
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

38 | P a g e

http://ijacsa.thesai.org/

PAV: Parallel Average Voting

Algorithm for Fault-Tolerant Systems

Abbas Karimi1, 2,* , Faraneh Zarafshan 1, 2, Adznan b. Jantan2
1
 Department of Computer Engineering, Faculty of Engineering, Islamic Azad University, Arak Branch, Iran

2 Departments of Computer and Communication Systems Engineering, Faculty of Engineering, UPM, Malaysia

*Akarimi@ieee.org

Abstract—Fault-tolerant systems are such systems that can

continue their operation, even in presence of faults. Redundancy

as one of the main techniques in implementation of fault-tolerant

control systems uses voting algorithms to choose the most

appropriate value among multiple redundant and probably

faulty results. Average (mean) voter is one of the commonest

voting methods which is suitable for decision making in highly-

available and long-missions applications in which the availability

and speed of the system is critical. In this paper we introduce a

new generation of average voter based on parallel algorithms

which is called as parallel average voter. The analysis shows that

this algorithm has a better time complexity (log n) in comparison

with its sequential algorithm and is especially appropriate for

applications where the size of input space is large.

Keywords- Fault-tolerant; Voting Algorithm; Parallel- Algorithm;

Divide and Conquer.

I. INTRODUCTION

Fault-tolerance is the knowledge of manufacturing the
computing systems which are able to function properly even in
the presence of faults. These systems compromise wide range
of applications such as embedded real-time systems,
commercial interaction systems and e-commerce systems, Ad-
hoc networks, transportation (including rail-way, aircrafts and
automobiles), nuclear power plants, aerospace and military
systems, and industrial environments in all of which a precise
inspection or correctness validation of the operations must
occur (e.g. where poisonous or flammable materials are
kept)[1]. In these systems, the aim is to decrease the probability
of system hazardous behavior and keep the systems functioning
even in occurrence of one or more faults.

One of the mechanisms to achieve fault tolerance is fault
masking which is used in many fault-tolerant systems [2]. In
fault masking, hardware modules or software versions are
replicated and then voting is used to arbitrate among their
results to mask the effect of one or more run time errors.

Replication of hardware modules is the most applicable
form of hardware redundancy in control systems which can be
in forms of passive (static), active (dynamic) and hybrid.

The aim in static redundancy is masking the effect of fault
in the output of system. N-Modular Redundancy (NMR) and
N-Version Programming (NVP) are two principal methods of

static redundancy in hardware and software respectively. Three
modular redundancies (TMR) is the simplest form of NMR
which is formed from N=3 redundant modules and a voter unit
which arbitrates among modules’ outputs (figure 1).

Voter performs a voting algorithm in order to arbitrate
among different outputs of redundant modules or versions and
mask the effect of fault(s) from the system output. Based on the
application, we can use different types of voting algorithms.

Average voter is one of several voting algorithms which are
applied in fault-tolerant control systems. Main advantages of
this voter are its high availability and its potentiality to extend
to large scale systems. Furthermore, in contradict with many
voters like majority, smoothing and predictive; it does not need
any threshold. The main problem of this voter is that whatever
the number of inputs increases, the complexity of its formula
increases. Hence, more calculations overhead imposes and the
processing speed will decrease. In this paper, we use parallel
algorithms on EREW shared-memory systems to present a new
generation of average voter – we call as parallel average voter-
which provides the average voter extension without enlarging
the calculations, suitable for large scale systems and with
optimal processing time. Basically there are two architectures
for multi-processor systems. One is shared-memory multi
processor system and the other is message passing[3]. In a
shared-memory parallel system it is assumed n processor has
either shared their public working space or has a common
public memory.

The current paper is organized as follows: in section 2,
background and related works are described. In Section 3, the
sequential average voting algorithm and the parallel average
voting algorithms are presented. Section 4, deals with
performance analysis of new parallel algorithms and its
comparison with sequential algorithm. Finally, the conclusions
and future works are explained in section 5.

II. RELATED WORKS

Voting algorithms have been extensively applied in
situations where choosing an accurate result out of the outputs
of several redundant modules is required. Generalized voters
including majority, plurality, median and weighted average
have been first introduced in [4].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

39 | P a g e

http://ijacsa.thesai.org/

Majority voter is perhaps the most applicable voter that
chooses a module output as the output of voting if majority of
voter inputs has been produced that value but if less than
majority of modules are in agreement, plurality voter can make
an agreement. Plurality and majority are actually extended
forms of m-out-of-n voting in which at least m modules out of
n modules should be in agreement; otherwise, voter cannot
produce the output. This voting method is a suitable choice for
the systems where the number of voter inputs is large. The
other generalized voter is median voter that always chooses the
mid-value of voter inputs as the system output. The most
significant limitation of this algorithm is that the number of the
voter inputs is assumed to be odd [4]. In weighted average
algorithm, the weighted mean of the input values is calculated
as the voting result. The weight value is assigned to each voter
input in various methods [2, 4-6], then, calculated weights, wi,
are used to provide voter output, y=∑wi.xi/∑wi, where xis are
the voter inputs and y is the voter output. Average voter is a
special case of weighted average voter in which all weights are

assumed to be equal to

. In two latest methods, the voting

results may be clearly different from input values, while some
voters like majority, plurality and median always choose a
value among their input values as the voter output.

One difficulty with majority voter and alike is their need to
threshold, while so far not any general approaches have been
achieved to calculate fair value of them; however, average
voter is free of this issue. Furthermore, average voter can
always produce output. So the availability of this voter and
voter’s alike including median and weighted average is 100
percent which makes them the choicest voters for highly
available missions.

 One critical issue about the voters is their performance in
large scale systems. In [7, 8], the above mentioned algorithms
along with their operation and time complexity for small and
large number of inputs are analyzed and it has demonstrated
that the complexity of them depends on the structure of the
input space. The main problem with all the weighted methods
and consequently average voter is the increasing in the
complexity of voter output calculations while the number of
voter inputs increases. It also has harmful effects on speed of
processing in control system.

To address this problem for average voter, by using parallel
algorithms, we have proposed an effective parallel average
algorithm based on shared memory EREW. So far, parallel
voters have not been taken into account and only two
references [2, 9] have covered this issue. In [3], an efficient
parallel algorithm has been proposed to find the majority
element in shared-memory and message passing parallel
systems and its time complexity was determined, while an

approach for parallelized m-out-of-n voting through divide-
and-conquer strategy has been presented and analyzed in [9].

III. SHARED MEMORY SYSTEM PARALLEL ALGORITHM

In this section, we propose an optimal parallel average
voting algorithm on EREW shared-memory systems for large
object space applications such as public health systems,
geographical information systems, data fusion, mobile robots,
sensor networks, etc.

First, we introduce sequential average voting. Then we
proceed with introducing and describing the parallel average
algorithm with inspirations from the functions of this algorithm
and using Divide-and-conquer method and Brent’s theorem
[10-12].

A. Sequential Average Voting

As mentioned in the previous section, in sequential average
voting, the mean of the modules output will be chosen as the
output. This will be simply gained through the Lorczak relation

mentioned in [4] considering
1 2

1
... nw w w

n
    ,

provided in (1) in which xi is output of the ith redundant
module; wi, weight of ith module; and X is the output of voter.

1

1

n

i i

i
n

i

i

x w

X

w









 (1)

B. Parallel Average Voting

In this section, an effective parallel algorithm is presented
for calculating average voting in PRAM machines with EREW
shared- memory technology. To do so, the following
assumptions are taken into account:

 Array A [1...n] with n elements, comprises a1, a2,…,an
,where each ai is the output of ith module.

 Number of redundant modules, n, is considered as the
power of 2.

 Array A is divided to
2

n
p 

 sub-arrays each of which

contains at most log n element.

 We assume 1iw  , i i iw x x   .

 For enhancing the algorithm, the number of required
processors is assumed equal to the number of sub-arrays
i.e. p.

The Pseudo-code of our optimal parallel average voter is
presented in fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

40 | P a g e

http://ijacsa.thesai.org/

Procedure PAV (PRAM-EREW)

Input: A is an array of n elements a1,a2,…,an where n is a power of 2.

Output: Return X as the output of parallel average voting.

1. A is subdivided into p=n/2 subsequences Ai of length log n

where 1≤i≤n;

2. ∀ i∈ [1 .. n/2]

Create array A with corresponding elements ai in Parallel.

3. End Par.

4. j ← p;

5. While j>=1 do

6. For i=1 to j Do in Parallel

7. A[i]← A[2i-1]+A[2i];

8. End Par.

9. j ← j/2;

10. End While.

11. X←A[1]/n;

12. End.

IV. ANALYSIS AND COMPARISON

In this section, step by step, we try to analyze both parallel
and sequential average voting algorithms introduced in sections
3.Aand 3.B through using the rule of complexity of the
computation of the algorithms in order to highlight the
efficiency of the new parallel algorithm.

To describe the time complexity of the two algorithms we
define Ts (n), the function of executing time of the average
sequential voting algorithm and Tp(n), the function of the
executing time of the parallel voting algorithm in which p is the
number of the processors.

Definitely as a result of using ∑ operator, sequential
average voter needs time complexity equal to Ts (n)=O(n),
while parallel algorithm needs constant time of O(1) to divide
array A into sub-arrays having maximal length of (log n). Line
2 of PAV uses O(log n) time in order to copy and transfer the
information. Since in lines 4-10, we do calculation (adding odd
and even nodes) in each sub-array by using tree structure, the
overall time complexity of these lines will be equal to O(log n).
Finally in line 11, we need an O(1) time to calculate the
average voting output.

 Hence, the total time complexity of our parallel average
voting algorithm is:

Tp(n)=O(log n). (2)

By comparing the time complexities of sequential and
parallel algorithms we can conclude that since the execution
time of parallel average voter is logarithmic, it is able to run
faster than sequential average voter. Also, it can be seen
obviously that the total number of required processors in

parallel algorithm does not exceed
2

n . So taking into account

the execution time and number of processors needed, the cost
and time complexity of the proposed algorithm is better than
sequential algorithm. We also have good Speedup (Sp) and
Efficiency (Ep) which are indicated in equations (3) and (4).

log

T nsSP
T np

  (2)

/ log 2

/ 2 log

S n nPEP
P n n

   (3)

For large scale system i.e. for big n we have good speed up

and efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an effective parallel algorithm
for finding average voting among the results of n redundant
modules in parallel shared-memory systems in EREW model.
As seen in section 3 the execution time of the sequential
algorithm is linear whereas it is logarithmic in our proposed
parallel algorithm. Since the parallel average voter can always
make result, it has more availability than other parallel voters
including parallel majority and parallel m-out-of-n.

Furthermore, in contradict with many voters like majority,
smoothing and predictive; it doesn’t need any threshold. It also
resolves the problem associated with sequential average voter
in dealing with large number of inputs.

This algorithm can be implemented in future on parallel on
Bus, Hyper Cube and Mesh typologies in message passing
systems. Additionally, it can be developed for generating
parallel Weighted Average Voting algorithm in which the
weights are unequal.

REFERENCES

[1] G. Latif-Shabgahi, et al., "A Taxonomy for Software Voting Algorithms
Used in Safety-Critical Systems," IEEE Transactions on Reliability, vol.
53, pp. 319- 328, 2004.

[2] G. Latif-Shabgahi, "A Novel Algorithm for Weighted Average Voting
Used in Fault-Tolerant Computing Systems," Microprocessors and
Microsystems, vol. 28, pp. 357-361, 2004.

[3] C.-L. Lei and H.-T. Liaw, "Efficient Parallel Algorithms for Finding the
Majority Element," Journal of Information Sceince and Engineering,
vol. 9, pp. 319-334, 1993.

[4] P. R. Lorczak , et al., "A Theoretical Investigation of Generalized Voters
for Redundant Systems," in FTCS-19. Digest of Papers., Nineteenth
International Symposium on Fault-Tolerant Computing,, chicago, USA,
1989, pp. 444-451.

[5] Z. Tong and R. Y. Kain, "Vote Assignments in Weighted Voting
Mechanisms," IEEE Transactions on Computers, vol. 40, pp. 664-667,
1991.

Figure 1: Pseudo- code of parallel average voter

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

41 | P a g e

http://ijacsa.thesai.org/

[6] G. Latif-Shabgahi, et al., "A Novel Family of Weighted Average Voters
for Fault Tolerant Computer Systems," in Proceedings of ECC03:
European Control Conference, Cambridge, UK, 2003.

[7] B. Parhami, "Voting Algorithms," IEEE Transactions on Reliability, vol.
43, pp. 617-629, 1994.

[8] B. Parhami, "Optimal Algorithms for Exact, Inexact and Approval
Voting " presented at the 22nd International Symposium on Fault-
Tolearnt Computing(FTCS-22), Boston,N.A,USA, 1992.

[9] B. Parhami, "Parallel Threshold Voting," The Computer Journal, vol.
39, pp. 692-700, 1996.

[10] R. P. Brent, Algorithms for Minimization without Derivatives.
Englewood Cliffs, NJ.: Prentice-Hall, 1973.

[11] P. B. Richard, "The Parallel Evaluation of Arithmetic Expressions in
Logarithmic Time," ed: Academic Press, 1973.

[12] R. P. Brent, "The Parallel Evaluation of General Arithmetic
Expressions," J. ACM, vol. 21, pp. 201-206, 1974.

AUTHORS PROFILE

Abbas Karimi was born in Ahwaz, Iran, in 1976. He

received the B.S. degree and M.S. degree in computer

hardware and software engineering from Iran. He is

currently Ph.D. candidate of computer system engineering,

UPM, Malaysia. He has been working as a lecturer and a

faculty member in the department of computer

engineering in I.A.U-Arak Branch. He was leader of

multiple research projects, and author of three textbooks,

multiple journals and conference papers. He is senior

members of IACSIT, member of IEEE, IAENG, SDIWC,

WASET and reviewer in multiple journals. His research

interests include load balancing algorithms, and real time,

distributed, parallel and fault-tolerant systems.

Faraneh Zarafshan was born in Ahwaz, Iran. She

received the B.S. degree and M.S. degree in computer

hardware engineering from Iran. She is currently Ph.D.

candidate of computer system engineering, UPM,

Malaysia. She was leader of multiple research projects,

author of three textbooks, multiple journals and

conference papers .She is senior members of IACSIT, and

member of SDIWC. Her research interests include sensor

network, real time systems, and fault-tolerant systems.

Adznan b. Jantan Obtained his PhD from

University College of Swansea, Wales, UK. He is
currently associate professor in Universiti Putra Malaysia
(UPM) under the Faculty of Engineering. Before that, he
had been collaborating with Universiti Sains Malaysia
(USM), Multimedia University of Malaysia (MMU),
Universiti Islam Malaysia (IIUM) and King Fahd
University Petroleum Minerals (KFUPM), Saudi Arabia
as a lecturer. He has published many papers in

international conferences and journals and is the author of several books in the
field on engineering. His research interests include speech recognition systems,
data compression systems, human computer interaction systems, medical
imaging, and smart school design systems.

