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Abstract— The infrastructure less and dynamic nature of 
mobile ad hoc networks (MANET) needs efficient clustering 
algorithms to improve network management and to design 
hierarchical routing protocols. Clustering algorithms in mobile 
ad hoc networks builds a virtual backbone for network nodes. 
Dominating sets and Spanning tree are widely used in 
clustering networks. Dominating sets and Spanning Tree based 
MANET clustering algorithms were suitable in a medium size 
network with respect to time and message complexities. This 
paper presents different clustering algorithms for mobile ad 
hoc networks based on dominating sets and spanning tree. 
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I.  INTRODUCTION 

MANETs do not have any fixed infrastructure and consist 
of wireless mobile nodes that perform various data 
communication tasks. MANETs have potential applications 
in rescue operations, mobile conferences, battlefield 
communications etc. Conserving energy is an important 
issue for MANETs as the nodes are powered by batteries 
only.  

Clustering has become an important approach to manage 
MANETs. In large, dynamic ad hoc networks, it is very hard 
to construct an efficient network topology. By clustering the 
entire network, one can decrease the size of the problem into 
small sized clusters. Clustering has many advantages in 
mobile networks. Clustering makes the routing process 
easier, also, by clustering the network, one can build a 
virtual backbone which makes multicasting faster. However, 
the overhead of cluster formation and maintenance is not 
trivial. In a typical clustering scheme, the MANET is firstly 
partitioned into a number of clusters by a suitable 
distributed algorithm. A Cluster Head (CH) is then allocated 
for each cluster which will perform various tasks on behalf 
of the members of the cluster. The Performance metrics of a 
clustering algorithm are the number of clusters and the 
count of the neighbour nodes which are the adjacent nodes 
between clusters that are formed.  

In this paper we discussed various clustering algorithms 
based on dominating sets [1] [4] [11] [14] [16] and 
Spanning Trees 6] [8] [15]. The performance metrics of a 
clustering algorithm are the number of clusters and the  

 
 
count of the neighbor nodes which are the adjacent nodes 

between clusters that are formed.  

II. DOMINATING SETS BASED CLUSTERING  ALGORITHMS 

A dominating set [9] is a subset S of a graph G such that 
every vertex in G is either in S or adjacent to a vertex in S. 
Dominating sets are widely used in clustering networks. 
Dominating sets can be classified into three main classes i) 
Independent Dominating Set ii) Weakly Connected 
Dominating Set and iii) Connected Dominating Set. 

A. Independent Dominating Set (IDS) 

IDS [6] [11] is a dominating set S of a graph G in which 
there are no adjacent vertices. Fig.1. shows a sample 
independent dominating set  

 
Figure 1. Independent Dominating Set.  

B. Weakly Connected Dominating Sets (WCDS) 

WCDS [10] [12] is Sw is a subset S of a graph G that 
contains the vertices of S, their neighbors and all edges of 
the original graph G with at least one endpoint in S. A 
subset S is a weakly-connected dominating set, if S is 
dominating and Sw is connected. Fig.2. shows a Weakly 
Connected Dominating Sets. 

  

 
Figure 2. Weakly Connected Dominating Set. 
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C. Connected Dominating Set (CDS) 

CDS [11] [13] is a subset S of a graph G such that S 
forms a dominating set and S is connected. Fig.3. shows a 
Weakly Connected Dominating Sets. 

 
Figure 3. Connected Dominating Set. 

D. Determining Dominating Sets 

Algorithms that construct a CDS in ad hoc networks can 
be divided into two categories: centralized algorithms that 
depend on network-wide information or coordination and 
decentralized that depend on local information only. 
Centralized algorithms usually yield a smaller CDS than 
decentralized algorithms, but their application is limited due 
to the high maintenance cost.  

Decentralized algorithms can be further divided into 
cluster-based algorithms and pure localized algorithms. 
Cluster-based algorithms have a constant approximation 
ratio in unit disk graphs and relatively slow convergence ( 
O(n) in the worst case). Pure localized algorithms take 
constant steps to converge, produce a small CDS on 
average, but have no constant approximation ratio. A 
cluster-based algorithm usually contains two phases. In the 
first phase, the network is partitioned into clusters and a 
clusterhead is elected for each cluster. In the second phase, 
clusterheads are interconnected to form a CDS. Several 
clustering algorithms [2] [4] [7] have been proposed  to 
elect clusterheads that have the minimal id, maximal degree, 
or maximal weight. A host v is a clusterhead if it has the 
minimal id (or maximal degree or weight) in its 1-hop 
neighbourhood. A clusterhead and its neighbours form a 
cluster and these hosts are covered. The election process 
continues on uncovered hosts and, finally, all hosts are 
covered.  

Wu and Li [9] proposed a simple and efficient localized 
algorithm that can quickly determine a CDS in ad hoc 
networks. This approach uses a marking process where 
hosts interact with others in the neighbourhood. 
Specifically, each host is marked true if it has two 
unconnected neighbours. These hosts achieve a desired 
global objective set of marked hosts forms a small CDS.  

 

 
 Figure 4. Example of ad hoc networks. 

In Wu and Li’s approach, the resultant dominating set 
derived from the marking process is further reduced by 
applying two dominant pruning rules. According to 
dominant pruning Rule 1, a marked host can unmark itself if 
its neighbour set is covered by another marked host; that is, 
if all neighbours of a gateway are connected with each other 
via another gateway, it can relinquish its responsibility as a 
gateway. In Fig. 4. either u or w can be unmarked (but not 
both).According to Rule 2, a marked host can unmark itself 
if its neighbourhood is covered by two other directly 
connected marked hosts. The combination of Rules 1 and 2 
is fairly efficient in reducing the number of gateways while 
still maintaining a CDS. 

III. LOCALIZED DOMINATING SET FORMATION ALGORITHM 

A. Localized Dominating Set Formation 

Fei Dai, Jie Wu [9] proposed a generalized dominant 
pruning rule, called Rule k, which can unmark gateways 
covered by k other gateways, where k can be any number. 
Rule k can be implemented in a restricted way with local 
neighbourhood information that has the same complexity as 
Rule 1 and, surprisingly, less complexity than Rule 2. 

Given a simple directed graph G=(V,E) where V is a set 
of vertices (hosts) and E is a set of directed edges 
(unidirectional links), a directed edge from u to v is denoted 
by an ordered pair (u,v). If (u,v) is an edge in G, we say that 
u dominates v and v is an absorbent of u. The dominating 

neighbour set Nd(u) of vertex u is defined as {w : (w,u)  

E}. The absorbent neighbour set Na(u) as {v : (u,v)  E}.  

N(u) = Nd(u)  Na(u) Fig. 5. vertex x dominates vertex u, y 
is an absorbent of u, and v is a dominating and absorbent 
neighbour of u. The dominating neighbour set of vertex u is 
Nd(u) = {v,x},  the absorbent neighbour set of u 
isNa(u)={v,y}, and the neighbour set of u is N(u)={v,x,y}. 
The general disk graph and unit disk graph are special cases 
of directed graphs. 

 
 

Figure 5. Example of dominating set reduction. 
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A set V’ V is a dominating set of G if every vertex v  

V – V’ is dominated by at least one vertex u  V’. Also, a 

set V’ V is called an absorbent set if for every vertex u V 

– V’, there exists a vertex v V’ which is an absorbent of u. 
For example, vertex set {u,v} in Fig. 5. is both dominating 
and absorbent sets of the corresponding directed graphs. The 
following marking process can quickly find a strongly 
connected dominating and absorbent set in a given directed 
graph. 

Algorithm Marking process  
1: Initially assign marker F to each u in V . 
2: Each u exchanges its neighbour set Nd(u) and Na(u) 

with all its neighbours. 
3: u changes its marker m(u) to T if there exist vertices v 

and w such that (w,u)  E and (u,v)  E, but (w,v)  E. 
The marking process is a localized algorithm, where 

hosts only interact with others in the neighbourhood. Unlike 
clustering algorithms, there is no “sequential propagation” 
of information. The marking process marks every vertex in 

G. m(v) is a marker for vertex v  V , which is either T 
(marked) or F (unmarked). Suppose the marking process is 
applied to the network represented by Fig. 5. host u will be 

marked because (x,u)  E and (u,y)  E, but (x,y)  E host 

v will also be marked because (u,v)  E and (v,z)  E, but 

(u,z)  E. All other hosts will remain unmarked because no 
such pair of neighbour hosts can be found. V’ is the set of 

vertices that are marked T in V ; that is, V’={v : vV  
m(v) = T }. The induced graph G’ is the subgraph of G 
induced by V’ ; that is G’=G[V’]. Wu [9] showed that 
marked vertices form a strongly connected dominating and 
absorbent set and, furthermore, can connect any two vertices 
with minimum hops. 

B. Dominating Set Reduction 

In the marking process, a vertex is marked T because it 
may be the only connection between its two neighbours. 
However, if there are multiple connections available, it is 
not necessary to keep all of them. We say a vertex is 
covered if its neighbours can reach each other via other 
connected marked vertices. Two dominant pruning rules are 
as  follows: If a vertex is covered by no more than two 
connected vertices, removing this vertex from V’  will not 
compromise its functionality as a CDS. To avoid 
simultaneous removal of two vertices covering each other, a 
vertex is removed only when it is covered by vertices with 

higher id’s. Node id id(v) of each each vertex v  V serves 
as a priority. Nodes with high priorities have high 
probability of becoming gateways. Id uniqueness is not 
necessary, but equal id’s will produce more gateways.  

 
  Rule 1. Consider two vertices u and v in G’. If Nd(u) – 

{v}  Nd(v) and Na(u) – {v}  Na(v) in G and id(u) < id(v), 
change the marker of u to F; that is, G’ is changed to G’ – 
{u}. 

 

  Rule 2. Assume that v and w are bi-directionally 

connected in G’. If Nd(u) – {v,w}  Nd(v) U Nd(w) and Na(u) 

– {v,w}  Na(v)  Na(w) in G and id(u) < min{id(v),id(w)}, 
then change the marker of u F. 

C. Generalized Pruning Rule 

Assume G’=(V’,E’) is the induced subgraph of a given 
directed graph =(V,E) from marked vertex set V’. In the 
following dominant pruning rule, Nd(Vk’) to represent the 
dominating (absorbent) neighbour set of a vertex set Vk’ that 

is, Nd(Vk’) = UuiVk’   Nd(ui). 

  Rule k.  V’  {v1, v2, ... , vk} is the   vertex set of a   

strongly connected subgraph in G’. If Nd(u) – Vk’  Nd(Vk’) 

and Na(u) - Vk’  Na(Vk’) in G and id(u) < min{ id(v1), 
id(v2),...,id(vk) }, then change the marker of u to F. 

Rules 1 and 2 are special cases of Rule k, where |V’| is 
restricted to 1 and 2, respectively. Note that Vk’ may contain  
two subsets: Vk1’ that really covers u’s neighbour set, and 
Vk2’ that acts as the glue to make them a connected set. 
Obviously, if a vertex can be removed from V’ by applying 
Rule 1 or Rule 2, it can also be removed by applying Rule k. 
On the other hand, a vertex removed by Rule k is not 
necessarily removable via Rule 1 or Rule 2. For example, in 
Fig. 6(a), both vertices u and v can be removed using Rule k 
(for k >= 3) because they are covered by vertices w, x, y, 
and z; in Fig. 6(b), vertex u can be removed because it is 
covered by vertices w, x, and y. Note that, although x and y 
are not bi directionally connected, they can reach each other 
via vertex w. However, none of these vertices can be 
removed via Rule 1 or Rule 2. 

 
Figure 6. Limitation of Rule 1 and 2. 

D. Performance Analysis 

The restricted Rule k is a more efficient dominant 
pruning rule than the combination of the restricted Rules 1 
and 2, especially in dense networks with a relatively high 
percentage of unidirectional links. For these networks, the 
resultant dominating set can be greatly reduced by Rule k 
without any performance or resource penalty. One 
advantage of the marking process and the dominant pruning 
rules is their capability to support unidirectional links. For 
networks without unidirectional links, the marking process 
and the restricted Rule k is as efficient as several cluster-
based schemes and another pure localized algorithm, in 
terms of the size of the dominating set; this is achieved with 
lower cost and higher converging speed. 
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IV. A ZONAL CLUSTERING ALGORITHM 

Zonal distributed algorithm [3] is to find a small weakly 
connected dominating set of the input graph G = (V,E). The 
graph is  first partitioned into non-overlapping regions. 
Then a greedy approximation algorithm [1] is executed to 
find a small weakly-connected dominating set of each 
region. Taking the union of these weakly-connected 
dominating sets we obtain a dominating set of G. Some 
additional vertices from region borders are added to the 
dominating set to ensure that the zonal dominating set of G 
is weakly-connected.  

A. Graph partitioning using minimum spanning forests 

The first phase of zonal distributed clustering algorithm 
partitions a given graph G = (V,E) into non overlapping 
regions. This is done by growing a spanning forest of the 
graph. At the end of this phase, the subgraph induced by 
each tree defines a region. This phase is based on an 
algorithm of Gallager, Humblet, and Spira GHS [8[ that is 
based on Kruskal's classic centralized algorithm for 
Minimum Spanning Tree (MST), by considering all edge 
weights are distinct, breaking ties using the vertex IDs of the 
endpoints.  

The MST is unique for a given graph with distinct edge 
weights. The algorithm maintains a spanning forest. 
Initially, the spanning forest is a collection of trees of single 
vertices. At each step the algorithm merges two trees by 
including an edge in the spanning forest. During the process 
of the algorithm, an edge can be in any of the three states: 
tree edge, rejected edge, or candidate edge. All edges are 
candidate edges at the beginning of the algorithm. When an 
edge is included in the spanning forest, it becomes a tree 
edge. If the addition of a particular edge would create a 
cycle in the spanning forest, the edge is called a rejected 
edge and will not be considered further. In each iteration, 
the algorithm looks for the candidate edge with minimum 
weight, and changes it to a tree edge merging two trees into 
one. During the algorithm, the tree edges and all the vertices 
form a spanning forest. The algorithm terminates when the 
forest becomes a single spanning tree. 

The partitioning process consists of a partial execution 
of the GHS algorithm [8], which terminates before the MST 
is fully formed. The size of components is controlled by 
picking a value x. Once a component has exceeded size x, it 
no longer participates. 

B. Computing Weakly-Connected Dominating Sets of the 
Regions 

Once the graph G is partitioned into regions and a 
spanning tree has been determined for each region, runs the 
following algorithm within each region. This color-based 
algorithm is a distributed implementation of the centralized 
greedy algorithm for finding small weakly-connected 
dominating sets [10] [12] in graphs. 
For given a graph G = (V;E) assign color (white, gray, or 
black) with each vertex. All vertices are initially white and 
change color as the algorithm progresses. The algorithm is 

essentially an iteration of the process of choosing a white or 
gray vertex to dye black. When any vertex is dyed black, 
any neighbouring white vertices are changed to gray. At the 
end of the algorithm, the black vertices constitute a weakly-
connected dominating set. 
The term piece is used to refer to a particular substructure of 
the graph. A white piece is simply a white vertex. A black 
piece contains a maximal set of black vertices whose weakly 
induced subgraph is connected plus any gray vertices that 
are adjacent to at least one of the black vertices of the piece. 
The improvement of a (non-black) vertex u is the number of 
distinct pieces within the closed neighborhood of u. That is, 
the improvement of u is the number of pieces that would be 
merged into a single black piece if u were to be dyed black. 
In each iteration, the algorithm chooses a single white or 
gray vertex to dye black. The vertex is chosen greedily so as 
to reduce the number of pieces as much as possible until 
there is only one piece left. In particular, a vertex with 
maximum improvement value is chosen (with ties broken 
arbitrarily). The black vertices are the required weakly-
connected dominating set S. 

C. Fixing the Borders 

After calculating a small weakly-connected dominating 
set Si for each region Ri of G, combining these solutions 
does not necessarily give us a weakly connected dominating 
set of G. it is likely need to include some additional vertices 
from the borders of the regions in order to obtain a weakly-
connected dominating set of G. The edges of G are either 
dominated (that is, they have either endpoint in some 
dominating set Si) or free (in which case neither endpoint is 
in a dominating set). Two regions Ri and Rj joined by a 
dominated edge can comprise a single region with 

dominating set Si  Sj , and do not need to have their shared 
border fixed.  

The root of region R can learn, by polling all the vertices 
in its region, which regions are adjacent and can determine 
which neighbouring regions are not joined by a dominated 
edge. For each such pair of adjacent regions, one of the 
regions must "fix the border". To break ties, the region with 
lower region ID takes control of this process, where the 
region ID is the vertex ID of the region root. In other words, 
if neighboring regions Ri and Rj are not joined by a shared 
dominated edge, the region with the lower subscript adds a 
new vertex from the Ri/Rj border into the dominating set. 
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Figure 7. Fixing Boarders. 

For example, in Fig. 7, have regions have weakly-
connected dominating sets indicated by the solid black 
vertices. Region R1 is adjacent to regions R2, R3, R4, and 
R5. Among these, regions R2 and R3 do not share 
dominated edges with R1. As R1 has a lower region ID than 
either R2 or R3, R1 is responsible for  fixing these borders. 
The root of R1 adds u and v into the dominating set. R2 is 
adjacent to two regions, R1 and R3, but it is only 
responsible for fixing the R2/R3 border, due to the region 
IDs. The root of R2 adds w to the dominating set. A detailed 
description of this process for a given region R follows. The 
goal is for the root r to find a small number of dominated 
vertices within R to add to the dominating set. Here every 
vertex knows the vertex ID, color, and region ID of all of its 
neighbors. (This can be done with a single round of 
information exchange.) Root r collects the above 
neighborhood information from all of the border vertices of 
R. 

This define a problem region with regard to R to be any 
region R0 that is adjacent to R, does not share dominated 
edges with R, and has a higher region ID than R. Region R 
is responsible for fixing its border with each problem 
region.  

 
Figure 8. Bipartite Graph  

 
A bipartite graph B(X,Y,E) can be constructed from the 

collected information for root r. Vertex set X contains a 
vertex for each problem region with regard to R, and vertex 
set Y contains a vertex for every border vertex in R. There is 
an edge between vertices yi and xj iff  yi is adjacent to a 
vertex in problem region xi in the ordinal graph. Fig. 8. 
shows the bipartite graph constructed by region R1 in the 
example of Fig. 7. In this bipartite graph, X = {R2, R3} and 
Y = {u, y, v}. In this case, {u,v} is a possible solution for R1 

to add to the weakly-connected dominating set in order to x 
its borders with R2 and R3. To  find the smallest possible set 
of vertices to add to the dominating set, r must find a 
minimum size subset of Y to dominate X. 

D. Performance Analysis: 

The execution time of this algorithm is O(x(log x+|Smax|)) 
and it generates O(m + n(log x + |Smax|)) messages, where 
Smax is the largest weakly connected dominating set 
generated by all regions and can be trivially bounded by 
O(x) from above. This zonal algorithm is regulated by a 
single parameter x, which controls the size of regions. When 
x is small, the algorithm finishes quickly with a large 
weakly-connected dominating set. When it is large, it 
behaves more like the non-localized algorithm and generates 
smaller weakly-connected dominating 

V.  CLUSTERING USING A MINIMUM SPANNING TREE 

An undirected graph is defined as G = (V,E), where V is a 
finite nonempty set and E ⊆ V × V . V is a set of nodes v 
and the E is a set of edges e. A graph G is connected if there 
is a path between any distinct v. A graph GS = (VS,ES) is a 
spanning subgraph of G = (V,E) if VS = V . A spanning tree 
[6] [8] [15] of a graph is an undirected connected acyclic 
spanning subgraph. Intuitively, a minimum spanning 
tree(MST) for a graph is a subgraph that has the minimum 
number of edges for maintaining connectivity. 

Gallagher, Humblet and Spira [8] proposed a distributed 
algorithm which determines a minimum weight spanning 
tree for an undirected graph that has distinct finite weights 
for every edge. Aim of the algorithm is to combine small 
fragments into larger fragments with outgoing edges. A 
fragment of an MST is a subtree of the MST. An outgoing 
edge is an edge of a fragment if there is a node connected to 
the edge in the fragment and one node connected that is not 
in the fragment. Combination rules of fragments are related 
with levels. A fragment with a single node has the level L = 
0. Suppose two fragments F at level L and F’ at level L’. 

– If L < L’, then fragment F is immediately absorbed as 
part of fragment F. The    expanded fragment is at level L’. 

– Else if L = L’ and fragments F and F’ have the same 
minimum-weight outgoing edge, then the fragments 
combine immediately    into a new fragment at level L+1 

– Else fragment F waits until fragment F’ reaches a high 
enough level for combination. 

Under the above rules the combining edge is then called 
the core of the new fragment. The two essential properties 
of MSTs for the algorithm are: 

– Property 1: Given a fragment of anMST, let e be a 
minimum weight outgoing edge of the fragment. Then 
joining e and its adjacent non-fragment node to the 
fragment yields another fragment of an MST. 

– Property 2: If all the edges of a connected graph have 
different weights, then the MST is unique 
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The algorithm defines three different states of operation 
for a node. The states are Sleeping, Find and Found. The 
states affect what of the following seven messages are sent 
and how to react to the messages: Initiate, Test, Reject, 
Accept, Report (W), Connect (L) and Change-core. The 
identifier of a fragment is the core edge, that is, the edge 
that connects the two fragments together. A sample 
MANET and a minimum spanning tree constructed with 
Gallagher, Humblet, Spira’s algorithm  can be seen in Fig. 
9. where any node other than the leaf nodes which are 
shown by black color depict a connected set of nodes. The 
upper bound for the number of messages exchanged during 
the execution of the algorithm is 5Nlog2N +2E, where N is 
the number of nodes and E is the number of edges in the 
graph. A worst case time for this algorithm is O(NlogN). 

Dagdeviren et. al. proposed the Merging Clustering 
Algorithm (MCA) [6] which finds clusters in a MANET by 
merging the clusters to form higher level clusters as 
mentioned in Gallagher et. al.'s algorithm [28]. However, 
they focused on the clustering operation by discarding the 
minimum spanning tree. This reduces the message 
complexity from O(nlogn) to O(n). The second contribution 
is to use upper and lower bound parameters for clustering 
operation which results in balanced number of nodes in the 
clusters formed. The lower bound is limited by a parameter 
which is defined by K and the upper bound is limited by 2K.  

 

 

Figure 9. A MANET and its Spanning Tree.  

VI. CONCLUSIONS 

In this paper we discussed dominating set and spanning 
tree based clustering in mobile ad hoc networks and it 

performance analysis. The efficiency of dominating set 
based routing mainly depends on the overhead introduced in 
the formation of the dominating set and the size of the 
dominating set. We discussed two algorithms which have 
less overhead in dominating set formation. Finally we 
discussed spanning tree approach in clustering MANET.  
Distributed spanning tree and dominating set approaches 
can be merged to improves clustering in MANET. 

VII. FUTURE WORK 

The interesting open problem in mobile ad hoc networks 
is to study the dynamic updating of the backbone efficiently 
when nodes are moving in a reasonable speed integrate the 
mobility of the nodes. The work can be extended to develop 
connected dominating set construction algorithms when 
hosts in a network have different transmission ranges. 
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