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Abstract—Boltzmann Transport Equation [1-2] has been 

modelled in close conjunction with Maxwell’s equation, 

investigations for 2D and 3D transport carriers have been 

proposed. Exact solution of Boltzmann Equation still remains the 

core field of research. We have worked towards evaluation of 2D 

and 3D solutions of BTE. Application of our work can be 

extended to study the electromagnetic wave transport in upper 

atmosphere i.e. ionosphere. We have given theoretical and 

numerical analysis of probability density function, collision 

integral under various initial and final conditions. Modelling of 

coupled Boltzmann Maxwell’s equation taking binary collision 

and multi species collision terms has been evaluated. Solutions of 

Electric Field (E) and Magnetic Field (B) under coupled 

conditions have been obtained. PDF convergences under the 

absence of electric field have been sketched, with an iterative 

approach and are shown in figure 1. Also 3D general algorithm 

for solution of BTE has been suggested. 

Keywords- Boltzmann Transport Equation, Probability Distribution 

Function,   Coupled BTE-Maxwell’s. 

I. INTRODUCTION  

BTE is an integral differential equation used for 

characterizing carrier transport in semiconductor [5-6] and 

gases distribution in space f(x,v ,t). The Boltzmann equation 

applies to a quantity known as the distribution function, which 

describes this non-equilibrium state mathematically [1] and 

specifies how quickly and in what manner the state of the gas 

changes when the disturbing forces are varied. BTE shall 

compute average behaviour of the system in terms of 

distribution function of time. Evolution of distribution function 

is governed by Boltzmann Transport Equation. Boltzmann 

Transport Equation can be solved by mathematical and 

numerical techniques. Here distribution function can be a 

function of seven variables i.e. three physical space, three 

volume space and one time. It shall provide complete 

description of the state of gas. The distribution function carries 

information about the positions and velocities of the particles at 

any time. There can be two broad methods to solve the BTE. 

The first method consists in directly discretizing and solving 

the BTE using standard numerical methods [1-2] for 

differential equation. The second, called the Monte Carlo (MC) 

method, solves the BTE as being the stationary solution of a 

stochastic differential equation [3-4]. BTE structure due to high 

dimensionality is hard to solve. 

 One could describe a gas flow in classical physics by 

giving position and velocity of all molecules at any instant of 

time.  It means information about flow of gas, electron and ions 

can be known by solving BTE with proper initial conditions 

and boundary conditions. The solution of BTE is  PDF (3-4), 

which is a function of position and velocity of particles and the 

time variables. Distribution Function shall be derived by 

concentration of kinetic energy and moments due to applied 

force. Distribution function can be also characterized as current 

density. 

A statistical approach [5-7] can be taken instead of defining 

position and velocity of each molecule.  Using the construct of 

ensemble, a large number of independent systems evolving 

independently but under same dynamics, can be characterized 

by density function, which gives the probability that an 

ensemble member can be found in some elemental volume in 

phase space, which has been very well explained in reference 

[8-9].  

In a state of equilibrium a gas of particles has uniform 

composition and constant temperature and density. If the gas is 

subjected to a temperature difference [8] or disturbed by 

externally applied electric, magnetic, or mechanical forces, it 

will be set in motion and the temperature, density, and 

composition may become functions of position and time, in 

other words, the gas moves out of equilibrium and specifies 

how quickly and in what manner state changes when disturbing 

forces are controlled. Equilibrium can be disturbed by 

temperature change, external force, magnetic force and 

mechanical force.  

Here we have proposed three different models i.e. when 
BTE is at equilibrium state, second when force is applied but 
no field presents and third condition is when both force and 
field exists simultaneously. We have developed BTE 
formulations for two dimensional and three dimensional 
solutions. We have studied transport parameters i.e. charge 
density, current density, magnetic potential and electric 
potential, electric field and magnetic field. General 
purpose algorithms for 3D analysis have also been 
developed. This developed modeling theory can be very 
useful for tolerance analysis in chip designing in 
microelectronics. We have solved coupled equations by 
finite difference numerical method.  

We have organized our paper in five sections. Section 1 
gives us the concept of BTE. Section 2 describes BTE 
formulations [10]. Section 3 presents modeling and simulations 
of BTE. Section 4 deals with multi species collision Section 5 
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presents coupled modeling of EM transport. Section 6 
concludes the paper. 

Abbreviations used in the text 

v=velocity of particles  

f = force on particles  

m= mass of particle 

x=displacement 

BTE=Boltzmann Transport equation 

PDF= Probability Density Function  

EM= Electromagnetic wave.  

II. BTE   FORMULATIONS 

Here distribution function can be a function of seven 
variables for 3D model i.e. three physical space, three volume 
space and one time. It shall provide complete description of the 
state of gas. There can be two broad methods to solve the BTE 

Standard numerical methods for differential equation.  

The Monte Carlo (MC) method solves the BTE as being the 

stationary solution of a stochastic differential equation. 

 Here we shall work for numerical solution for all 

investigations.  

BTE under Steady State Conditions 

 

                   (1)  

 

BTE under Equilibrium conditions [2] 

       (2) 

2 D representation   of BTE    

       (3) 

 3 D representation of BTE under RTA 

        (4) 

BTE when collision term is accounted for 

        (5) 

We have discretized the above 2d and 3 differential 
equations developed and subjected for numerical solution. The 
output is the PDF w. r .t position and velocity at different 
times. The PDF is normalized, where intensity of the 
image represents its relative value. Solution of BTE under 
constant EM field and force applied is computed as presented 
in fig1, it is assumed that there is no collision and initial 
function is Gaussian in nature. Given below are the 2Dand 3D 
computed transport models. 

 

( x, , t) +   +    = 0 

 

( x, , t) +   +    = 0 

 
Now for six space dimensions seven variables are 

considered. The distribution function f(x, v, t) for 3D represents 
x as position vector and v as velocity vector.  

 

 (x, y, z,  ,  ,  , t ) 

+   +   +    

+ (Ex +     

+ (     –    

 +  (     -     

 = 0      (6)  

 Here we have to find ,  . Here of intensity of 

image represents normalized magnitude of PDF. These plots 
have been obtained at different time and convergence at 
equilibrium is presented with initial field as Gaussian. 

A. 2D PLOTS 

          

 PDF at t=0.1                        PDF at t=0.2 

 
Figure. 1(a-b)  Intensity of Image 

 

  

    PDF at t=0.3             PDF at t=0.4    

 
Figure. 1(c-d) intensity of Image 

 

 PDF at t=0.7                     PDF at t=0.6                           
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Figure.1 (e-f) Intensity of Image 

         

PDF at t=0.7                    PDF at t=0.8 

 

 
  Figure. 1(g-h) Intensity of Image  

           

 PDF at t=0.9   PDF at t=1.0 

 
Figure.1 (i-J) Intensity of Image 

 

 

 

 

        

 PDF at t=1.11         PDF at t=1.12 

 
Figure. 1 (l-m) Intensity of Image 

 

B. 3D   PLOTS 
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Figure. 2(a) Intensity of Image  
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Figure 2(b) Intensity of Image 
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Figure 2(c) Intensity of Image 
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Figure 2(d) Intensity of Image 
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Figure 2(e) Intensity of Image 
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Figure 2(f) Intensity of Image 

The ensemble is characterized by density function which 

gives probability that an ensemble member can be found in 

some elemental volume in phase space. 

We have assumed two particles collision term. Equations 

(7- 8) presents collision terms. Here  

 + v  +   =  

 

 (7) 

Where  

t= time  

v= molecular velocity, 

v1= Pre Collision  

V'=post collision velocity 

V’1=post collision velocity 

F= external force 

M= mass of the molecule  

f1=f(x, v1, t) 

=f (x, v1, t) here prime values represents post collision 

conditions due to conservation   

V=v - v1 

V =|V|=|V'| 

Ω Solid angle is deflection angle of relative velocity. 

σ collision cross section will depend on potential , 

scattering and velocity of particles. Collision cross section is 

defined by probability that a collision between two molecules 

will result in a given pair of post collision velocities. The 

integration over velocity v1 from -∞ to ∞ in all dimensions 

while integrating over Ω extends over   unit sphere. 

 

  

 (8) 

Collision integral is five dimensional integral that must be 

evaluated for every point in physical space, every point in time 

and every point in velocity space. Collision cross section  will 

depend on intermolecular potential, pre and post collision 

velocities and scattering angle Ω [9-11]   , though it is constant 

for hard sphere molecules.   direction describes the 

probability density to a certain change of velocity. Collision 

integral evolution approach can be directly applied to solve 

high dimensional problems. The term  (  1  _    1) v 

 d2 Ω d3v  represents net rate at which molecular enter the 

point of interest in phase space due to collision and  

(  1  _    1) v  d2Ω d3v  represents the net rate at which 

molecules are scattered out . Both terms are integrated over all 

possible pre collision velocity and all possible collision angles. 

We have also developed general purpose 3D algorithm for 

implementation as mentioned below: 

BTE 3DGeneral Purpose Algorithm: 

Clear all; 

Clc; 

Close all; 

% for a variable space of 101^6, it might take hours to compute 

the result as it may require large amount of memory.  

len = 101; 

Centre = round ((len+1)/2); 

f = zeros (len, len, len, len, len, len); 

Stdev = 5; 

% initializes the prior PDF as a Gaussian distribution    

% that the function can be differentiated properly, and yet not 

extend to. 

% the ends of variable space. For a variable size of len, even 

larger. 

% values can be considered. 

For x = 1: len 

 For y = 1: len 

For z = 1: len 

For vx = 1: len 

For vy = 1: len 

For vz = 1: len 

 F(x, y, z, vx, vy, vz) = 

 exp(-((x-centre)^2+(y-centre)^2+(z-centre)^2+(vx- 

centre)^2+(vy-centre)^2+(vz-entre)^2)/(2*stdev^2)); 

 End 

 End 
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 End 

 End 

 End 

End 

df = zeros (len, len, len,len,len,len); 

dx = 0.01; 

dy = 0.01; 

dz = 0.01; 

dvx = 0.01; 

dvy = 0.01; 

dvz = 0.01; 

e_m = 0.01; 

ex = 1; 

ey = 0; 

ez = 0; 

bx = 1; 

by = 0; 

bz = 0; 

dt = 0.01; 

tic; 

for t = 1:2 

for x = 1: len 

 for y = 1: len 

 for z = 1: len 

 for vx = 1: len 

 for vy = 1: len 

 for vz = 1: len 

  % df/dx 

 % First two are at boundaries, so special cases 

 % must be taken care of separately 

   If (x == 1) 

   df_dx = f (2, y, z, vx, vy, vz)/dx; 

   else if (x == len) 

    df_dx = 

   -f (len-1, y, z, vx, vy, vz)/dx; 

       else 

       df_dx = 

     (f(x+1,y,z,vx,vy,vz)-f(x-1,y,z,vx,vy,vz))/dx; 

                            end 

                            % df/dy 

                            if (y == 1) 

                                df_dy =  

f(x, 2,z,vx,vy,vz)/dy; 

                            else if (y == len) 

                                df_dy = 

 -f(x, len-1, z, vx, vy, vz)/dy; 

                            else 

                                df_dy = 

 (f(x,y+1,z,vx,vy,vz)-f(x,y-1,z,vx,vy,vz))/dy; 

                            end 

                            % df/dz 

                            if (z == 1) 

                                df_dz =  

f (x, y,2,vx,vy,vz)/dz; 

                            else if (z == len) 

                      df_dz = -f (x,y,len-1,vx,vy,vz)/dz; 

                            else 

                                df_dz= 

(f(x,y,z+1,vx,vy,vz)-f(x,y,z-1,vx,vy,vz))/dz; 

                            end 

                            % df/dvx 

                            if (vx == 1) 

                                df_dvx = f(x, y, z, 2, vy, vz)/dvx; 

                            else if (vx == len) 

                                df_dvx = 

 -f(x, y, z, len-1, vy, vz)/dvx;     

                        else 

                                df_dvx = 

 (f(x,y,z,vx+1,vy,vz)-f(x,y,z,vx-1,vy,vz))/dvx; 

                            end 

                            % df/dvy 

                            if (vy == 1) 

                                df_dvy = f(x, y, z, vx, 2, vz)/dvy; 

                            else if (vy == len) 

                                df_dvy = 

 -f(x, y, z, vx, len-1, vz)/dvy; 

                            else 

                                df_dvy = 

 (f(x,y,z,vx,vy+1,vz)-f(x,y,z,vx,vy-1,vz))/dvy; 

                            end 

 

                            % df/dvz 

                            if (vz == 1) 

                                df_dvz =  

    f (x,y,z,vx,vy,2)/dvz; 

                            else if (vz == len) 

                                df_dvz =  

-f(x, y, z, vx, vy, len-1)/dvz; 

                            else 

                                df_dvz = 

 (f(x,y,z,vx,vy,vz+1)-f(x,y,z,vx,vy,vz-1))/dvz; 

                            end 

                            % df = 

 (vx df/dx + vy df/dy + vz df/dz + 

 (ex +    vy bz – vz by) df/dvx + (ey + vx bz – vz bx) 

 df/dvy + (ez + vx by – vy bx) df/dvz)*dt 

 % since v is cantered around centre; six is     subtracted from 

all velocities 

 df (x, y,z,vx,vy,vz) = 

 (vx-centre)*df_dx+ (vy-centre)*df_dy+ 

(vz-centre)*df_dz +e_m*((ex+ (vy-centre)*bz- 

(vz-centre)*by)*df_dvx+ (ey+ (vx-centre)*bz- 

(vz-centre)*bx)*df_dvy+ (ez+ (vx-centre)*by- 

(vy-centre)*bx)*df_dvz); 

 end 

 end 

 end 

 end 

 end 

 end 

 f = f+dt*df; 

 figure; 

 subplot (1, 3,1); 
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imshow(mat2gray(f(1:len,1:len,centre,centre,centre,centre))); 

 colormap hot; 

    xlabel ('x'); 

    ylabel ('vx'); 

    title (['PDF at y=0, z=0, vy=0 ,vz=0 and t=' num2str(t)]);     

    subplot (1, 3,2); 

    g = f (centre, centre, 1: len, 1:len,centre,centre); 

    imshow (mat2gray (reshape(g, [len len]))); 

    colormap hot; 

    Xlabel ('y'); 

    Ylabel ('vy'); 

    Title (['PDF at x=0, z=0, vx=0, vz=0 and t=' num2str (t)]);     

    Subplot (1, 3, 3); 

    g = f (centre, centre, centre, centre, 1: len, 1: len); 

    Imshow (mat2gray (reshape (g, [len len]))); 

    Colormap hot; 

    Xlabel ('z'); 

    Ylabel ('vz'); 

    Title (['PDF at x=0, y=0, vx=0, vy=0 and t=' num2str (t)]); 

end 

Toc; 

III. MULTI SPECIES COLLISIONS 

According to hydrodynamic theory of multi species 

diffusion in a gas is governed by given  below equation (10) 

This problem  can be worked for taking collision of similar 

charges , different charges and opposite charges for computing 

collision integral of multi species .E/N ratio can be evaluated to 

predict the outcome of collision for multi species. Here we 

have modeled for multi species collision integral which will 

give much better insight in understanding of transport physics 

of gases, here we assume collision of two species at any time 

because collision of three species is negligible .also as per 

authors knowledge no solutions in this regards have been 

evaluated for simulations of multi species collision term. The 

collision integral [1-4] which is necessary for computing the 

transport properties has been worked upon.  Collision integral 

can be written as sum of contributions of particles interactions 

with long range attractive portion of intermolecular potential 

defined .Here we have modeled for multi species collision 

integral which will give much better insight in understanding of 

transport physics of gases. Here we assume collision of two 

species at any time because collision of three species is 

negligible. Also as per authors knowledge no such solution in 

this regards have been evaluated for simulations of multi 

species collision term. Flick diffusion is an approximate 

method for determining multispecies fluid dynamics .we can 

compare our model, for multispecies with Fick diffusion. 

Diffusion process SNR can be evaluated by Brownian motion.  

After few collisions noise starts to creep and contaminates the 

results. Noise growth is caused when particles frequency tends 

to infinity as well as to zero. Molecules process is determined 

by evaluating cross section evaluation. In our approach we 

have evaluated collision integral taking two different charge 

particles and only binary collisions are considered .The 

approach can be extended for computing collision integral 

taking different particles into account and summed to evaluate 

resultant multi species collision integral. For the sake of 

simplicity no secondary electro emission from the walls is 

considered. Various parameters i.e. time, ion current, pressure, 

temperature, number of particles, field, energy distribution 

function, current, mean free path, E/N ratio, collision cross 

section of ion and gas molecules can be worked. Solving 

Boltzmann transport equation governing    drift and diffusion of 

the particles rate of the arrival, time, spectrum etc can be 

predicted .Ionic flux density is given by Flick’s law. Study of 

collision between electron .Collision kernels can be useful tool 

for carrying simulations. Relaxation time approximation (RTA) 

is simplification to BTE Integral .We can determine friction 

and diffusion coefficients that that are due to collisions.  Here 

friction term represents drag or slowdown of particles due to 

collision and diffusion term producing a spreading of 

distribution function.  

fi (t,  , )  ,where i = 1, 2, 3, 4…………N 

m i = Mass 

ei    = Charge 

Distribution function and derivation of collision integral  of  

multi species taking  non-reactive pairs into consideration has 

been worked  and can be written as follows: 

 + (v, r) fi +  (E + ) v. fi =  

 ij         

i species colliding with j species and evaluating collision 

integral as below : 

I ij  

 ( - fi   (t, , ) . fj  (t, , )  +  f i  (t, , ). fj (t, , vi ). 

ij (v, vi , v’, v’i ) 
3vi                             (9) 

 

5.    Coupled  EM Transport 

Flow of EM transport  through plasma can be modelled as 

follows: 

 + (v, r) f +  (E + ) v. f   

 =      (10) 

Equation (9) presents multi species domain and equation 
(10) gives coupled concepts. Electromagnetic field E,B has 
been coupled with f (x, v ,t) through Maxwell’s system. As the 
upper part of the atmosphere consists shells of electrons and 
electrically charged atoms and molecules that surround earth 
from 50 K ms to 1000kms. Plasma contain ionized layer known 
ionosphere. Positive and negative ions are attracted because of 
EM force Positive and negative ions are attracted because of 
EM Force We can derive many other parameters like current 
density, flux, collision integral etc.  Collision integral provides 
us rate of change of PDF. Coupled system can provide us 
solution without making approximations. Collision integral can 
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provide us contribution from particles iterations with long 
range communication.  Power spectrum gives electron density 
measurement, ion and electron temp, mass, drift velocity. Flux 
is measurement of intensity of charge. Plasma is a ionized gas . 
It may responds strongly to EM Field. Aplasma is a collection 
of particles some positive charged and some negatively charged 
particles and few neutral. Locally a charge imbalance may 
exist, which may lead to net electric field in that reason. State 
of plasma is characterized by distribution function f(r,v,t) .   
Here we have simulated the above equation (14) by recursive 
method. We have solved for E & B. For solving these values 
we have assumed initial function as Gaussian and then 
evaluated V & A. For solution of A and V values first we need 
to compute the values of J (current density) and ρ (charge 
density). After computing all the above values we need to 
substitute all values obtained thus into the above mentioned 
master equation  or coupled equation for solution  by iterative 
method. For computing coupled solution we can also assume 
Fermi Dirac/ Gaussian as initial function.  

Results of simulations are presented in fig 1,2,3 which 
gives us total insight of precision solution of Boltzmann 
Transport Equation. This type of solution approach have been 
unique of its nature so far as compare to previous one. 

 (  , t)  =  v (  , t) –  (  , t) 

 (  , t) =   X   (  , t) 
Her E and B are electric and magnetic fields 3D simulation 

results have been presented in fig 3. 

V (  , t) =  ∫  d
3
r  

 

 (  , t) =  ∫  d
3
r  

Here A and V are electric and magnetic potentials 
Respectively simulation results are presented 

ρ (  , t)   = - e  d
3
v 

  (  , t)   = - e  d
3
v 

Here ρ and J are charge density and current density  and 
simulation results have depicted in fig 16,17 and fig 18,19 
respectively. We shall evaluate the value of  coupled solution.   

 +   ( , ) f ) 

-   (  +  X , V) 

 f (  ,  , t)   =  

[ ] coll =∫  (v,  )  ( - f  +  

f  + f  f  d
3
V  Sin d  

Taking initial function as f0 (  ,  , t) as Gaussian function. 
We have  evaluated value of  E, B , A , V, J and  ρ. These 
values have been substituted in the coupled equation and 
simulated   results are obtained for coupled equation. 

 
Fig.3(a)  A vs Z  at specific value x, y, t mid points 

 
Fig3(b) A vs X,Y at specific value z, t mid points 

 
 

Fig.3(c )  ρ (  , t) charge density rho vs. Z at specific mid points 

x, y, t. 

 

 
 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 1, No. 6, December 2010 

121 | P a g e  

 

Fig . 3(d) Rho vs X,Y at specific value z , t  mid points 

 
Fig .3( e)  J at specific value x ,y ,t  mid points  w.r.t to Z. 

 
Fig.3(f)  J  vs  X,Y at specific value z, t mid points . 

 

 
Fig( 3g)  V vs Z  at specific value x , y ,t  mid points 

 

 
Fig .3(h) V  vs  X,Y at specific value z, t mid points 

 

 
Fig .3(i) E vs Z at specific value x, y, z mid points 

 

 
Fig.3(j) E vs X,Y  at specific value z,t mid points 

 

 
Fig 3(k) B vs Z at specific value x , y , t  mid points 
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Fig3( l) B vs X,Y at specific value z, t mid points 

 

 
Fig.3(m) PDF vs Vx, Z. 

 

 
Fig.3(n)  PDF  vs Vy, Vz 

 

 

 
Fig.3(o)  PDF vs  Vy, Vz 

 

IV. CONCLUSION 

Investigations for transport parameters have been worked 
by means of modeling of Boltzmann transport equation for 
both linear and nonlinear responses. Collision Integral solution 
for binary and multi species have been realized and simulated. 
General algorithms for 3D transport parameters solution have 
been proposed. 2D transport with and without field have been 
worked.  Multi   species terms have been realized. In addition 
we have proposed an efficient solution to coupled Boltzmann-  
Maxwell’s equations.  

Convergence solution for 2D model have been evaluated.  
Coupled results seems to feature  pulse nature and presented in 
results of coupled solutions. This feature with  controlled pulse 
can be used for fast switching.  

 Modeling of coupled process is  difficult  because of 
involvement of two different physics which require time and 
space analysis. Parameters that control the shape and amplitude 
of the pulse have been modeled and simulated.  

Mismatch of functions having various size of matrix need 
critical computations. Different dimensions due 
interdependency of many parameters need to be resolved 
during code development for 3D analysis in iterative 
simulation. Application of our work can be in chip designing in 
microelectronics, Plasma antenna designs and study of upper 
atmosphere characteristics. 
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