivastava, J. Thiagarajan,”Effectively Prioritizing Tests in
Development Environment,”,Proc. ACM International Symposium on
Software Testing and Analysis, ISSTA-02, pp. 97- 106, 2002.

[14] W. Wong, J. Horgan, S. London, H. Agrawal,”A Study of Effective
Regression Testing in Practice,”,Proc. International Symposium on
Software Reliability Eng., pp. 230-238, 1997.

[15] UML 2.0 Reference Manual, Object Management Group, 2003.

[16] Schneider, G., and winters, J.P., Applying Use Cases, Second edition,
Addison Wesley,2001.

[17] Arup Abhinna Acharya, Sisir Kumar Jena, ” Component Interaction
Graph: A new approach to test component composition”,Journal of
Computer Science and Engineering, Volume 1, Issue 1, May 2010.

[18] P. R. Srivastava, ”Test Case Prioritization”, Journal of Theoritical
And Applied Information Technology 2008 JATIT

[19] G. Rothermel, R. H. Untch, C. Chu ,M. J. Harrold ”Test Case

Prioritization:An Emperical Study”, in Proceedings of the 24th IEEE
International Conference Software Maintenance (ICSM ’1999)
Oxford, U.K,September,1999 .

[20] GB. Korel, G. Koutsogiannakis, ”Experimental Comparsion of Code
Based and Model model Based Test prioritization ”, IEEE 2009.

AUTHORS PROFILE

Arup Abhinna Acharya is an Assistant Professor and research scholar in

the School of Computer Engineering, KIIT University, Bhubaneswar,

Odisha, INDIA. He received his Masters degree from KIIT University

Bhubaneswar. His research areas include Object Oriented Software

Testing, Software Cost Estimation, and Data mining. Many publications

are there to his credit in many International and National level journal and

proceedings. He is having eight years of teaching experience. He is a

member of ISTE. He can be reached at aacharyafcs@kiit.ac.in.

Durga Prasad Mohapatra received his Masters degree from National

Institute of Technology, Rourkela, India. He has received his Ph.D. from

Indian Institute of Technology, Kharagpur, India. He is currently working

as an Associate Professor at National Institute of Technology, Rourkela.

His special fields of interest include Software Engineering, Discrete

Mathematical Structure, Program Slicing and Distributed Computing.

Many publications are there to his credit in many International and

National level journal and proceedings. He is a member of IEEE. He can be

reached at durga@nitrkl.ac.in.

Namita Panda is an Assistant Professor in the School of Computer

Engineering, KIIT University, Bhubaneswar, Odisha, INDIA. She received

her Master’s degree from KIIT University Bhubaneswar. Her research

areas include Object Oriented Software Testing, Parallel Processing and

Computer Architecture. She has published papers in national and

international level proceedings. She is having seven years of teaching

experience. She is a member of ISTE. She can be reached at

npandafcs@kiit.ac.in.

mailto:durga@nitrkl.ac.in

