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Abstract - Accurate software effort estimation is an important 

part of software process. Effort is measured in terms of person 

months and duration. Both overestimation and underestimation 

of software effort may lead to risky consequences. Also, 

software project managers have to make estimates of how much 

a software development is going to cost. The dominant cost for 

any software is the cost of calculating effort. Thus, effort 

estimation is very crucial and there is always a need to improve 

its accuracy as much as possible. There are various effort 

estimation models, but it is difficult to determine which model 

gives more accurate estimation on which dataset. This paper 

empirically evaluates and compares the potential of Linear 

Regression, Artificial Neural Network, Decision Tree, Support 

Vector Machine and Bagging on software project dataset. The 

dataset is obtained from 499 projects. The results show that 

Mean Magnitude Relative error of decision tree method is only 

17.06%. Thus, the performance of decision tree method is better 

than all the other compared methods. 
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decision tree, linear regression 

I. INTRODUCTION 

For any software organization, accurate estimation of 
effort is crucial for successful management and control of 
software project. In other words, in any software effort 
estimation, making an estimate of the person-months and the 
duration required to complete the project, is very important. 
Software effort estimation also plays very important role in 
determining cost of the software. Thus, effort estimation is 
crucial for the quality of the software. 

Software Effort estimation techniques fall under 
following categories: Expert judgment, Algorithmic 
estimation, Machine Learning, Empirical techniques, 
Regression techniques, and Theory-based techniques. It is 
difficult to determine which model gives more accurate result 
on which dataset. Thus, there is a need for predicting effort 
and making a comparative analysis of various machine 
learning methods.  

In this paper, we have done empirical study and 
comparison of some of the models on well-known China 
dataset [21]. The models which we are dealing with are 
developed using statistical and machine learning methods in 
order to verify which model performs the best. Linear 
Regression, Artificial Neural Network, Support Vector 
machine, Decision Tree, and bagging are the methods which 
are used in this work. These methods have seen an explosion 

of interest over years and hence it is important to analyse the 
performance of these methods. We have analysed these 
methods on large datasets collected from 499 projects. 

The paper is organized as follows: Section 2 summarizes 
the related work. Section 3 explains the research background, 
i.e. describes the dataset used for the prediction of effort and 
also explains various performance evaluation measures. 
Section 4 presents the research methodology followed in this 
paper. The results of the models predicted for software 
development effort estimation and the comparative analysis 
are given in section 5. Finally, the paper is concluded in 
section 6. 

II. RELATED WORK 

Software effort estimation is a key consideration to 
software cost estimation [5]. There are numerous Software 
Effort Estimation Methods such as Algorithmic effort 
estimation, machine learning, empirical techniques, 
regression techniques and theory based techniques. Various 
models have been discussed in previous researches.  An 
important task in software project management is to 
understand and control critical variables that influence 
software effort [5]. The paper by K.Smith, et.al. [17] has 
discussed the influence of four task assignment factors, team 
size, concurrency, intensity, and fragmentation on the 
software effort. These four task assignment factors are not 
taken into consideration by COCOMO I and COCOMO II in 
predicting software development effort. The paper [17] has 
proposed the Augmented and Parsimonious models which 
consider the task assignment factors to calculate effort and 
thus has proved that estimates are improved significantly by 
adding these factors while determining effort. Besides these 
task assignment factors which influence the effort estimation, 
the paper by Girish H. Subramanian, et.al.[5] ,concluded that 
the adjustment variables i.e. software complexity, computer 
platform, and program type have a significant effect on 
software effort. COCOMO I, COCOMO II, Function Points 
[1] and its various extensions all use adjustment variables, 
such as software complexity and reliability among others, to 
arrive at an adjusted estimate of software effort and cost. 
Also there is significant interaction between the adjustment 
variables which indicate that these adjustment variables 
influence each other and their interactions also have a 
significant effect on effort. 

Some recent study is also done in the field of ―Analogy 
based Estimations‖. Analogy based estimations compare the 
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similarities between the projects whose effort is to be 
estimated with all the historical projects. In other words, it 
tries to identify that historical project which is most similar to 
the project being estimated. To measure the similarity 
between pairs of projects, distance metrics are used. 
Euclidean (Jeffery et al., 2000), Manhattan (Emam et al., 
2001) and Minkowski distances (Stamelos et al., 2003) are 
the widely used distance metrics in analogy-based 
estimations, [14]. Various researches have been done to 
improve the estimation accuracy in analogy – based 
estimations. The author Chiu, et.al. [14], proposed an 
adjusted analogy-based software effort estimation model by 
adopting the GA method to adjust the effort based on the 
similarity distances. In other words, the effort of the closest 
project is not used directly, but it is adjusted to improve the 
accuracy. Another method of improving the estimation 
accuracy is proposed by Tosun, et.al [3]. In the traditional 
formula for Euclidean distance, the features are either 
unweighted or same weight is assigned to each of the features. 
The problem in the unweighted case is that importance of 
each feature is not taken into account.  In the paper [3], the 
authors have proposed a novel method for assigning weights 
to features by taking their particular importance on cost into 
consideration. Two weight assignment heuristics are 
implemented which are inspired by a widely used statistical 
technique called PCA. 

A lot of research has also been done in Machine learning 
techniques of estimation. The paper by Finnie and Wittig [7], 
has examined the potential of two artificial intelligence 
approaches i.e. artificial neural networks (ANN) and case-
based reasoning (CBR) for creating development effort 
estimation models using the same dataset which is ASMA 
(Australian Software Metrics Association). Also, the 
potential of artificial neural networks (ANN) and case-based 
reasoning (CBR), for providing the basis for development 
effort estimation models in contrast to regression models is 
examined by the same authors in their paper [6]. The authors 
concluded that artificial intelligence models are capable of 
providing adequate estimation models. Their performance is 
to a large degree dependent on the data on which they are 
trained, and the extent to which suitable project data is 
available will determine the extent to which adequate effort 
estimation models can be developed. CBR allows the 
development of a dynamic case base with new project data 
being automatically incorporated into the case base as it 
becomes available while ANNs will require retraining to 
incorporate new data. 

Besides ANN and CBR, other important machine 
learning techniques is CART (Classification and regression 
trees).  Recently, MART (Multiple additive regression trees) 
has been proposed that extends and improves the CART 
model using stochastic gradient model. The paper by Elish 
[12] empirically evaluates the potential and accuracy of 
MART as a novel  software effort estimation model when 
compared with recently published models, i.e. radial basis 
function (RBF) neural networks , linear regression , and 
support vector regression models with linear and RBF 
kernels. The comparison is based on a well-known and 
respected NASA software project dataset. The paper [2] has 
compared the results of Support vector regression with both 
linear regression and RBF kernels. 

Genetic Algorithms are also widely used for accurate 
effort estimation. The paper by Burgess and Lefley [4], 
evaluates the potential of genetic programming (GP) in 
software effort estimation and comparison is made with the 
Linear LSR, ANN etc. The comparison is made on the 
Desharnais data set of 81 software projects. The results 
obtained depend on the fitness function used. 

As we have seen, software repositories or datasets are 
widely used to obtain data on which effort estimation is done. 
But software repositories contain data from heterogeneous 
projects. Traditional application of regression equations to 
derive a single mathematical model results in poor 
performance [8]. The paper by Gallogo [8] has used Data 
clustering to solve this problem. 

In this research, the models are predicted and validated 
using both statistical and machine learning methods. The 
comparative analysis with previous researches has also been 
done. The results showed that the Decision Tree was the best 
among all the other models used with MMRE of 17 %.  

III. RESEARCH BACKGROUND 

A. Feature Sub Selection Method 

The data we have used is obtained from Promise data 
repository. The dataset comprises of 19 features, one 
dependent and eighteen independent variables. But, some of 
the independent variables are removed as they are not much 
important to predict the effort, thus making the model much 
simpler and efficient. There are various techniques used for 
reducing data dimensionality. We have used Feature sub 
selection technique which is provided in the WEKA tool [21] 
to reduce the number of independent variables.  After 
applying Correlation Based Feature Subselection (CFS), the 
19 variables were reduced to 10 variables (one dependent and 
nine independent variables).  Correlation based feature 
selection technique (CFS) is applied to select to select the 
best predictors out of independent variables in the datasets 
[11], [18]. The best combinations of independent variable 
were searched through all possible combinations of variables. 
CFS evaluates the best of a subset of variables by considering 
the individual predictive ability of each feature along with 
the degree of redundancy between them. The dependent 
variable is Effort. Software development effort is defined as 
the work carried out by the software supplier from 
specification until delivery measured in terms of hours [18].  

The independent variables are Output, Enquiry, Interface, 
Added, PDR_AFP, PDR_UFP, NPDR_AFP, NPDU_UFP 
and Resource. All the independent variables correspond to 
function point method [1].  

B. Empirical Data Collection 

The dataset which we have used consists of 19 drivers of 
effort for predicting effort estimation model. The descriptive 
statistics of nine independent variables chosen by CFS 
method is shown in table 1. The mean value of the effort 
(dependent variable) is found to be 3921. 
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TABLE I.  DATASET STATISTICS 

Variables Mean Min. Max. Median Standard 

Deviation 

Output 114 0 2455 42 221 

Enquiry 62 0 952 24 105 

Interface 24 0 1572 0 85 

Added 360 0 1358 135 829 

PDR_AFP 12 0.3 83.8 8.1 12 

PDR_UFP 12 0.3 96.6 8 13 

NPDR_AFP 13 0.4 101 8.8 14 

NPDR_UFP 14 0.4 108.3 8.9 15 

Resource 1 1 4 1 1 

Effort 3921 26 50620 1829 6474 

C. Performance Measures 

We have used the following evaluation criterion to 
evaluate the estimate capability. Among all the mentioned 
measures, the most commonly used are PRED(A) and 
MMRE. Hence, we will use these two measures to compare 
our results with the results of the previous researches. 

1. Mean Magnitude of relative error (MMRE) (or mean 

absolute relative error) [9], [6]  
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Where Pi is the predicted value for datapoint i; 

           Ai is the actual value for datapoint i; 

           n is the total number of datapoints 

 

2. PRED(A)  

It is calculated from the relative error. It is defined as the 
ratio of datapoints with error (MRE) less than equal to A to 
the total number of datapoints. Thus, higher the value of 
PRED(A), the better it is considered. 

 

PRED (A) = d/n               (2) 

Where d is the value of MRE where datapoints have less 
than or equal to A error .Commonly used value of A is 25% 
in the literature.   

3. Root Mean Squared Error (RMSE) 

The root mean squared error is defined as:  
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Where Pi is the predicted value for datapoint i; 

            Ai is the actual value for datapoint i; 

             n is the total number of datapoints 

If Pi =Ai ,    i = 1,2, …, n; then E=0 (ideal case) 

Thus, range of E is from 0 to infinity. RMSE gives high 
importance to large errors because the errors are squared 
before they are averaged. Thus, RMSE is used the most when 
large errors are undesirable. 

4. Relative absolute Error (RAE) 

The relative absolute error of individual dataset j is defined 

as: 
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Where Pij is the value predicted by the individual dataset j   

for datapoint i; 

           Ai is the actual value for datapoint ; 

           n is the total number of datapoints; 

           Am is the mean of all Ai 

For ideal case, the numerator is equal to 0 and Ej = 0. Thus, 

the Ej ranges from 0 to infinity. 

 

5. Root Relative Squared Error 

The root relative squared error of individual dataset j is 
defined as: 
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Where Pij is the value predicted by the individual dataset j 

for datapoint i; 

           Ai is the actual value for datapoint i; 

           n is the total number of datapoints; 

           Am is the mean of all Ai 
For ideal case, the numerator is equal to 0 and Ej = 0. 

Thus, the Ej ranges from 0 to infinity. 

6. Mean Absolute error 

The mean absolute error measures of how far the 
estimates are from actual values. It could be applied to any 
two pairs of numbers, where one set is "actual" and the other 
is an estimate, prediction. 

7. Correlation Coefficient 

Correlation measures of the strength of a relationship 
between two variables. The strength of the relationship is 
indicated by the correlation coefficient. The larger the value 
of correlation coefficient, the stronger the relationship. 

D. Validation Measures 

There are three validation techniques namely hold-out, 
leave-one-out and K-cross validation [13]. As our dataset is 
large consists of 499 data points, the hold out method is used 
where the dataset is divided into two parts, i.e. the training 
and validation set.  

IV. RESEARCH METHODOLOGY 

In this paper, we are using the machine learning 
techniques in order to predict effort. We have used one 
regression and four machine learning methods in order to 
predict effort. Support vector machines, Artificial Neural 
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Network, Decision tree and Bagging methods have seen an 
explosion of interest over the years, and have successfully 
been applied in various areas. 

A. Linear Regression 

Linear regression analyses the relationship between two 
variables, X and Y. One variable is the dependent variable 
and the other is the independent variable. For doing this, it 
finds a line which minimizes the sum of the squares of the 
vertical distances of the points from the line. In other words, 
it is method of estimating the conditional expected value of 
one variable y given the values of some other variable or 
variables x. 

B. Support Vector Machine 

Support Vector Machine (SVM) is a learning technique 
which is used for classifying unseen data correctly. For doing 
this, SVM builds a hyperplane which separates the data into 
different categories. The dataset may or may not be linearly 
separable. By ‗linearly separable‘ we mean that the cases can 
be completely separated i.e. the cases with one category are 
on the one side of the hyperplane and the cases with the other 
category are on the other side. For example Figure 1 shows 
the dataset where examples belong to two different categories 
– triangles and squares. Since these points are represented on 
a 2 – dimensional plane, they can be separated by a 1-
dimensional line. To separate these points into 2 different 
categories, there is infinite number of lines possible. Two 
possible candidate lines are shown in the figure 1. However, 
only one of the lines gives maximum separation/margin and 
that line is selected.‗Margin‘ is defined as distance between 
the dashed lines (as shown in figure) drawn parallel to the 
separating lines. These dashed lines give the distance 
between the separating line and closest vectors to the line. 
These vectors are called as support vectors. SVM can also be 
extended to the non-linear boundaries using kernel trick. The 
kernel function transforms the data into higher dimensional 
space to make the separation easy. We have used SVM for 
estimating continuous variable, i.e. effort. [19]. 

Figure 1.  S

VM  

 

C. Artificial Neural network 

Artificial Neural Network (ANN) comprises a network of 
simple interconnected units called ―neurons‖ or ―processing 
units‖. The ANN has three layers, i.e. the input layer, hidden 
layer and the output layer. The first layer has input neurons 
which send data via connections called weights to the second 
layer of neurons and then again via more weight to the third 
layer of output neurons. More complex systems have more 
than one hidden layers. But it has been proved in literature 
that more than one hidden layer may not be acceptable [20]. 

The most common algorithm for training or learning is 
known as error back –propagation algorithm. 

Error back-propagation learning consists of two passes: a 
forward pass and a backward pass. In the forward pass, an 
input is presented to the neural network, and its effect is 
propagated through the network layer by layer. During the 
forward pass the weights of the network are all fixed. During 
the backward pass the weights are all updated and adjusted 
according to the error computed..  An error is composed from 
the difference between the desired response and the system 
output. This error information is fed back to the system and 
adjusts the system parameters in a systematic fashion (the 
learning rule). The process is repeated until the performance 
is acceptable. The model predicted in this study consists of 9 
input layers (independent variables chosen in our study) and 
one output layer.   

D. Decision Tree 

Decision tree is a methodology used for classification and 
regression. It provides a modelling technique that is easy for 
human to comprehend and simplifies the classification 
process. Its advantage lies in the fact that it is easy to 
understand; also, it can be used to predict patterns with 
missing values and categorical attributes. Decision tree 
algorithm is a data mining induction techniques that 
recursively partitions a data set of records using depth-first 
greedy approach or breadth-first approach until all the data 
items belong to a particular class. 

A decision tree structure is made of (root, internal and 
leaf) nodes and the arcs. The tree structure is used in 
classifying unknown data records. At each internal node of 
the tree, a decision of best split is made using impurity 
measures. We have used M5P implemented in WEKA Tool 
[21]. This method generated M5 model rules and trees. The 
details of this method can be found in [16]. 

E. Bagging 

 Bagging which is also known as bootstrap 
aggregating is a technique that repeatedly samples (with 
replacement) from a data set according to a uniform 
probability distribution [10]. Each bootstrap sample has the 
same size as the original data. Because the sampling is done 
with replacement, some instances may appear several times 
in the same training set, while others may be omitted from 
the training set. On average, a bootstrap sample Di contains 
approximately 63% of the original training data because each 
sample has a probability 1- ( 1- 1/N)N of being selected in 
each Di. If N is sufficiently large, this probability converges 
to 1-1/e = 0.632. After training the k classifiers, a test 
instance is assigned to the class that receives the highest 
number of votes. 

V. ANALYSIS RESULTS 

A. Model Prediction Results 
China Dataset [15] was used to carry out the prediction of 

effort estimation model. A holdout technique of cross 
validation was used to estimate the accuracy of effort 
estimation model. The dataset was divided into two parts i.e. 
training and validation set in ratio of 7:3. Thus 70% was used 
for training the model and 30% was used for validating 
accuracy of the model. Four machine learning methods and 
one regression method was used to analyse the results. 
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The model with the lower MMRE, RMSE, RAE, RRSE, 
MAE and the higher correlation coefficient and PRED(25)  is 
considered to be the best among others. As shown in table, 
the decision tree results are found to be best with the MMRE 
value 17.06%,RAE value 32.02, RRSE value 
38.40 ,correlation coefficient 0.93 , and PRED(25) value 

52%. Hence decision tree method is found to be effective in 
predicting effort. Also, the results of decision tree are 
competent with the traditional linear regression model. 

 

TABLE II.  OUR RESULTS 

 

Performance Measures 

Linear 

regression 

Support 

Vector 

Machine 

Artificial 

Neural 

Network 

Decision 

tree 

Bagging 

Mean Magnitude Relative Error (MMRE) % 17.97 25.63 143.79 17.06 74.23 

Root mean squared error (RMSE) % 4008.11 3726.71 5501.18 2390.47 3656.75 

Relative absolute error 

(RAE) % 

54.16 48.49 71.50 32.02 45.79 

Root relative squared error (RRSE) % 64.74 60.13 91.17 38.40 59.11 

Correlation coefficient 0.79 0.81 0.75 0.93 0.83 

Mean absolute error 

(MAE) % 

1981.48 1774.36 2561.00 1173.43 1668.03 

PRED(25) % 36 38.66 11.33 52 34.66 
 

The graphs as shown in figures 2-6, for the actual and the 
values as predicted by the particular model are shown on Y-
axis and they correspond to the 499 projects.. The ‗black‘ 
curve presents the curve for the actual values, whereas the  

 

 

‗red‘ curve presents the curve for the predicted values. The 
closer the actual and predicted curves, the lesser are the error 
and better are the model. The graphs show that the actual and 
the predicted values are very close to each other. As shown in 
figure 5, the decision tree shows the best result.  

Figure 2.  Results Using Linear Regression  

Figure 3.  Results Using Support Vector Machine  

 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.1, January 2011 

 

150 | P a g e  

http://ijacsa.thesai.org/ 

Figure 4.  Results Using Artificial Neural Network  

Figure 5.  Results Using Decision Tree  

Figure 6.  Results Using Bagging 

B. Comparative analysis with previous studies 

Our results of effort estimation model predicted using 

decision tree method were better than all the other four 

methods used in our study. We have compared our results 

with eight other previous studies. The previous studies under 

comparison have same dependent variable, although the 

independent variables vary for each study. As shown in table 

3, out of 24 models of literature, our decision tree model has 

outperformed the MMRE values of 21 models. The results of 

PRED(25) are also very good and higher as compared to 

most of the models. Thus, our effort estimation model using 

decision tree method is widely acceptable. 
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TABLE III.  COMPARISON ANALYSIS 

 

Papers 

 

Methods Used 

 

Pred(25) 

 

 

MMRE 

 

 
 

Our 

Results 

 

Decision Tree 

 

52 

 

17.06 

Bagging 34.66 74.23 

Linear Regression 36 17.97 

SVM 38.66 25.63 

ANN 11.33 143.79 

 
 
 

[14] 

 

ANN 

 

22 

 

90 

Classification And Regression Trees 26 77 

Ordinary Least Square Regression 33 72 

Adjusted analogy-based estimation using Euclidean distance 57 38 

Adjusted analogy-based estimation using Manhattan distance 52 36 

Adjusted analogy-based estimation using Minkowski distance 61 43 

 
[17] 

 

Augmented COCOMO 

 

Pred(20)31.67 

 

65 

Parsimonious COCOMO 30.4 64 

 
[8] 

 

Clustering 

 

Pred(30) 35.6 

 

1.03 

 
[6] 

 

Regressive 

-  

62.3 

ANN - 35.2 

Case Based Reasoning - 36.2 

 
 

[12] 

 

Multiple Additive Regression Trees 

 

88.89 

 

8.97 

Radial Basis Function 72.22 19.07 

SVR Linear 88.89 17.4 

SVR RBF 83.33 17.8 

Linear Regression 72.22 23.3 

 

[4] 

 

Genetic Programming 

 

23.5 

 

44.55 

ANN 56 60.63 

 

[7] 

 

ANN 

-  

17 

Case Based Reasoning - 48.2 

 

[21] 

 

SVR 

 

88.89 

 

16.5 

Linear Regression 72.22 23.3 

Radial Basis Function 72.22 19.07 

VI. CONCLUSION 

In this research we have made a comparative analysis of 
one regression with four machine learning methods for 
predicting effort. We have obtained results using the data 
obtained from Promise data repository. The dataset consists 
of 19 features which we have reduced to 10 features using 
CFS method. The results show that the decision tree was the 
best method for predicting effort with MMRE value 17% and 
PRED(25) value 52%. The software practitioners and 
researchers may apply decision tree method for effort 
estimation. Hence, machine learning methods selected in this 
study have shown their ability to provide an adequate model 
for predicting maintenance effort. 

 

 

The future work can further replicate this study for 
industrial software. We plan to replicate our study to predict 
effort prediction models based on other machine learning 
algorithms such as genetic algorithms. We may carry out cost 
benefit analysis of models that will help to determine 
whether a given effort prediction model would be 
economically viable. 
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