
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

60 | P a g e
www.ijacsa.thesai.org

An Ontology- and Constraint-based Approach for

Dynamic Personalized Planning in Renal Disease

Management

Normadiah Mahiddin
1
, Yu-N Cheah

2
, Fazilah Haron

3

1Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia

2, 3School of Computer Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
3College of Computer Science and Engineering, Taibah University, P.O. Box 30002, Madinah, Saudi Arabia

Abstract—Healthcare service providers, including those involved

in renal disease management, are concerned about the planning

of their patients’ treatments. With efforts to automate the

planning process, shortcomings are apparent due to the following

reasons: (1) current plan representations or ontologies are too

fine grained, and (2) current planning systems are often static. To

address these issues, we introduce a planning system called

Dynamic Personalized Planner (DP Planner) which consists of:

(1) a suitably light-weight and generic plan representation, and

(2) a constraint-based dynamic planning engine. The plan

representation is based on existing plan ontologies, and developed

in XML. With the available plans, the planning engine focuses on

personalizing pre-existing (or generic) plans that can be

dynamically changed as the condition of the patient changes over

time. To illustrate our dynamic personalized planning approach,

we present an example in renal disease management. In a

comparative study, we observed that the resulting DP Planner

possesses features that rival that of other planning systems, in
particular that of Asgaard and O-Plan.

Keywords-patient care planning; treatment protocols; dynamic

treatment planning; personal health services.

I. INTRODUCTION

Healthcare service providers are undoubtedly concerned
about updating their patients’ health records or profiles, and the
planning of their patients’ treatments to support the efficient
and effective delivery of healthcare services. However, not all
healthcare service providers are carrying out planning activities
effectively, especially when it comes to automated or
computer-based planning, due to shortcomings in current
planning systems.

The first problem is that most of the current plan
representations or ontologies are too fine grained (detailed).
This means that the plan representations or ontologies are not
suited for all situations and for all levels. We need to have a
portable and intuitively easy representation that facilitates the
storage and manipulation of generic plans. The second problem
is that current planning systems are often static. This means
planning is carried out once without taking into account
changes that may take place as time goes on. These plans also
do not consider past events. Dynamic planning is therefore
required to allow plans to be updated as new situations arise.

To address the concerns above, we present a methodology
for generic and dynamic healthcare planning, resulting in a
system called the Dynamic Personalized Planner (DP Planner)
[1]. For this purpose, we define (1) a suitably light-weight and
generic plan representation based on existing plan ontologies,
and (2) a constraint-based dynamic planning engine.

II. STATE OF THE ART

A popular approach for plan representation is via
ontologies, i.e. plans are designed based on project specific
ontologies and domain description languages [2]. Fig. 1 shows
the structure of the Plan Ontology proposed by Tate [3].

Figure 1. Plan Ontology structure [3].

Another useful plan ontology for generic planning is the
task-specific ontology and approach called Asbru which uses
skeletal plans [4]. Asbru represents skeletal plans using a task-
specific, intention-based, and time-oriented language. It can be
used to design specific plans [5]. In Asbru, a plan contains a
name and a set of arguments (time annotation and knowledge
roles). All plans and actions have a temporal dimension and the
plan’s execution is controlled by a number of conditions such
as filter, setup, suspend, reactivate, abort and complete [6]. Fig.
2 shows the Asbru plan ontology structure.

Besides plan ontologies (which contribute towards plan
representation), there are also a number of plan generation
initiatives. An example of such an initiative is the RAX
Planner/Scheduler (RAX-PS) [7]. The RAX-PS generates plans

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

61 | P a g e
www.ijacsa.thesai.org

that are temporally flexible, allowing the execution system to
adjust to actual plan execution conditions without breaking the
plan. The result is a system capable of building concurrent
plans.

Figure 2. The Asbru plan ontology structure [4].

Fig. 3 shows the architecture of the planning system in
RAX-PS. For the RAX-PS, the domain model describes the
dynamics of the system [8] to which the planner is being
applied, i.e. the Deep Space One Spacecraft. The plan database
is initialized by a plan request which consists of an initial state
and a set of goals. The initialized database is then modified by
a search engine to generate a complete and valid plan. This
complete plan is then put into operation by an execution agent.
The heuristics and planning experts are also integral parts of
the Deep Space One planning system. The heuristics guide the
search engine while the planning expert interfaces with external
systems which provide critical inputs such as altitude and
speed.

Figure 3. The RAX Planner/Scheduler (RAX-PS) [7].

The Capture the Flag (CTF) [9] game project uses the
notion of critical points (time during the execution of an action
or plan where a decision might be made) to define states in the
continuous domain. These states are then used to efficiently
evaluate plans. An action or a plan posts a goal, G. This
invokes the CTF planning algorithm [10].

In the effort to generate outputs that are dynamically
assembled from smaller fragments, the Personalized Healthcare
Information (PHI) system [11] composes personalized
documents that conform to an individual’s health profile. The
composition of PHI is carried out in a three-step procedure
which are (1) selection of a set of Topic Specific Documents
(TD), where each selected TD addresses some of the
individual’s healthcare concerns, (2) combination of the
selected TDs to produce an aggregated PHI document, and (3)
verification of the accuracy of the aggregated PHI document.
Each individual illness/concern/issue noted in the health profile
is addressed by at least a single TD. Constraint satisfaction

techniques are used to ensure that the aggregated PHI
document is medically consistent. Fig. 4 shows the processes
for PHI composition.

Figure 4. The process flow for PHI composition [11].

We have found the PHI system’s approach in using
constraints attractive as this approach could be adapted in our
DP Planner to ensure the coherency of plan fragments that are
assembled to form a complete plan.

III. THE DYNAMIC PERSONALISED PLANNING

METHODOLOGY

The dynamic personalized planning approach consists of
two phases:

1. Plan ontology definition and representation.

2. Planning algorithm definition.

Fig. 5 briefly shows the two phases together with the
techniques and approaches used.

Figure 5. DP Planner methodology with related techniques and

approaches [1].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

62 | P a g e
www.ijacsa.thesai.org

A. Phase 1: Plan Ontology Definition and Representation

In defining the plan ontology, the Asbru plan ontology was
adopted as the basis for the DP Planner’s plan ontology in view
that it is reasonably concise compared to other ontologies that
were surveyed. Besides this, some elements of Goals,
Operators, Methods and Selection (GOMS) analysis [12] were
also incorporated. GOMS is a method for analyzing and
modeling the knowledge and skills that a user must develop in
order to perform tasks on a device or system.

1) Plan ontology definition
Fig. 6 shows the DP Planner’s plan ontology [13].

Figure 6. DP Planner’s plan ontology structure [13].

Referring to Fig. 6, the plan is positioned at the highest
position in the plan hierarchy, and is basically the task that
needs to be performed. Examples of plans are those for kidney
patient treatment monitoring, gestational diabetes mellitus
monitoring, student performance monitoring, etc. The plan
consists of a sequence of plan fragments. These plan fragments
are the necessary steps to achieve the task and can be viewed as
the most crucial component of the plan ontology.

Each plan fragment consists of seven attributes:

 Name: Identifies a plan.

 Goal: States the target to be achieved.

 Date: States the date of plan execution (if required).

 Time: States the duration of plan execution.

 Constraints: Information of the plan execution limit.

 Condition: Situations in which the task takes place.

 Status: Keeps track of the situation of plan execution.

Some of the plan component’s attributes have detailed sub-
attributes. Examples are as follows:

 Date has six sub-attributes: Earliest Date Start (EDS),
Latest Date Start (LDS), Earliest Date Over (EDO),
Latest Date Over (LDO), Minimum Date Duration
(MinDD) and Maximum Date Duration (MaxDD),

 Time also has six sub-attributes: Earliest Time Start
(ETS), Latest Time Start (LTS), Earliest Time Over
(ETO), Latest Time Over (LTO), Minimum Time

Duration (MinTD) and Maximum Time Duration
(MaxTD).

 Condition consists of three sub-attributes:

o Pre-condition: This is to ensure that certain
conditions are met before the execution of a
particular plan fragment.

o Current condition: This ensures that certain
conditions are currently met in a particular
plan fragment.

o Post-condition: This is to ensure that certain
conditions are met after the execution of a
particular plan fragment and before the next
plan fragment.

2) Plan representation
Fig. 7 illustrates an example of a plan represented in XML

for the treatment of a patient with renal disease. Note that the
plan ontology can be naturally implemented in XML as the
hierarchical nature of ontologies maps very well into the nested
nature of XML. With the defined DP Planner plan ontology
and representation, the DP Planner planning engine
implementation is discussed next.

Figure 7. Plan representation in XML format.

B. Phase 2: Planning Algorithm Definition

The DP Planner’s planning strategy involves reusing plans
that are stored in the plan repository and subsequently
personalizing these plans according to the constraints defined
by the user.

The planning algorithm is divided into two parts (see Fig.
8):

1. Generic plan generation.

2. Plan personalization.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

63 | P a g e
www.ijacsa.thesai.org

Figure 8. The planning algorithm.

1) Generic plan generation
Firstly, user inputs are matched against each of the existing

plans in the plan repository. A concentration unit is calculated
during the matching process to compare the closeness of the
match. This unit is based on the number of matches between
the user’s inputs (pre-conditions and current conditions) with
those of the plan fragments which constitute each plan. The
similarity between the user’s pre-condition and current
condition inputs, and those of a particular plan, P, is expressed
as CP, (see Equation 1).

 (1)

where n = number of matches of pre-conditions + matches of
current conditions, and Tf = total number of plan fragments in a
plan. The values of C for each plan will be compared. The plan
with the highest value will be chosen as the generic plan. After
a generic plan has been identified, the process of plan
personalization will follow

2) Plan personalization
The personalization method employs a combination of (1) a

simple matching and linking technique, and (2) a constraint-
based approach to form certain restrictions [9] so that only plan
fragments that meet the predetermined criteria and user’s inputs
can form the finalized and personalized plan for a particular
user or situation. Personalization is only carried out when the
user’s status is active, i.e. the plan is still relevant to the user's
condition. For a start, the user will be asked for the outcomes of
following the activities defined in a particular plan fragment.
These outcomes are called post-conditions. Here, a simple
matching technique will be applied to match the post-
conditions of a particular (current) plan fragment with the pre-
conditions in the next plan fragment. If these match each other,
that next plan fragment in the generic plan will be
recommended as the subsequent plan for the user. However, if
they do not match, the plan (or sequence of plan fragments)
will terminate at that current plan fragment.

The matching technique is applied to ensure that each plan
fragment in the finalized plan links to each other (see Fig. 9).
This is to ensure that the final plan generated by the system
corresponds to the needs of the user. After ensuring that the
plan fragments in the generic plan fulfils the initial matching of
post-conditions with the pre-conditions, the actual
personalization can then take place using constraints.

Figure 9. The linking between plan fragments in a plan.

Constraints are utilized to ensure the consistency of the
multiple fragments of a plan in order to form a complete plan.
The individual plan fragments must not contradict each other or
lead to improper recommendations [11]. Therefore, for the
purpose of the DP Planner, a constraint is simply a variable
which restricts the execution of a particular plan fragment. It
also describes the relationship between plan fragments in a
plan. Ultimately, the constraints are used to find suitable
replacements for plan fragments which are not suited for the
plan fragments preceding or following it. Fig. 10 illustrates
how constraints are used to personalize a generic plan.

Figure 10. The use of constraints in plan personalization.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

64 | P a g e
www.ijacsa.thesai.org

In Fig. 10, the generic plan’s Plan Fragment 4 shows
constraint 5 (C5) = yes. However, let us assume this does not
fulfill a constraint specified by the user, i.e. the user has C5 =
no. Therefore, plan personalization is carried out to find a plan
fragment in the plan repository which fulfils the user’s
constraint. The example in Fig. 10 shows Plan Fragment 5 in
Plan A has C5 = no. Therefore, our system will use this plan
fragment to replace Plan Fragment 4 in the generic plan
provided other details are also met (e.g. pre-conditions, post-
conditions, etc.).

IV. RESULTS: EXAMPLE CASES

Fig. 11 shows the command-line system interface which
obtains inputs from the user to generate a generic and
personalized plan in the domain of renal disease.

Figure 11. The process of finding the best-matched plan in the plan

repository.

A. Generic Plan Generation

From Fig. 11, the interaction labeled A gets the inputs of
pre-conditions while the interaction labeled B gets the inputs of
current conditions from the user (bold text indicates text
entered by the user). Both of these conditions will be used to
match the pre-conditions and current conditions in the plans
found in the plan repository. As described in Section III.B.1,
this matching is carried out to find the plan that best matches
the user’s pre-condition and current condition inputs, i.e. the

plan with the highest concentration of matches value (see
Equation 1) is identified. Then, a copy of that plan is created as
an XML file and assigned with a new ID. The values for the
pre-conditions and current conditions are assigned with those
inputted by the user while dates, times, and post-conditions are
left empty.

B. Plan Personalization

After the generic plan has been generated, personalization
then takes place. Firstly, the user will be presented with the
first plan fragment in the plan as shown in Fig. 11 (labeled C).
Then, the planning system will prompt the user about their
status, i.e. whether active (user is implementing the plan) or not
active (not implementing the plan). Either response will result
in a different output for the user. Hence, we show the results of
different cases in the following sub-sections. This process is
repeated with other plan fragments (labeled D to H in Fig. 11).

1) Case 1: Status is active
This case is for situations when the user is implementing a

particular plan fragment. When this happens, the system will
prompt for details about the user’s post-condition as shown in
Fig. 12. Assuming that the user’s input for post-condition was
Percentage of renal damage = 95% therefore, this input will be
matched with the next plan fragment’s pre-condition. If they
match, the constraints of the next plan fragment will be
highlighted to the user: Diabetes = yes?: (T=True/F=False) as
shown in Fig. 12. If the user fulfils the constraint, the next plan
fragment will be presented. The output for this user will be
generated as shown in Fig. 13.

Figure 12. Part of the system interface when status of the user is “active”.

Figure 13. Part of the system output when status of the user is “active”.

2) Case 2: Status is not active
This case shows that the user is not implementing a

particular plan fragment. When this is indicated by the user, the
system will not perform any personalization in the subsequent
plan fragments. Therefore, the planning process is deemed to

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

65 | P a g e
www.ijacsa.thesai.org

be complete. The output for the user will be generated as
shown in Fig. 14. Here, the result is personalized by removing
the subsequent plan fragments that are not necessary.

Figure 14. Part of the system output when status of the user is “not active”.

3) Case 3: Inputs do not fulfill conditions or constraints in

the generic plan
This situation can be further divided into three sub-cases as

follows:

1. Inputs which do not fulfill conditions in the generic
plan.

2. Inputs which do not fulfill some conditions but fulfill
constraints in the generic plan.

3. Inputs which do not fulfill constraints in the generic
plan.

In the first case, consider the example system interface in
Fig. 15. Assume that the post-condition in the generic plan is
Percentage of renal damage = 95%, and this does not match
with the user’s input which is Percentage of renal damage =
60%. Therefore, the personalization process is terminated and
the entire planning process is deemed to have completed. As a
result, the planning system generates the output as shown in
Fig. 16 as the personalized plan for this case.

Figure 15. System interface for inputs which do not fulfill conditions in the
generic plan.

Figure 16. Personalized plan for inputs which do not fulfill conditions in the

generic plan.

In the second case, consider the example system interface
in Fig. 17. Let us assume that the post-condition in the generic
plan, i.e. Patient condition = stable (see Fig. 18), does not
match the user’s input which is Patient condition = not stable
(Fig. 17). Therefore, the process terminates. As a result, the
planning system generates the personalized plan as showed in
Fig. 19.

Figure 17. System interface for inputs which do not fulfill some conditions
but fulfill constraints in the generic plan.

In the third case, consider the example system interface in
Fig. 20. Let us assume that the user does not fulfill the
constraint of High blood pressure = yes, the planning system
would search the plan repository for a plan fragment which
fulfils the user’s input. This plan fragment is then retrieved and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

66 | P a g e
www.ijacsa.thesai.org

used to replace the one in the generic plan which did not fulfill
the user’s input. Fig. 21 shows the personalized plan for this
case.

Figure 18. Generic plan for inputs which do not fulfill some conditions but
fulfill constraints in the generic plan.

Figure 19. Personalized plan for inputs which do not fufill some conditions
but fulfill constraints in the generic plan.

Figure 20. System interface for inputs which do not fulfill constraints in the

generic plan.

Figure 21. Personalized plan for inputs which do not fulfill constraints in the

generic plan.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

67 | P a g e
www.ijacsa.thesai.org

V. DISCUSSION AND COMPARISON

In general, the generic and personalized plan generation
processes performs up to expectation. However, as a limitation

of the DP Planner system, these processes would not function
fully when a replacement cannot be found in the plan
repository. When the system encounters this situation, it will
advise the user to refer the case to a medical practitioner.

TABLE I. COMPARISON OF DP PLANNER WITH OTHER PLANNING SYSTEMS.

Table 1 shows the comparison between the DP Planner
with other planning systems, i.e. Asgaard, O-Plan, Prodigy,
STRIPS, PLANET and RAX-PS. From our observation,
Asgaard and O-Plan are established planning systems that the
DP Planner can be compared to in view that they have the
relevant plan ontology, plan representation, as well as the
planning engine for their planning system. Further comparisons
with Asgaard and O-Plan are discussed in the following sub-
sections.

A. Plan Ontology Definition and Representation

Asgaard was inspired by Belief-Desire-Intention (BDI)
model [14] while DP Planner was developed based on Goals-
Operators-Method-Selection (GOMS) model. Using the BDI
framework, Asgaard has been used to build large-scale, highly
capable agent system [15]. Therefore, Asgaard is more suited
for domains with large and complex but partly vague and
incomplete knowledge. In contrast, DP Planner is based on the
GOMS framework that has not been used to develop large-
scale systems. GOMS has been mainly used to represent
human knowledge necessary for performing certain tasks and
complex human activities. As a result, DP Planner which is
based on GOMS is more suited in domains with obvious
knowledge, i.e. knowledge that is confirmed and complete, for
performing certain tasks and knowledge.

Due to its simplicity, the DP Planner plan ontology was
developed without the need for any ontology tool such as
Protégé. The DP Planner plan representation in XML is also
intuitively easy to understand. Asbru (which is Asgaard’s plan
representation language) uses a machine-readable language
(Backus-Naur Form or BNF syntax) to annotate guidelines
based on the task-specific ontology.

Asbru also requires the use of an ontology editor such as
Protégé for the acquisition of clinical guidelines based on the
same ontology and GMT (Guideline Markup Tool) to translate
the guideline into a formal representation written in XML [16].

DP Planner’s ontology is also easier and simpler compared
to O-Plan which has its own detailed ontology structure. The
O-Plan plan representation is in Task Formalism form and will
change in different O-Plan agents in which it is situated. This is
quite complex compared to DP Planner in which the plan
representation remains in XML form in any situation.

B. Planning Algorithm Definition

DP Planner generates a generic plan by retrieving an
existing plan with similar characteristics to the current planning
requirements, and adapting the generic plan by reusing existing
plans to produce a personalized plan. This is akin to a case-
based approach with adaptation. Asgaard employs a similar
approach to DP Planner whereby it also applies plan adaptation
in its planning process.

However, the difference is that Asgaard adopts the
transformational type of adaptation whereas DP Planner adopts
a derivational analogy type followed by the transformational
type. Derivational analogy potentially reduces the search space
by ignoring the unnecessary choices. This is achieved using the
DP Planner’s similarity measurement technique. This is only
suitable in situations when most of the previous plans require
extensive adaptation and when the cost of saving rationale is
low [15]. The cost of saving rationale here means the ability to
fulfill the requirements of a particular plan fragment that was
defined as a constraint. However, it presupposes that the
derivational traces exist. In contrast, when this is not possible,
transformational analogy is the better choice because the plans
themselves can be used for adaptation. Thus, in DP Planner,
derivational analogy is applied in generic plan generation while
transformational analogy is applied in the plan personalization
in view that the cost of saving rationale is higher.

In general, Asgaard appears more robust in view that it is a
fully deployed system, and that it has a monitoring component
which monitors changes to the user’s situation, while DP
Planner is not a deployed system and therefore relies on users
to report any changes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

68 | P a g e
www.ijacsa.thesai.org

O-Plan on the other hand is based on software agents and
provides a hierarchical planning architecture to support
planning and control with temporal and resource constraint
handling [17]. O-Plan is also designed as a fully deployed
system. O-Plan’s architecture shows that it has five major
components which are Domain Information, Knowledge
Sources, Support Tools, Plan State, and Controller. O-Plan also
has the agent architecture since it has a Task Assignment,
Planner and Execution agent.

In O-Plan, its plan repair algorithm involves two tables (see
Fig. 22): TOME (Table of Multiple Effect), and GOST (Goal
Structure Table) [18]. An execution failure occurs when one or
more of the expected effects at a node-end fail to be asserted.
Each effect is recorded in the TOME and when an action
depends on an effect asserted earlier, it is recorded in the
GOST (Step 1).

When an execution failure occurs, the TOME will be
updated and its relation with GOST entries will be found. If it
is related with any of the GOST entries, then the Knowledge
Sources is used to fix the problem (Step 2). The Knowledge
Sources are responsible for determining the consequences of
unexpected events or of actions that do not execute as intended,
for deciding what action to take when a problem is detected,
and for making repairs to the effected plan (Step 3 and 4) [17].

Figure 22. Solving execution failure in O-Plan [12].

When comparing the DP Planner’s approach with that of O-
Plan, it seems that the DP Planner approach is simpler as only
two stages are needed to solve the failure whereas O-Plan
requires four stages to solve the failure (see Fig. 23).

VI. FUTURE WORK

Presently, the DP Planner is implemented in a local
environment. Its capabilities can be extended further by
deploying it in a grid environment with distributed plan
repositories and planning engines.

Figure 23. Solving execution failure in DP Planner.

For this purpose, the open source Globus Tool Kit can be
utilized to allow sharing of computing power, databases and
other tools online across corporate, institutional, and
geographic boundaries autonomously and safely. The Globus
Tool Kit is used in tandem with the Open Grid Services
Architecture with Data Access and Integration (OGSADAI)
which provides a service group registry that can be used to
identify database services that offer specific data tables [19].

In order to communicate with OGSADAI, the DP Planner
would potentially require middleware software to communicate
with the DBMS which will store the planning data. Fig. 24
shows the OGSADAI with Globus in a possible DP Planner
planning scenario. Here, the planning engines and plan
repositories are distributed across different locations and each
of these planning engines accesses the XML database
containing the plan repository (or medical treatment plans) via
Xindice (a suggested XML DBMS) while the planning results
are delivered through the Client Tool Kit middleware whereby
it provides the communication channel between the requesting
node and the processing planning engine [20].

VII. CONCLUSION

There are many types of planning systems currently
available in the literature though most are static in nature. In
this paper, we presented (1) a plan ontology and representation,
and (2) a dynamic planning engine which makes use of generic
plans and plan fragments, based on our plan ontology, as a
planning template. The processing of the planning engine is
based on similarity measure, matching, linking, and constraint
techniques. In the comparative study carried out, it was
observed that the DP Planner possesses features that rival that
of other planning systems, in particular that of Asgaard and O-
Plan. It is hoped that the DP Planner will make planning
initiative more efficient and effective in delivering applicable
plans to users especially to healthcare providers and patients.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 10, 2011

69 | P a g e
www.ijacsa.thesai.org

Figure 24. The DP Planner in a grid computing environment.

ACKNOWLEDGMENT

The authors wish to thank the Ministry of Higher
Education, Malaysia and Universiti Sains Malaysia for funding
this work through the Fundamental Research Grant Scheme
(FRGS) under the project entitled “A Dynamic Planning
Algorithm Using Ontologies and Constraints on the Grid”.

REFERENCES

[1] N. Mahiddin, “An Ontology and Constraint-based Approach for
Dynamic Personalised Planning,” Master Thesis, Universiti Sains

Malaysia, 2009.

[2] A. Tate, “Towards a plan ontology,” Journal of the Italian Association
for AI, AI*IA Notizie, Special Issues on Aspects of Planning Research,

vol. 9, no. 1, pp. 19-26, March 1996.

[3] A. Tate, “A plan ontology - a working document,” in Proceedings of the
Workshop on Ontology Development and Use, La Jolle, CA, U.S.A.,

1994.

[4] Y. Shahar, S. Miksch, and P. Johnson, “A task-specific ontology for
design and execution of time-oriented skeletal plans,” in Tenth

Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada, 1996.

[5] S. Miksch, Y. Shahar, and P. Johnson, “Asbru: a task specific, intention-

based and time-oriented language for representing skeletal plans,” in
Proceedings of the Seventh Workshop on Knowledge Engineering

Methods and Languages (KEML-97), Milton Keynes, U.K., 1997.

[6] S. Miksch, A. Seyfang, and R. Kosara, “Plan management: supporting

all steps of protocol development and deployment,” in Proceedings of
the EUNITE-Workshop on Intelligent Systems in Patient Care, Vienna,

Austsria, pp. 35-42, 2001.

[7] A. K. Jónsson, P. H. Morris, N. Muscettola, and K. Rajan, “Planning in
interplanetary space: Theory and practice,” in Proceedings of the Fifth

International Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2000), Breckenridge, CO, U.S.A., pp. 177-186, 2000.

[8] J. Frank, A. K. Jónsson, and P. H. Morris, “On reformulating planning as

dynamic constraint satisfaction,” in Proceedings of the 4th International
Symposium on Abstraction, Reformulation and Approximation, London,

U.K.: Springer-Verlag, 2000.

[9] M. S. Atkin, and P. R. Cohen, “Physical planning and dynamics,” in

Working Notes of the AAAI Fall Symposium on Distributed Continual
Planning, Orlando, FL, U.S.A., pp. 4-9, 1998.

[10] M. S. Atkin, and P. R. Cohen, “Using simulation and critical points to
defines states continous search spaces,” in Proceedings of Simulation

Conference, Orlando, FL, U.S.A., vol. 1, pp. 464-470, 2000.

[11] S. S. R. Abidi, Y. H. Chong, S. R. Abidi, “An intelligent info-structure
for composing and pushing personalised healthcare information over the

internet,” in Proceedings of the 14th IEEE Symposium on Computer
Based Medical Systems (CBMS 2001), Bethesda, MD, U.S.A., pp. 225-

230, 2001.

[12] D. Jonassen, M. Tessmer, and W. Hannum, Task Analysis Methods for
Instructional Design, Mahwah, NJ: Lawrence Erlbaum Associates, 1999.

[13] N. Mahiddin, Y.-N. Cheah, and F. Haron, “A generic plan ontology for

dynamic health plans,” in Proceedings of the International Conference of
Knowledge Engineering 2005 (IKE ’05), Las Vegas, NV, U.S.A., 2005.

[14] S. Miksch, and A. Seyfang, “Continual planning with time-oriented,

skeletal plans,” in Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI 2000), Amsterdam, The Netherlands: IOS

Press, pp. 512-515, 2000.

[15] H. M. Avila, and M. T. Cox, “Case-based plan adaptation: An analysis
and review,” IEEE Intelligent Systems, vol. 23, no. 4, pp.75-81, 2008.

[16] Y. Shahar, S. Miksch, and P. Johnson, “The Asgaard project: A task
specific framework for the application and critiquing of time-oriented

clinical guidelines,” Artificial Intelligence in Medicine, vol. 14, pp. 29-
51, 1998.

[17] O-Plan Team, O-plan: Architecture guide (version 2.3), 1995. URL:

http://www.aiai.ed.ac.uk/oplan/documents/ANY/oplan-architecture-
guide.pdf. Retrieved: 18 October 2011.

[18] B. Drabble, A. Tate, and J. Dalton, “Repairing plans on-the-fly,” in

Proceedings of the NASA Workshop on Planning and Scheduling for
Space, 1997.

[19] Globus Project Team, Globus tool kit homepage, 2007. URL:

http://www-unix.globus.org/toolkit/about.html. Retrieved: 18 October
2011.

[20] Globus Project Team, Software components for grid systems and

applications, 2007. URL: http://www.globus.org/grid_software.
Retrieved: 18 October 2011.

[21] Felix, A. A., & Taofiki, A. A. (2011). On Algebraic Spectrum of

Ontology Evaluation. IJACSA - International Journal of Advanced
Computer Science and Applications, 2(7), 159-168.

[22] Vanitha, K., Yasudha, K., & Soujanya, K. N. (2011). The Development
Process of the Semantic Web and Web Ontology. IJACSA -

International Journal of Advanced Computer Science and Applications,
2(7).

AUTHORS PROFILE

Normadiah Mahiddin received her B.Comp.Sc. (Hons) degree from Universiti

Sains Malaysia in 2003, and M.Sc. (Computer Science) from the same
university in 2009. She is currently a Ph.D. candidate at Universiti

Kebangsaan Malaysia. Her research interests include knowledge management,
intelligent systems, health informatics, and automated planning.

Yu-N Cheah received his B.Comp.Sc. (Hons) and Ph.D. degrees from

Universiti Sains Malaysia in 1998 and 2002 respectively. He is currently
lecturing at the School of Computer Sciences, Universiti Sains Malaysia. His

research interests include knowledge management, intelligent systems, health
informatics, and semantic technologies.

Fazilah Haron received her B.Sc. (in Computer Science) from the University

of Wisconsin-Madison, U.S.A. and her Ph.D. from the University of Leeds,
U.K. She is an Associate Professor at the School of Computer Sciences,

Universiti Sains Malaysia and currently on secondment at Taibah University,
Madinah, Saudi Arabia. Her research interests include modeling and

simulation of crowd, parallel and distributed processing, and grid computing.

