
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

145 | P a g e

http://ijacsa.thesai.org/

 Software Effort Prediction using Statistical and

Machine Learning Methods

 Ruchika Malhotra

Department of Software Engineering,

Delhi Technological University

Bawana, Delhi 110042

ruchikamalhotra2004@yahoo.com

Ankita Jain

Department of Computer Engineering,

Delhi Technological University

Bawana, Delhi 110042

ankita4813@yahoo.com

Abstract - Accurate software effort estimation is an important

part of software process. Effort is measured in terms of person

months and duration. Both overestimation and underestimation

of software effort may lead to risky consequences. Also,

software project managers have to make estimates of how much

a software development is going to cost. The dominant cost for

any software is the cost of calculating effort. Thus, effort

estimation is very crucial and there is always a need to improve

its accuracy as much as possible. There are various effort

estimation models, but it is difficult to determine which model

gives more accurate estimation on which dataset. This paper

empirically evaluates and compares the potential of Linear

Regression, Artificial Neural Network, Decision Tree, Support

Vector Machine and Bagging on software project dataset. The

dataset is obtained from 499 projects. The results show that

Mean Magnitude Relative error of decision tree method is only

17.06%. Thus, the performance of decision tree method is better

than all the other compared methods.

Keywords— Software effort estimation, machine learning,

decision tree, linear regression

I. INTRODUCTION

For any software organization, accurate estimation of
effort is crucial for successful management and control of
software project. In other words, in any software effort
estimation, making an estimate of the person-months and the
duration required to complete the project, is very important.
Software effort estimation also plays very important role in
determining cost of the software. Thus, effort estimation is
crucial for the quality of the software.

Software Effort estimation techniques fall under
following categories: Expert judgment, Algorithmic
estimation, Machine Learning, Empirical techniques,
Regression techniques, and Theory-based techniques. It is
difficult to determine which model gives more accurate result
on which dataset. Thus, there is a need for predicting effort
and making a comparative analysis of various machine
learning methods.

In this paper, we have done empirical study and
comparison of some of the models on well-known China
dataset [21]. The models which we are dealing with are
developed using statistical and machine learning methods in
order to verify which model performs the best. Linear
Regression, Artificial Neural Network, Support Vector
machine, Decision Tree, and bagging are the methods which
are used in this work. These methods have seen an explosion

of interest over years and hence it is important to analyse the
performance of these methods. We have analysed these
methods on large datasets collected from 499 projects.

The paper is organized as follows: Section 2 summarizes
the related work. Section 3 explains the research background,
i.e. describes the dataset used for the prediction of effort and
also explains various performance evaluation measures.
Section 4 presents the research methodology followed in this
paper. The results of the models predicted for software
development effort estimation and the comparative analysis
are given in section 5. Finally, the paper is concluded in
section 6.

II. RELATED WORK

Software effort estimation is a key consideration to
software cost estimation [5]. There are numerous Software
Effort Estimation Methods such as Algorithmic effort
estimation, machine learning, empirical techniques,
regression techniques and theory based techniques. Various
models have been discussed in previous researches. An
important task in software project management is to
understand and control critical variables that influence
software effort [5]. The paper by K.Smith, et.al. [17] has
discussed the influence of four task assignment factors, team
size, concurrency, intensity, and fragmentation on the
software effort. These four task assignment factors are not
taken into consideration by COCOMO I and COCOMO II in
predicting software development effort. The paper [17] has
proposed the Augmented and Parsimonious models which
consider the task assignment factors to calculate effort and
thus has proved that estimates are improved significantly by
adding these factors while determining effort. Besides these
task assignment factors which influence the effort estimation,
the paper by Girish H. Subramanian, et.al.[5] ,concluded that
the adjustment variables i.e. software complexity, computer
platform, and program type have a significant effect on
software effort. COCOMO I, COCOMO II, Function Points
[1] and its various extensions all use adjustment variables,
such as software complexity and reliability among others, to
arrive at an adjusted estimate of software effort and cost.
Also there is significant interaction between the adjustment
variables which indicate that these adjustment variables
influence each other and their interactions also have a
significant effect on effort.

Some recent study is also done in the field of ―Analogy
based Estimations‖. Analogy based estimations compare the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

146 | P a g e

http://ijacsa.thesai.org/

similarities between the projects whose effort is to be
estimated with all the historical projects. In other words, it
tries to identify that historical project which is most similar to
the project being estimated. To measure the similarity
between pairs of projects, distance metrics are used.
Euclidean (Jeffery et al., 2000), Manhattan (Emam et al.,
2001) and Minkowski distances (Stamelos et al., 2003) are
the widely used distance metrics in analogy-based
estimations, [14]. Various researches have been done to
improve the estimation accuracy in analogy – based
estimations. The author Chiu, et.al. [14], proposed an
adjusted analogy-based software effort estimation model by
adopting the GA method to adjust the effort based on the
similarity distances. In other words, the effort of the closest
project is not used directly, but it is adjusted to improve the
accuracy. Another method of improving the estimation
accuracy is proposed by Tosun, et.al [3]. In the traditional
formula for Euclidean distance, the features are either
unweighted or same weight is assigned to each of the features.
The problem in the unweighted case is that importance of
each feature is not taken into account. In the paper [3], the
authors have proposed a novel method for assigning weights
to features by taking their particular importance on cost into
consideration. Two weight assignment heuristics are
implemented which are inspired by a widely used statistical
technique called PCA.

A lot of research has also been done in Machine learning
techniques of estimation. The paper by Finnie and Wittig [7],
has examined the potential of two artificial intelligence
approaches i.e. artificial neural networks (ANN) and case-
based reasoning (CBR) for creating development effort
estimation models using the same dataset which is ASMA
(Australian Software Metrics Association). Also, the
potential of artificial neural networks (ANN) and case-based
reasoning (CBR), for providing the basis for development
effort estimation models in contrast to regression models is
examined by the same authors in their paper [6]. The authors
concluded that artificial intelligence models are capable of
providing adequate estimation models. Their performance is
to a large degree dependent on the data on which they are
trained, and the extent to which suitable project data is
available will determine the extent to which adequate effort
estimation models can be developed. CBR allows the
development of a dynamic case base with new project data
being automatically incorporated into the case base as it
becomes available while ANNs will require retraining to
incorporate new data.

Besides ANN and CBR, other important machine
learning techniques is CART (Classification and regression
trees). Recently, MART (Multiple additive regression trees)
has been proposed that extends and improves the CART
model using stochastic gradient model. The paper by Elish
[12] empirically evaluates the potential and accuracy of
MART as a novel software effort estimation model when
compared with recently published models, i.e. radial basis
function (RBF) neural networks , linear regression , and
support vector regression models with linear and RBF
kernels. The comparison is based on a well-known and
respected NASA software project dataset. The paper [2] has
compared the results of Support vector regression with both
linear regression and RBF kernels.

Genetic Algorithms are also widely used for accurate
effort estimation. The paper by Burgess and Lefley [4],
evaluates the potential of genetic programming (GP) in
software effort estimation and comparison is made with the
Linear LSR, ANN etc. The comparison is made on the
Desharnais data set of 81 software projects. The results
obtained depend on the fitness function used.

As we have seen, software repositories or datasets are
widely used to obtain data on which effort estimation is done.
But software repositories contain data from heterogeneous
projects. Traditional application of regression equations to
derive a single mathematical model results in poor
performance [8]. The paper by Gallogo [8] has used Data
clustering to solve this problem.

In this research, the models are predicted and validated
using both statistical and machine learning methods. The
comparative analysis with previous researches has also been
done. The results showed that the Decision Tree was the best
among all the other models used with MMRE of 17 %.

III. RESEARCH BACKGROUND

A. Feature Sub Selection Method

The data we have used is obtained from Promise data
repository. The dataset comprises of 19 features, one
dependent and eighteen independent variables. But, some of
the independent variables are removed as they are not much
important to predict the effort, thus making the model much
simpler and efficient. There are various techniques used for
reducing data dimensionality. We have used Feature sub
selection technique which is provided in the WEKA tool [21]
to reduce the number of independent variables. After
applying Correlation Based Feature Subselection (CFS), the
19 variables were reduced to 10 variables (one dependent and
nine independent variables). Correlation based feature
selection technique (CFS) is applied to select to select the
best predictors out of independent variables in the datasets
[11], [18]. The best combinations of independent variable
were searched through all possible combinations of variables.
CFS evaluates the best of a subset of variables by considering
the individual predictive ability of each feature along with
the degree of redundancy between them. The dependent
variable is Effort. Software development effort is defined as
the work carried out by the software supplier from
specification until delivery measured in terms of hours [18].

The independent variables are Output, Enquiry, Interface,
Added, PDR_AFP, PDR_UFP, NPDR_AFP, NPDU_UFP
and Resource. All the independent variables correspond to
function point method [1].

B. Empirical Data Collection

The dataset which we have used consists of 19 drivers of
effort for predicting effort estimation model. The descriptive
statistics of nine independent variables chosen by CFS
method is shown in table 1. The mean value of the effort
(dependent variable) is found to be 3921.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

147 | P a g e

http://ijacsa.thesai.org/

TABLE I. DATASET STATISTICS

Variables Mean Min. Max. Median Standard

Deviation

Output 114 0 2455 42 221

Enquiry 62 0 952 24 105

Interface 24 0 1572 0 85

Added 360 0 1358 135 829

PDR_AFP 12 0.3 83.8 8.1 12

PDR_UFP 12 0.3 96.6 8 13

NPDR_AFP 13 0.4 101 8.8 14

NPDR_UFP 14 0.4 108.3 8.9 15

Resource 1 1 4 1 1

Effort 3921 26 50620 1829 6474

C. Performance Measures

We have used the following evaluation criterion to
evaluate the estimate capability. Among all the mentioned
measures, the most commonly used are PRED(A) and
MMRE. Hence, we will use these two measures to compare
our results with the results of the previous researches.

1. Mean Magnitude of relative error (MMRE) (or mean

absolute relative error) [9], [6]

∑

(1)

Where Pi is the predicted value for datapoint i;

 Ai is the actual value for datapoint i;

 n is the total number of datapoints

2. PRED(A)

It is calculated from the relative error. It is defined as the
ratio of datapoints with error (MRE) less than equal to A to
the total number of datapoints. Thus, higher the value of
PRED(A), the better it is considered.

PRED (A) = d/n (2)

Where d is the value of MRE where datapoints have less
than or equal to A error .Commonly used value of A is 25%
in the literature.

3. Root Mean Squared Error (RMSE)

The root mean squared error is defined as:

 √

∑

 (3)

Where Pi is the predicted value for datapoint i;

 Ai is the actual value for datapoint i;

 n is the total number of datapoints

If Pi =Ai , i = 1,2, …, n; then E=0 (ideal case)

Thus, range of E is from 0 to infinity. RMSE gives high
importance to large errors because the errors are squared
before they are averaged. Thus, RMSE is used the most when
large errors are undesirable.

4. Relative absolute Error (RAE)

The relative absolute error of individual dataset j is defined

as:

∑ | |

∑

 (4)

Where Pij is the value predicted by the individual dataset j

for datapoint i;

 Ai is the actual value for datapoint ;

 n is the total number of datapoints;

 Am is the mean of all Ai

For ideal case, the numerator is equal to 0 and Ej = 0. Thus,

the Ej ranges from 0 to infinity.

5. Root Relative Squared Error

The root relative squared error of individual dataset j is
defined as:

 √
∑

∑

 (5)

Where Pij is the value predicted by the individual dataset j

for datapoint i;

 Ai is the actual value for datapoint i;

 n is the total number of datapoints;

 Am is the mean of all Ai
For ideal case, the numerator is equal to 0 and Ej = 0.

Thus, the Ej ranges from 0 to infinity.

6. Mean Absolute error

The mean absolute error measures of how far the
estimates are from actual values. It could be applied to any
two pairs of numbers, where one set is "actual" and the other
is an estimate, prediction.

7. Correlation Coefficient

Correlation measures of the strength of a relationship
between two variables. The strength of the relationship is
indicated by the correlation coefficient. The larger the value
of correlation coefficient, the stronger the relationship.

D. Validation Measures

There are three validation techniques namely hold-out,
leave-one-out and K-cross validation [13]. As our dataset is
large consists of 499 data points, the hold out method is used
where the dataset is divided into two parts, i.e. the training
and validation set.

IV. RESEARCH METHODOLOGY

In this paper, we are using the machine learning
techniques in order to predict effort. We have used one
regression and four machine learning methods in order to
predict effort. Support vector machines, Artificial Neural

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

148 | P a g e

http://ijacsa.thesai.org/

Network, Decision tree and Bagging methods have seen an
explosion of interest over the years, and have successfully
been applied in various areas.

A. Linear Regression

Linear regression analyses the relationship between two
variables, X and Y. One variable is the dependent variable
and the other is the independent variable. For doing this, it
finds a line which minimizes the sum of the squares of the
vertical distances of the points from the line. In other words,
it is method of estimating the conditional expected value of
one variable y given the values of some other variable or
variables x.

B. Support Vector Machine

Support Vector Machine (SVM) is a learning technique
which is used for classifying unseen data correctly. For doing
this, SVM builds a hyperplane which separates the data into
different categories. The dataset may or may not be linearly
separable. By ‗linearly separable‘ we mean that the cases can
be completely separated i.e. the cases with one category are
on the one side of the hyperplane and the cases with the other
category are on the other side. For example Figure 1 shows
the dataset where examples belong to two different categories
– triangles and squares. Since these points are represented on
a 2 – dimensional plane, they can be separated by a 1-
dimensional line. To separate these points into 2 different
categories, there is infinite number of lines possible. Two
possible candidate lines are shown in the figure 1. However,
only one of the lines gives maximum separation/margin and
that line is selected.‗Margin‘ is defined as distance between
the dashed lines (as shown in figure) drawn parallel to the
separating lines. These dashed lines give the distance
between the separating line and closest vectors to the line.
These vectors are called as support vectors. SVM can also be
extended to the non-linear boundaries using kernel trick. The
kernel function transforms the data into higher dimensional
space to make the separation easy. We have used SVM for
estimating continuous variable, i.e. effort. [19].

Figure 1. S

VM

C. Artificial Neural network

Artificial Neural Network (ANN) comprises a network of
simple interconnected units called ―neurons‖ or ―processing
units‖. The ANN has three layers, i.e. the input layer, hidden
layer and the output layer. The first layer has input neurons
which send data via connections called weights to the second
layer of neurons and then again via more weight to the third
layer of output neurons. More complex systems have more
than one hidden layers. But it has been proved in literature
that more than one hidden layer may not be acceptable [20].

The most common algorithm for training or learning is
known as error back –propagation algorithm.

Error back-propagation learning consists of two passes: a
forward pass and a backward pass. In the forward pass, an
input is presented to the neural network, and its effect is
propagated through the network layer by layer. During the
forward pass the weights of the network are all fixed. During
the backward pass the weights are all updated and adjusted
according to the error computed.. An error is composed from
the difference between the desired response and the system
output. This error information is fed back to the system and
adjusts the system parameters in a systematic fashion (the
learning rule). The process is repeated until the performance
is acceptable. The model predicted in this study consists of 9
input layers (independent variables chosen in our study) and
one output layer.

D. Decision Tree

Decision tree is a methodology used for classification and
regression. It provides a modelling technique that is easy for
human to comprehend and simplifies the classification
process. Its advantage lies in the fact that it is easy to
understand; also, it can be used to predict patterns with
missing values and categorical attributes. Decision tree
algorithm is a data mining induction techniques that
recursively partitions a data set of records using depth-first
greedy approach or breadth-first approach until all the data
items belong to a particular class.

A decision tree structure is made of (root, internal and
leaf) nodes and the arcs. The tree structure is used in
classifying unknown data records. At each internal node of
the tree, a decision of best split is made using impurity
measures. We have used M5P implemented in WEKA Tool
[21]. This method generated M5 model rules and trees. The
details of this method can be found in [16].

E. Bagging

 Bagging which is also known as bootstrap
aggregating is a technique that repeatedly samples (with
replacement) from a data set according to a uniform
probability distribution [10]. Each bootstrap sample has the
same size as the original data. Because the sampling is done
with replacement, some instances may appear several times
in the same training set, while others may be omitted from
the training set. On average, a bootstrap sample Di contains
approximately 63% of the original training data because each
sample has a probability 1- (1- 1/N)N of being selected in
each Di. If N is sufficiently large, this probability converges
to 1-1/e = 0.632. After training the k classifiers, a test
instance is assigned to the class that receives the highest
number of votes.

V. ANALYSIS RESULTS

A. Model Prediction Results
China Dataset [15] was used to carry out the prediction of

effort estimation model. A holdout technique of cross
validation was used to estimate the accuracy of effort
estimation model. The dataset was divided into two parts i.e.
training and validation set in ratio of 7:3. Thus 70% was used
for training the model and 30% was used for validating
accuracy of the model. Four machine learning methods and
one regression method was used to analyse the results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

149 | P a g e

http://ijacsa.thesai.org/

The model with the lower MMRE, RMSE, RAE, RRSE,
MAE and the higher correlation coefficient and PRED(25) is
considered to be the best among others. As shown in table,
the decision tree results are found to be best with the MMRE
value 17.06%,RAE value 32.02, RRSE value
38.40 ,correlation coefficient 0.93 , and PRED(25) value

52%. Hence decision tree method is found to be effective in
predicting effort. Also, the results of decision tree are
competent with the traditional linear regression model.

TABLE II. OUR RESULTS

Performance Measures

Linear

regression

Support

Vector

Machine

Artificial

Neural

Network

Decision

tree

Bagging

Mean Magnitude Relative Error (MMRE) % 17.97 25.63 143.79 17.06 74.23

Root mean squared error (RMSE) % 4008.11 3726.71 5501.18 2390.47 3656.75

Relative absolute error

(RAE) %

54.16 48.49 71.50 32.02 45.79

Root relative squared error (RRSE) % 64.74 60.13 91.17 38.40 59.11

Correlation coefficient 0.79 0.81 0.75 0.93 0.83

Mean absolute error

(MAE) %

1981.48 1774.36 2561.00 1173.43 1668.03

PRED(25) % 36 38.66 11.33 52 34.66

The graphs as shown in figures 2-6, for the actual and the
values as predicted by the particular model are shown on Y-
axis and they correspond to the 499 projects.. The ‗black‘
curve presents the curve for the actual values, whereas the

‗red‘ curve presents the curve for the predicted values. The
closer the actual and predicted curves, the lesser are the error
and better are the model. The graphs show that the actual and
the predicted values are very close to each other. As shown in
figure 5, the decision tree shows the best result.

Figure 2. Results Using Linear Regression

Figure 3. Results Using Support Vector Machine

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

150 | P a g e

http://ijacsa.thesai.org/

Figure 4. Results Using Artificial Neural Network

Figure 5. Results Using Decision Tree

Figure 6. Results Using Bagging

B. Comparative analysis with previous studies

Our results of effort estimation model predicted using

decision tree method were better than all the other four

methods used in our study. We have compared our results

with eight other previous studies. The previous studies under

comparison have same dependent variable, although the

independent variables vary for each study. As shown in table

3, out of 24 models of literature, our decision tree model has

outperformed the MMRE values of 21 models. The results of

PRED(25) are also very good and higher as compared to

most of the models. Thus, our effort estimation model using

decision tree method is widely acceptable.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

151 | P a g e

http://ijacsa.thesai.org/

TABLE III. COMPARISON ANALYSIS

Papers

Methods Used

Pred(25)

MMRE

Our

Results

Decision Tree

52

17.06

Bagging 34.66 74.23

Linear Regression 36 17.97

SVM 38.66 25.63

ANN 11.33 143.79

[14]

ANN

22

90

Classification And Regression Trees 26 77

Ordinary Least Square Regression 33 72

Adjusted analogy-based estimation using Euclidean distance 57 38

Adjusted analogy-based estimation using Manhattan distance 52 36

Adjusted analogy-based estimation using Minkowski distance 61 43

[17]

Augmented COCOMO

Pred(20)31.67

65

Parsimonious COCOMO 30.4 64

[8]

Clustering

Pred(30) 35.6

1.03

[6]

Regressive

-

62.3

ANN - 35.2

Case Based Reasoning - 36.2

[12]

Multiple Additive Regression Trees

88.89

8.97

Radial Basis Function 72.22 19.07

SVR Linear 88.89 17.4

SVR RBF 83.33 17.8

Linear Regression 72.22 23.3

[4]

Genetic Programming

23.5

44.55

ANN 56 60.63

[7]

ANN

-

17

Case Based Reasoning - 48.2

[21]

SVR

88.89

16.5

Linear Regression 72.22 23.3

Radial Basis Function 72.22 19.07

VI. CONCLUSION

In this research we have made a comparative analysis of
one regression with four machine learning methods for
predicting effort. We have obtained results using the data
obtained from Promise data repository. The dataset consists
of 19 features which we have reduced to 10 features using
CFS method. The results show that the decision tree was the
best method for predicting effort with MMRE value 17% and
PRED(25) value 52%. The software practitioners and
researchers may apply decision tree method for effort
estimation. Hence, machine learning methods selected in this
study have shown their ability to provide an adequate model
for predicting maintenance effort.

The future work can further replicate this study for
industrial software. We plan to replicate our study to predict
effort prediction models based on other machine learning
algorithms such as genetic algorithms. We may carry out cost
benefit analysis of models that will help to determine
whether a given effort prediction model would be
economically viable.

REFERENCES

[1] A. Albert and J.E. Gaffney, ―Software Function Source Lines of Code

and Development Effort Prediction: A Software Science Validation,‖

IEEE Trans. Software Engineering, vol. 9, pp. 639-648, 1983.

[2] A.L.I. Oliveira, ― Estimation of software effort with support vector

regression,‖ Neurocomputing, vol. 69, pp. 1749-1753, Aug. 2006.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

152 | P a g e

http://ijacsa.thesai.org/

[3] A.Tosun, B.Turhan and A.B. Bener, ―Feature weighting heuristics for

analogy-based effort estimation models,‖ Expert Systems with

Applications, vol. 36, pp. 10325-10333, 2009.

[4] C.J. Burgess and M.Lefley, ―Can genetic programming improve

software effort estimation? A comparative evaluation,‖ Information

and Software Technology, vol. 43, pp. 863-873, 2001.

[5] G.H. Subramanian , P.C. Pendharkar and M.Wallace, ―An empirical

study of the effect of complexity, platform, and program type on

software development effort of business applications,‖ Empirical

Software Engineering, vol. 11, pp. 541-553, Dec. 2006.

[6] G.R. Finnie and G.E. Wittig, ―A Comparison of Software Effort

Estimation Techniques: Using Function Points with Neural Networks,

Case-Based Reasoning and Regression Models,‖ Journal of Systems

and Software, vol. 39, pp. 281-289, 1997.

[7] G.R.Finnie and G.E. Wittig, ―AI Tools for Software Development

Effort Estimation,‖ in Proc. SEEP '96 , 1996, International Conference

on Software Engineering: Education and Practice (SE:EP '96).

[8] J.J.C Gallego, D.Rodriguez, M.A.Sicilia, M.G.Rubio and A.G. Crespo,

―Software Project Effort Estimation Based on Multiple Parametric

Models Generated Through Data Clustering,‖ Journal of Computer

Science and Technology, vol. 22, pp. 371-378, May 2007.

[9] K. Srinivasan and D. Fisher, ― Machine Learning Approaches to

Estimating Software Development Effort,‖ IEEE Transactions on

Software Engineering, vol. 21, Feb. 1995.

[10] L.Breiman, ―Bagging predictors,‖ Machine Learning, vol. 24, pp. 123-

140, Aug. 1996.

[11] M.Hall, ―Correlation-based feature selection for discrete and numeric

class machine learning,‖ in Proceedings of the 17th International

Conference on Machine Learning, pp.359-366.

[12] M.O. Elish, ―Improved estimation of software project effort using

multiple additive regression trees,‖ Expert Systems with Applications,

vol. 36, pp. 10774-10778, 2009.

[13] M.Stone, ―Cross-validatory choice and assess-ment of statistical

predictions,‖ Journal Royal Stat. Soc., vol. 36, pp. 111-147, 1974.

[14] N.H. Chiu and S.J. Huang, ― The adjusted analogy-based software

effort estimation based on similarity distances,‖ The Journal of

Systems and Software, vol. 80, pp. 628-640, 2007.

[15] Promise. Available: http://promisedata.org/repository/.

[16] R.J. Quinlan, ―Learning with Continuous Classes,‖ in 5th Australian

Joint Conference on Artificial Intelligence, Singapore, pp. 343-348,

1992.

[17] R.K. Smith, J.E.Hale and A.S.Parrish, ―An Empirical Study Using

Task Assignment Patterns to Improve the Accuracy of Software Effort

Estimation,‖ IEEE Transactions on Software Engineering, vol. 27, pp.

264-271, March 2001.

[18] R.Malhotra, A.Kaur and Y.singh, ―Application of Machine Learning

Methods for Software Effort Prediction,‖ in Newsletter ACM

SIGSOFT Software Engineering Notes , vol. 35, May 2010.

[19] S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K. Murthy,

―Improvements to the SMO Algorithm for SVM Regression,‖ IEEE

Transactions on Neural Networks, vol. 13, March 2001.

[20] T.M. Khoshgaftaar, E.D. Allen, J.P. Hudepohl, S.J. Aud, ―Application

of neural networks to software quality modeling of a very large

telecommunications system,‖ IEEE Transactions on Neural Networks,

vol. 8, pp. 902-909, July 1997.

[21] Weka. Available: http://www.cs.waikato.ac.nz/ml/weka/

AUTHORS PROFILE

Ruchika Malhotra She is an assistant professor at the Department of

Software Engineering, Delhi Technological University (formerly Delhi

College of Engineering), Delhi, India, She was an assistant professor at the

University School of Information Technology, Guru Gobind Singh

Indraprastha University, Delhi, India. Prior to joining the school, she worked

as full-time research scholar and received a doctoral research fellowship

from the University School of Information Technology, Guru Gobind Singh

Indraprastha Delhi, India. She received her master‘s and doctorate degree in

software engineering from the University School of Information

Technology, Guru Gobind Singh Indraprastha University, Delhi, India. Her

research interests are in software testing, improving software quality,

statistical and adaptive prediction models, software metrics, neural nets

modeling, and the definition and validation of software metrics. She has

published more for than 40 research papers in international journals and

conferences. Malhotra can be contacted by e-mail at

ruchikamalhotra2004@yahoo.com

Ankita Jain She is at the Department of Computer Engineering, Delhi

Technological University (formerly Delhi College of Engineering), Delhi,

India, She received her bachelor‘s degree in computer engineering from the

Guru Gobind Singh Indraprastha University, Delhi, India. Her research

interests are statistical and adaptive prediction models and improving

software quality. She can be contacted by e-mail at ankita4813@yahoo.com

http://promisedata.org/repository/
http://www.cs.waikato.ac.nz/ml/weka/
mailto:ruchikamalhotra2004@yahoo.com

