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Abstract— This paper proposes different approaches of wavelet 
based image denoising methods. The search for efficient image 
denoising methods is still a valid challenge at the crossing of 
functional analysis and statistics. In spite of the sophistication of 
the recently proposed methods, most algorithms have not yet 
attained a desirable level of applicability. Wavelet algorithms are 
useful tool for signal processing such as image compression and 
denoising. Multi wavelets can be considered as an extension of 
scalar wavelets. The main aim is to modify the wavelet 
coefficients in the new basis, the noise can be removed from the 
data. In this paper, we extend the existing technique and 
providing a comprehensive evaluation of the proposed method. 
Results based on different noise, such as Gaussian, Poisson’s, Salt 
and Pepper, and Speckle performed in this paper. A signal to 
noise ratio as a measure of the quality of denoising was preferred.  
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I.  INTRODUCTION  

The image usually has noise which is not easily eliminated 
in image processing. According to actual image characteristic, 
noise statistical property and frequency spectrum distribution 
rule, people have developed many methods of eliminating 
noises, which approximately are divided into space and 
transformation fields  The space field is data operation carried 
on the original image, and processes the image grey value, like 
neighborhood average method, wiener filter, center value filter 
and so on. The transformation field is management in the 
transformation field of images, and the coefficients after 
transformation are processed.  Then the aim of eliminating 
noise is achieved by inverse transformation, like wavelet 
transform [1], [2]. Successful exploitation of wavelet 
transform might lessen the noise effect or even overcome it 
completely [3]. There are two main types of wavelet transform 
- continuous and discrete [2]. Because of computers discrete 
nature, computer programs use the discrete wavelet transform. 
The discrete transform is very efficient from the computational 
point of view. In this paper, we will mostly deal with the 
modeling of the wavelet transform coefficients of natural 
images and its application to the image denoising problem. 
The denoising of a natural image corrupted by Gaussian noise 
is a classic problem in signal processing [4]. The wavelet 
transform has become an important tool for this problem due 
to its energy compaction property [5]. Indeed, wavelets 
provide a framework for signal decomposition in the form of a 
sequence of signals known as approximation signals with 
decreasing resolution supplemented by a sequence of 
additional touches called details [6][7]. Denoising or 
estimation of functions, involves reconstituting the signal as 

well as possible on the basis of the observations of a useful 
signal corrupted by noise [8] [9] [10] [11]. The methods based 
on wavelet representations yield very simple algorithms that 
are often more powerful and easy to work with than traditional 
methods of function estimation [12]. It consists of 
decomposing the observed signal into wavelets and using 
thresholds to select the coefficients, from which a signal is 
synthesized [5]. Image denoising algorithm consists of few 
steps; consider an input signal  ( )and noisy signal  ( ). Add 
these components to get noisy data  ( ) i.e.  

 ( )   ( )   ( )                           
Here the noise can be Gaussian, Poisson‟s, speckle and 

Salt and pepper, then apply wavelet transform to get  ( ). 

 ( )
                 
→               ( )                        

Modify the wavelet coefficient  ( ) using different 
threshold algorithm and take inverse wavelet transform to get 

denoising image  ̂( ).  

 ( )
                         
→                     ̂( )              

The system is expressed in Fig. 1.  

 

 

 

 

 

 

 

 

Figure 1: Block diagram of Image denoising using wavelet transform. 

Image quality was expressed using signal to noise ratio of 
denoised image. 

II. WAVELET TRANSFORM  

The wavelet expansion set is not unique. A wavelet system 
is a set of building blocks to construct or represents a signal or 
function. It is a two dimensional expansion set, usually a basis, 
for some class one or higher dimensional signals.  The wavelet 
expansion gives a time frequency localization of the signal. 
Wavelet systems are generated from single scaling function by 
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scaling and translation. A set of scaling function in terms of 
integer translates of the basic scaling function by  

  ( )   (   )                    
 .            (4) 

The subspaces of    ( ) spanned by these functions is 

defined as    *  ( )+ 
    ̅̅ ̅̅ ̅̅ ̅

 for all integers k from minus 

infinity to infinity. A two dimensional function is generated 
from the basic scaling function by scaling and translation by 

     ( )   
    (     )                                       (5) 

Whose span over k is  

   {  ( 
  )}

 

    ̅̅ ̅̅ ̅̅ ̅
    {    ( )} 

    ̅̅ ̅̅ ̅̅ ̅
,          (6) 

for all integer. The multiresolution analysis expressed in terms 
of the nesting of spanned spaces as                
           

 .  The spaces that contain high resolution 
signals will contain those of lower resolution also. The spaces 

should satisfy natural scaling condition  ( )     ⇔   (  )  
     which ensures elements in space are simply scaled 

version of the next space. The nesting of the spans of  (    
 )denoted by     i.e.  ( )is in    , it is also in   , the space 

spanned by  (  ). This  ( )can be expressed in weighted 
sum of shifted  (  )as 

 ( )  ∑  ( )√  (    )                                   (7)   

Where the h (n) is scaling function. The factor √  used for 
normalization of the scaling function. The important feature of 
signal expressed in terms of wavelet function  

   
( )not in 

scaling function     ( ). The orthogonal complement of     in 

     is defined as  , we require, 

〈    ( )    ( )〉  ∫    ( )    ( )                                     (8) 

For all appropriate        . The relationship of the 

various subspaces is  
              

 . The wavelet 
spanned subspaces   such that         , which extends 

to            .In general this               
where    is in the space spanned by the scaling function 
 (   ), at     , equation becomes 

                                                  (9) 

eliminating the scaling space altogether . The wavelet can be 
represented by a weighted sum of shifted scaling function 
 (  ) as, 

 ( )  ∑   ( )√  (    )                     (10) 

For some set of coefficient   ( ), this function gives the 
prototype or mother wavelet ( ) for a class of expansion 
function of the form,        

    ( )   
    (     )                                              (11) 

Where   the scaling of   is,       is the translation in t, and  
     maintains the    norms of the wavelet at different scales. 
The construction of wavelet using set of scaling function 

  ( ) and  
   
( ) that could span all of   ( ), therefore 

function  ( )    ( ) can be written as  

 
 ( )  ∑  ( )  ( )  

 
     ∑ ∑  (   )    ( )

 
    

 
        (12) 

First summation in above equation gives a function that is 
low resolution of g (t), for each increasing index j in the 
second summation, a higher resolution function is added 
which gives increasing details. The function d (j, k) indicates 
the differences between the translation index k, and the scale 
parameter j.  In wavelet analysis expand coefficient at a lower 
scale level to higher scale level, from equation (10), we scale 
and translate the time variable to given as 

 (     )   ∑  ( )√  (          )           (13) 

After changing variables m=2k+n, above equation 
becomes   

 (     )  ∑  (    )√  (       )         (14) 

If we denote    as    *   (     )+  
    ̅̅ ̅̅ ̅̅ ̅

then  ( )  

    ⇒  ( )  ∑     ( ) 
   

  (       )   is expressible at 

scale j+1, with a scaling function only not wavelets. At one 
scale lower resolution, wavelets are necessary for the detail 
not available at a scale of j. We have 

 ( )  ∑   ( ) 
    (     )  ∑   ( ) 

 

  (     )   (15) 

Where the    terms maintain the unity norm of the basis 
functions at various scales.  If     ( ) and     ( ) are 

orthonormal, the j level scaling coefficients are found by 
taking the inner product 

  ( )  〈 ( )     ( )〉  ∫  ( )  
    (     )          (16) 

By using equation (14) and interchanging the sum and 
integral, can be written as  

  ( )  ∑  (    )∫  ( ) 
   

  (       )        (17) 

But the integral is inner product with the scaling function 
at a scale j+1giving 

  ( )  ∑  (    )    ( )                                     (18) 

The corresponding wavelet coefficient is 

  ( )  ∑   (    )    ( )                                  (19) 

Fig. 2 shows the structure of two stages down sampling 
filter banks in terms of coefficients. 

 

Figure 2: Two stages down sampling filter bank 

A reconstruction of the original fine scale coefficient of the 
signal made from a combination of the scaling function and 
wavelet coefficient at a course resolution which is derived by 
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considering a signal in the     scaling function space  ( )  
    . This function written in terms of the scaling function as  

 ( )  ∑     ( ) 
   

  (       )                               (20) 

In terms of next scales which requires wavelet as 

 ( )  ∑   ( ) 
    (     )  ∑   ( ) 

  (     )    (21) 

Substituting equation (15) and equation (11) into equation 
(20), gives  

 ( )  ∑   ( )∑  ( ) 
   

  (          )    

                  ∑   ( )∑   ( ) 
   

  (          )           (22) 

Because all of these function are orthonormal, multiplying 

equation (20) and equation (21) by  (       ) and 
integrating evaluates the coefficients as               

      ( )      ∑   ( ) (    )              

                                        ∑   ( )  (    )                 (23) 

Fig. 3 shows the structure of two stages up sampling filter 
banks in terms of coefficients i.e. synthesis from coarse scale 
to fine scale [5] [6] [7]. 

 

Figure 3: Two stages up sampling filter 

In filter structure analysis can be done by apply one step of 
the one dimensional transform to all rows, then repeat the 
same for all columns then proceed with the coefficients that 
result from a convolution with in both 
directions[6][7][8][9][10][12]. The two level wavelet 
decomposition as shown in fig 4. 

 

Figure 4: Two-dimensional wavelet transform.  

III. DENOISING TECHNIQUE WITH EXISTING THRESHOLD 

Noise is present in an image either in an additive or 
multiplicative form. An additive noise follows the rule, 
 (   )   (   )   (   ) 

While the multiplicative noise satisfies  

 (   )   (   )   (   ).  

Where  (   ) is the original signal,  (   )denotes the 
noise. When noise introduced into the signal it produces the 
corrupted image  (   ).14]. Gaussian Noise is evenly 
distributed over the signal. This means that each pixel in the 
noisy image is the sum of the true pixel value and a random 

Gaussian distributed noise value. Salt and Pepper Noise is an 
impulse type of noise, which is also referred to as intensity 
spikes. This is caused generally due to errors in data 
transmission. The corrupted pixels are set alternatively to the 
minimum or to the maximum value, giving the image a “salt 
and pepper” like appearance. Unaffected pixels remain 
unchanged. The source of this noise is attributed to random 
interference between the coherent returns [7], [8], [9] [10]. 
Fully developed speckle noise has the characteristic of 
multiplicative noise. 

A. Universal Threshold 

The universal threshold can be defined as, 

   √     ( )               (24) 

N being the signal length, σ being the noise variance is 
well known in wavelet literature as the Universal threshold. It 
is the optimal threshold in the asymptotic sense and minimizes 
the cost function of the difference between the function. One 
can surmise that the universal threshold may give a better 
estimate for the soft threshold if the number of samples is 
large [13] [14]. 

B. Visu Shrink 

Visu Shrink was introduced by Donoho [13]. It uses a 
threshold value t that is proportional to the standard deviation 
of the noise. It follows the hard threshold rule. An estimate of 
the noise level σ was defined based on the median absolute 
deviation given by 

 ̂  
      ({|      |           

     })

      
                                  (25) 

Where       corresponds to the detail coefficients in the 

wavelet transform. VisuShrink does not deal with minimizing 
the mean squared error. Another disadvantage is that it cannot 
remove speckle noise. It can only deal with an additive noise. 
VisuShrink follows the global threshold scheme, which is 
globally to all the wavelet coefficients [9]. 

C. Sure Shrink 

A threshold chooser based on Stein‟s Unbiased Risk 
Estimator (SURE) was proposed by Donoho and Johnstone 
and is called as Sure Shrink. It is a combination of the 
universal threshold and the SURE threshold [15] [16]. This 
method specifies a threshold value    for each resolution level 

  in the wavelet transform which is referred to as level 
dependent threshold. The goal of Sure Shrink is to minimize 
the mean squared error [9], defined as, 

    
 

  
∑ ( (   )   (   ))  
                                 (26) 

Where  (   )is the estimate of the signal,  (   ) is the 
original signal without noise and n is the size of the signal. 
Sure Shrink suppresses noise by threshold the empirical 
wavelet coefficients. The Sure Shrink threshold t* is defined 
as  

       (   √     )                                                 (27) 

Where   denotes the value that minimizes Stein‟s Unbiased 
Risk Estimator,   is the noise variance computed from 
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Equation, and   is the size of the image. It is smoothness 
adaptive, which means that if the unknown function contains 
abrupt changes or boundaries in the image, the reconstructed 
image also does [17] [18]. 

D. Bayes Shrink 

Bayes Shrink was proposed by Chang, Yu and Vetterli. 
The goal of this method is to minimize the Bayesian risk, and 
hence its name, Bayes Shrink [19]. The Bayes threshold,  , is 
defined as  

   
  
  ⁄                                                                      (28) 

Where    is the noise variance and    is the signal 
variance without noise. The noise variance    is estimated 
from the sub band HH by the median estimator shown in 
equation (28). From the definition of additive noise we 
have  (   )   (   )   (   ). Since the noise and the 
signal are independent of each other, it can be stated that 

  
    

                      (29) 
  
  can be computed as shown below: 

  
  

 

  
∑   (   ) 
                (30) 

The variance of the signal, σ2
s is computed as 

   √    (  
      ) 

                                             
(31) 

With    and  
 , the Bayes threshold is computed from 

Equation (31). Using this threshold, the wavelet coefficients 
are threshold at each band [20]. 

E. Normal Shrink:  

The threshold value which is adaptive to different sub band 
characteristics 

     
 

  ⁄   

Where the scale parameter   has computed once for each 
scale, using the following equation.  

  √   .
  

 
/                                       (32) 

   means the length of the sub band at     scale.   means 
the noise variance, [13] which can be estimated from the sub 
band HH using equation (32). 

IV. PROPOSED DENOISING SCHEME 

There are different denoising scheme used to remove noise 
while preserving original information and basic parameter of 
the image. Contrast, brightness, edges and background of the 
image should be preserved while denoising in this technique. 
Wavelet transform tool used in denoising of image. Multi 
resolution analysis structure consider for denoising scheme. 
Actually, the performance of our algorithm is very close, and 
in some cases even surpasses, to that of the already published 
denoising methods. Performance measured in terms of signal 
to noise ratio 

A. New threshold function: 

This function is calculated by 

      √       ( )                                   (33) 

Where,    is the total number of pixel of an image,    is 
the mean of the image. This function preserves the contrast, 
edges, background of the images. This threshold function 
calculated at different scale level.    

B. Circular kernel:  

Kernel applied to the wavelet approximation coefficient, to 
get denoised image with all parameters undisturbed. The 
kernel uses here in this technique contains some components 
like [0 0 1 1 1 0 0; 0 1 1 1 1 1 0; 1 1 1 1 1 1 1; 1 1 1 1 1 1 1; 1 
1 1 1 1 1 1; 0 1 1 1 1 1 0; 0 0 1 1 1 0 0]. Multi resolution 
analysis wavelet structure has used for this kernel to get result.  

C. Mean-Max threshold:   

Generation of the threshold in using mean and max method 
after decomposition. Let xi denotes the sequence of elements; 
threshold can be calculated using following technique. 

       {  }     {,   (       - 

,   (         )-     [   (           )] }      (34) 

       {  }     *,   (       - 
,   (         )-    ,   (           )- +     (35) 

D. Nearest neighbor:  

This technique gives better result for different kernel 
structure shown in figure (5). In this kernel central pixel (CP), 
calculated from the neighbor value. Three different kernels 
have proposed for better reduction of noise using wavelet 
transform at different scale. Mark „x‟ denotes low value at that 
position.  

 

   (a)                           (b)    (c) 

Figure 5: Kernel at different noise level. 

V. RESULT 

Image parameters has not disturb when denoising. In this 
paper calculating threshold function in spatial domain, and 
Lena image is used for implementation. When denoising we 
have to preserve contrast of the image. Image brightness in 
denoising kept same but preserves the background and the 
gray level tonalities in the image. The noise term is considered 
as a random phenomenon and it is uncorrelated, hence the 
average value of the noise results in a zero value, therefore 
consider proper kernel to get denoised image The low pass 
spatial filter reduces the noise such as bridging the gaps in the 
lines or curve in a given image, but not suitable for reducing 
the noise patterns consisting of strong spike like components 
[21] [22]. The high pass filters results in sharp details, it 
provides more visible details that obscured, hazy, and poor 
focus on the original image. Now wavelets preferred in 
denoising while preserving all the details of the image.  Table 
1 shows the results with existing technique and proposed 
denoising scheme. 
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TABLE 1: RESULT OF DIFFERENT TECHNIQUE WITH LENA. 

Methods Denoised image SNR 

 Gaussian 

Salt and 

Pepper 

Poisson Speckle 

VisuShrink 14.2110 11.8957 11.6988 12.2023 

Universal 9.2979 9.6062 9.5227 9.8297 

Sure shrink 16.8720 17.2951 14.3082 14.7922 

Normal Shrink 15.4684 17.2498 14.5519 15.0069 

Bays shrink 15.3220 16.9775 14.6518 14.9716 

New threshold 15.0061 15.5274 13.9969 14.5171 

Circular kernel 16.7560 18.9791 17.9646 14.2433 

Mean 

Max 

approxim

ation 

Maxmin 9.5908 10.2514 10.0308 10.4287 

Meanmin 12.5421 12.9643 13.2045 13.3588 

Minmax 13.3761 9.3629 13.4904 13.8338 

Meanmax 10.7183 11.5483 11.3422 11.8212 

Sqrtth 16.9222 19.9917 16.9681 16.4639 

Nearest 

Neighbor 

Four 

diagonal 
13.6178 13.4029 12.9661 13.6229 

Four 

directional 
13.7226 13.1139 13.1241 13.8448 

Eight conn- 

ectivity 
13.5136 13.0216 13.0835 13.9546 

 

VI. CONCLUSION 

This technique is computationally faster and gives better 
results. Some aspects that were analyzed in this paper may be 
useful for other denoising schemes, objective criteria for 
evaluating noise suppression performance of different 
significance measures. Our new threshold function is better as 
compare to other threshold function. Some function gives 
better edge perseverance, background information, contrast 
stretching, in spatial domain. In future we can use same 
threshold function for medical images as well as texture 
images to get denoised image with improved performance 
parameter.  

REFERENCES 

[1] Donoho.D.L,Johnstone.I.M, “Ideal spatial adaptation via wavelet 
shrinkage”, Biometrika,81,pp.425-455,1994. 

[2]  Gao Zhing, Yu Xiaohai, “Theory and application of MATLAB Wavelet 
analysis tools”, National defense industry publisher,Beijing,pp.108-116, 
2004. 

[3] Aglika Gyaourova Undecimated wavelet transforms for image de-
noising, November 19, 2002. 

[4] Bart Goossens, Aleksandra Piˇzurica, and Wilfried Philips, “Image 
Denoising Using Mixtures of Projected Gaussian Scale Mixtures”,  IEEE 

Transactions On Image Processing, Vol. 18, No. 8, August 2009, Pp. 
1689-1702 

[5] Michel Misiti, Yves Misiti, Georges Oppenheim, Jean-Michel Poggi, 
“Wavelets and their Applications”, Published by ISTE 2007 UK. 

[6] C Sidney Burrus, Ramesh A Gopinath, and Haitao Guo, “Introduction to 
wavelet and wavelet transforms”, Prentice Hall1997.S. Mallat, A 
Wavelet Tour of Signal Processing, Academic, New York, second 
edition, 1999.  

[7] R. C. Gonzalez and R. Elwood‟s, Digital Image Processing. Reading, 
MA: Addison-Wesley, 1993. 

[8]  M. Sonka,V. Hlavac, R. Boyle  Image Processing , Analysis , And 
Machine  Vision. Pp10-210 & 646-670  

[9] Raghuveer M. Rao., A.S. Bopardikar  Wavelet Transforms: Introduction 
To Theory And Application Published By Addison-Wesley 2001 pp1-
126 

[10] Arthur Jr Weeks , Fundamental of Electronic Image Processing PHI 
2005. 

[11] Jaideva    Goswami Andrew K. Chan, “Fundamentals Of Wavelets 
Theory, Algorithms, And Applications”,  John Wiley Sons 

[12] Donoho, D.L. and Johnstone, I.M. (1994) Ideal spatial adaptation via 
wavelet shrinkage. Biometrika, 81, 425-455.   

[13] D. L. Donoho and I. M. Johnstone, ”Denoising by soft thresholding”, 
IEEE Trans. on Inform. Theory, Vol. 41, pp. 613-627, 1995. 

[14] Mark J. T. Smith and Steven L. Eddins, “Analysis/synthesis techniques 
for sub band image coding,”IEEE Trans. Acoust., Speech and Signal 
Process., vol. 38,no. 8, pp. 1446–1456, Aug. 1990. 

[15] F. Luisier, T. Blu, and M. Unser, “A new SURE approach to image 
denoising: Inter-scale orthonormal wavelet thresholding,” IEEE Trans. 
Image Process., vol. 16, no. 3, pp. 593–606, Mar. 2007. 

[16] X.-P. Zhang and M. D. Desai, “Adaptive denoising based on SURE 
risk,” IEEE Signal Process. Lett., vol. 5, no. 10, pp. 265–267, Oct. 1998. 

[17] Thierry Blu, and Florian Luisier “The SURE-LET Approach to Image 
Denoising”. IEEE Transactions On Image Processing, VOL. 16, NO. 11, 
pp 2778 – 2786 , NOV 2007 . 

[18] H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch: „Adaptive 
Bayesian wavelet shrinkage‟, J. Amer. Stat. Assoc., Vol. 92, No 440, 
Dec. 1997, pp. 1413-1421 

[19]  Chang, S. G., Yu, B., and Vetterli, M. (2000). Adaptive wavelet 
thresholding for image denoising and compression. IEEE Trans. on 
Image Proc., 9, 1532–1546. 

[20] Andrea Polesel, Giovanni Ramponi, And V. John Mathews, “Image 
Enhancement Via Adaptive Unsharp Masking” IEEE Transactions On 
Image Processing, Vol. 9, No. 3, March 2000, Pp505-509 

[21] G. Y. Chen, T. D. Bui And A. Krzyzak, Image Denoising Using 
Neighbouringwavelet Coefficients, Icassp ,Pp917-920 

[22] Sasikala, P. (2010). Robust R Peak and QRS detection in 
Electrocardiogram using Wavelet Transform. International Journal of 
Advanced Computer Science and Applications - IJACSA, 1(6), 48-53. 

[23] Kekre, H. B. (2011). Sectorization of Full Kekre ‟ s Wavelet Transform 
for Feature extraction of Color Images. International Journal of 
Advanced Computer Science and Applications - IJACSA, 2(2), 69-74. 

 

AUTHORS PROFILE 

Ruikar Sachin D has received the postgraduate degree in Electronics and 
Telecommunication Engineering from Govt Engg College,  Pune University, 
India in 2002.  He is currently pursuing the Ph.D. degree in Electronics 
Engineering, SGGS IET , SRTMU Nanded, India. His research interests 
include image denoising with wavelet transforms, image fusion and image in 
painting. 

Dharmpal D Doye received his BE (Electronics) degree in 1988, ME 

(Electronics) degree in 1993 and Ph. D. in 2003 from SGGS College of 

Engineering and Technology, Vishnupuri, Nanded (MS) – INDIA. Presently, 

he is working as Professor in department of Electronics and 

Telecommunication Engineering, SGGS Institute of Engineering and 

Technology, Vishnupuri, Nanded. His research fields are speech processing, 

fuzzy neural networks and image processing. 


