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Abstract— State estimation theory is one of the best mathematical 

approaches to analyze variants in the states of the system or 

process. The state of the system is defined by a set of variables 

that provide a complete representation of the internal condition 

at any given instant of time. Filtering of Random processes is 

referred to as Estimation, and is a well-defined statistical 

technique. There are two types of state estimation processes, 

Linear and Nonlinear. Linear estimation of a system can easily be 

analyzed by using Kalman Filter (KF) and is used to compute the 

target state parameters with a priori information under noisy 

environment. But the traditional KF is optimal only when the 

model is linear and its performance is well defined under the 

assumptions that the system model and noise statistics are well 

known. Most of the state estimation problems are nonlinear, 

thereby limiting the practical applications of the KF. The 

modified KF, aka EKF, Unscented Kalman filter and Particle 

filter are best known for nonlinear estimates. Extended Kalman 

filter (EKF) is the nonlinear version of the Kalman filter which 

linearizes about the current mean and covariance. The estimation 

can be linearised around the current estimate using the partial 

derivatives to compute estimates even in the face of nonlinear 

relationships.. The EKF has been considered the standard in the 

theory of nonlinear state estimation. This paper deals with how to 

estimate a nonlinear model with Extended Kalman filter (EKF). 

The approach in this paper is to analyze Extended Kalman filter 

where EKF provides better probability of state estimation for a 

free falling body towards earth. 

Keywords- Kalman filter; Extended Kalman filter; free fall body; 

apriori information. 

I.  INTRODUCTION 

Filtering and estimation are two of the most important tools 
of engineering. Whenever the state of a system needs to be 
estimated from noisy sensor information, state estimator is 
employed to produce the best estimate of the true system state. 
When the system dynamics and observation models are linear, 

the minimum mean squared error (MMSE) estimate can be 
computed using the Kalman filter. 

Control of any process modeling, obtained from a priori 
knowledge of certain observable parameters is standard 
practice for Engineers.  For many of the applications simple 
models with linear approximations around a design point 
suffice the requirement. Since all the natural phenomena are 
non-linear, it is very important to study the nonlinear models 
and their control for the following reasons: 

1) Some systems have a linear approximation that is 

non-controllable near interesting working points. Linearization 

is ineffective even locally for such cases. 

2) Even if the linearized model is controllable one may 

wish to extend the operational domain beyond the validity 

domain into nonlinear region for better prediction. 

3) Some control problems are external to the process 

and cannot be answered by a linearly approached model. 

The success of the linear model in identification or in 
control has its cause in the good understanding of it. A better 
mastery of invariants of nonlinear models for some 
transformations is a prerequisite to a true theory of nonlinear 
identification and control. And all nonlinear systems are 
supposed to have a state space of finite dimension. State 
Estimation techniques are handled by filtering technique 
models for performance. 

A common approach to overcome this problem is to 
linearize the system before using the Kalman filter, resulting in 
an extended Kalman filter. This linearization does however 
pose some problems, e.g. it can result in nonrealistic estimates 
[1, 2] over a period of time. The development of better 
estimator algorithms for nonlinear Systems has therefore 
attracted a great deal of interest in the scientific community, 

http://en.wikipedia.org/wiki/Kalman_filter
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because the improvements will undoubtedly have great impact 
in a wide range of engineering fields. The EKF has been 
considered the standard in the theory of nonlinear state 
estimation. This paper deals with how to estimate a nonlinear 
model with Extended Kalman filter (EKF). The approach in 
this paper is to analyze Extended Kalman filter where EKF 
provides better probability of state estimation for a free falling 
body towards earth. 

II. LINEAR AND NONLINEAR MODELS  

Kalman Filter (KF), Extended KF (EKF), Unscented KF 
(UKF) and Particle filter (PF) are models popularly used for 
state estimation. 

The traditional Kalman Filter is optimal only when the 
model is linear. . The practical application of the KF is limited 
because most of the state estimation problems like tracking of 
the target are nonlinear. If the system is linear, the state 
estimation parameters like the mean and covariance can be 
exactly updated with the KF. 

The EKF works on the principal that a linearized 
transformation is approximately equal to the true nonlinear 
transformation.  

In this paper, EKF for State Estimation have been 
considered for their relative performance levels and to give an 
idea as to their applications with sample State Estimation case 
study. 

A. State space models 

A state space model is a mathematical model of a process, 

where state x of a process is represented by a numerical 

vector. State-space model actually consists of two sub models: 

the process model, which describes how the state propagates 

in time based on external influences, such as input and noise; 

and the measurement model, which describe how 

measurements z are taken from the process, typically 

simulating noisy and/or inaccurate measurements. 

B.  Linear State Space Model  

A linear state-space model assumes the functions F and H 
are linear, in both state and input. The functions can then be 
expressed by using the matrices, B and H, reducing state 
propagation calculations to linear algebra. Overall this results 
in the following state-space model: 

xk = Fkxk-1 +Bkuk -1+wk -1                   (1)  

zk = Hkxk +vk                    (2)  

Where  

u is process input  

w is state vector  

v is measurement noise vector  

k is the discrete time  
The above expressions (1) and (2) govern state propagation 

and measurements respectively. 

Linear model is easier both to calculate and analyze.          
This enables modelers to investigate properties such as 
controllability, observability and frequency response [11].  

Linear state models are either based on inherently linear 
processes, or simply linearized versions of a nonlinear process 

by means of a first order Taylor approximation. 

C. Nonlinear State Space Model  

The most general form of state-space models is the 
Nonlinear model. This model does typically consist of two 
functions, f and h:  

xk= f (xk-1,uk-1,wk-1)            (3)  

zk= h(xk,vk)            (4) 

 

III. EXTENDED KALMAN FILTER 

A. Back ground- State estimation 

State estimation concerns the problem of estimating the 
probability density function (pdf) for the state of a process 
which is not directly observable. This involves both predicting 
the next state (based on the current state) and applying 
corrections (based on measurement model).  

Estimator: Estimator is a tool that predicts the future 
behavior of a model from the available information.  

The Estimator uses knowledge about the evaluation of the 
variable, the probabilistic characterization of the various 
random factors and the prior information. 

 

 

 

 

 

 

 
Figure 1: Mathematical view of state estimation 

 

Different estimators: 

 Recursive Bayesian Estimation 

 Kalman Filter (KF) 

 Extended KF (EKF) 

 Unscented KF (UKF)  and  

 Particle filter (PF) 

B. Recursive Bayesian Estimation(RBE) State Space  

The most general form of state estimation is known as 
Recursive Bayesian Estimation [12]. This is the optimal way of 
predicting a state pdf for any process, given a system and a 
measurement model. RBE works by simulating the process, 
while at the same time adjusting it to account for new 
measurements z, taken from the real process. The calculations 
are performed recursively in a two-step procedure. First, the 
next state is predicted by extrapolating the current state onto 
next time step, using state propagation belief p(xk|x(k−1)) 
obtained from function f. Secondly, this prediction is corrected 
using measurement likelihood p(zk|xk) obtained from function 
h, taking new measurements into account. Unfortunately, this 
method does not scale very well in practice, mainly due to the 
large state space for multidimensional state vectors. Calculating 
the prior probability of each point in this state space involves a 
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multidimensional integral, which quickly becomes intractable 
as the state space grows. Computers are also limited to 
calculation of the pdf in discrete point in state space, requiring 
a discretization of the state space. This technique is therefore 
mainly considered as a theoretic foundation for state estimation 
in general. Bayesian estimation by means of computers is only 
possible if either the state space can be discretized, or if certain 
limitations apply for the model. 

C.  Kalman filter 

The problem of state estimation can be made tractable if we 
put certain constrains on the process model, by requiring both 
„f„ and „h‟ to be linear functions, and the Gaussian and white 
noise terms „w„ and „v‟ to be uncorrelated, with zero mean. Put 
in mathematical notation, we then have the following 
constraints (5) and (6). 

As the model is linear and input is Gaussian, we know that 
the state and output will also be Gaussian [13]. The state and 
output pdf will therefore always be normally distributed, where 
mean and covariance are sufficient statistics. This implies that 
it is not necessary to calculate a full state pdf anymore, a mean 
vector ˆx and covariance matrix P for the state will suffice. 

              xk/k-1                                        Pk/k-1             zk    

 

      

       

xk/k                                  Pk/k   

                     

 

Figure 2: Kalman filter loop 

 
The recursive Bayesian estimation technique is then 

reduced to the Kalman filter, where f and h is replaced by the 
matrices F, B and H. The Kalman filter is, just as the Bayesian 
estimator, decomposed into two steps: predict and update.  

The Kalman filter is quite easy to calculate, due to the fact 
that it is mostly linear, except for a matrix inversion. It can also 
be proved that the Kalman filter is an optimal     estimator of 
process state, given a quadratic error metric [14, 15]. 

Most processes in real life are not linear, and therefore need 
to be linearised before they can be estimated by means of a 
Kalman filter. So the practical applications of the KF are 
limited and so modified KF, aka EKF is generally used. 

Different from KF, EKF deals with nonlinear process 
model and nonlinear observation model. In the extended 
Kalman filter, the state transition and observation models need 
not be linear functions of the state, but may be differentiable 
functions [4, 5, 6, 7, 8]. The nonlinear process model (from 
time k - 1 to time k) is described as 

Xk = f (xk-1, uk-1) + wk-1                          (5) 

Zk = h (xk) + vk                   (6) 
where xk-1, xk are the system state (vector) at time    k-1; k, f 

is the system transition function, uk is the control, wk is the 
zero-mean Gaussian process noise wk ~ N(0;Q), h is the 
observation function and vk+1 is the zero-mean Gaussian 
observation noise vk+1 ~ N(0;R). 

The function f can be used to compute the predicted state 
from the previous estimate and similarly the function h can be 
used to compute the predicted measurement from the predicted 
state. However, f and h cannot be applied to the covariance 
directly. Instead a matrix of partial derivatives (the Jacobian) is 
computed. 

At each time step the Jacobian is evaluated with current 
predicted states. These matrices can be used in the Kalman 
filter equations. This process essentially linearizes the non-
linear function around the current estimate. 

D. Predict and update equations  

Predicted state 
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Predicted estimate covariance 

 

                          

                          (8) 

   

Updating state 

Innovation(or residual) covariance 
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Optimal Kalman gain 
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Updated state estimate 

 
            

 

Updated estimate covariance 
            

 

Where the state transition and observation matrices are 
defined to be the following Jacobians 

 

 

 

 

E. Continuous-time extended Kalman filter Model 

x(t) = f(x(t),u(t)) + w(t),      

w(t) ~ N(0,Q(t))                                (16) 

z(t) = h(x(t)) + v(t),          

v(t) ~ N(0,R(t))                         
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Unlike discrete-time extended Kalman filter, the 

prediction and update steps are coupled in continuous-time 

extended Kalman filter [9, 10]. 

F. Continuous- discrete extended Kalman  

Most physical systems are represented as continuous-time 
models while discrete-time measurements are frequently taken 
for state estimation via a digital processor. Therefore, the 
system model and measurement model are given by 

    x(t) = f(x(t),u(t)) + w(t),  

w(t) ~ N(0,Q(t)) 

 

     z(t) = h(xk) + vk,     

vk ~ N(0,Rk) 

        

where,  xk = x(tk) 
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The update equations are identical to those of discrete-time 
extended Kalman filter. 

IV. MODELLING EXAMPLE FOR A FREE FALLING BODY 

TOWARDS EARTH 

Consider the problem of estimating various states of a free 
falling body towards earth. Range measurements are corrupted 
by additive Gaussian noise. The state estimation cannot be 
accurately explained by KF since nonlinearities are exhibited 
by forces that act on the body, and the measuring device is 
located at an altitude h and the horizontal range between the 
measuring device and the body is M.  

The trajectory parameters are the altitude above the earth‟s 
surface (h), velocity (v) and ballistic coefficient (K).  

A. Examples of objects not in free fall 

 Flying in an aircraft: there is also an additional force of 
lift.  

 Standing on the ground: the gravitational acceleration 
is counteracted by the normal force from the ground.  

 Descending to the Earth using a parachute, which 
balances the force of gravity with an aerodynamic drag 
force (and with some parachutes, an additional lift 
force).  

An initially-stationary object which is allowed to fall freely 
as shown in fig.3, under gravity drops a distance which is 
proportional to the square of the elapsed time. This image, 
spanning half a second, was captured with a stroboscopic flash 
at 20 flashes per second. During the first 1/20th of a second the 
ball drops one unit of distance (here, a unit is about 12 mm); by 
2/20ths it has dropped at total of 4 units; by 3/20ths, 9 units and 
so on. 

Under normal earth-bound conditions, when objects move 
owing to a constant gravitational force a set of dynamical 
equations describe the resultant trajectories. For example, 
Newton's law of universal gravitation simplifies to   F = mg, 
where m is the mass of the body. This assumption is reasonable 
for objects falling towards earth over the relatively short 
vertical distances of our everyday experience, but is very much 
untrue over larger distances, such as spacecraft trajectories. 
Please note that in this article any resistance from air (drag) is 
neglected [3]. 
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Fig3: Free fall body 

B. Development of the filter model 

The state space model of Particle filter is given by  

 

Xk+1 = f(xk, uk, wk)  

 

zk = h(xk , vk ) 
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 

The falling body state vector be XS (k) where  

 

Xs(k) = [x1(k)   x2(k)…..xn(k)] T                           

 

Xs(k) = [h (k)   v (k)   k]
 T
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 –Air density at sea level 

 g   –Acceleration due to gravity 

             W (k)  –Process noise 

 V –Measurement noise 

 Let R (k) is the horizontal distance given by 
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V. RESULTS 

A.  Results 
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Fig .7 

 

 
 

Fig .8 

 
ERROR = 1.8 feet 

 

Fig .9 

 
ERROR = 0feet/sec 

 

Fig .10 

 
ERROR = 31 

 

The figures 4,&5 plots the true values of the two parameters  Altitude, and 

velocity respectively  and the figures 6 & 7 plots the comparision between true 

and estimated parameters Altitude, and velocity respectively.  the figures 

8,9,& 10 show plots of estimation errors.  

VI. CONCLUSIONS 

This paper deals with the performance of Extended Kalman 
filter which is an extension to the basic Kalman filter. Even 
though the Kalman filter is simple to implement, it is not able 
to provide accurate results because it mainly deals with pure 
linear models. So in order to improve the performance, 
Extended Kalman filter is implemented for free fall body 
towards Earth. This model is applied to the non-linear 
processes. This model deals with linearization of the non-linear 
process, same as that of the linear approximation. The 
linearization is upto first order approximation. The linearization 
of non-linear model can be achieved using Jacobian matrix, 
which is related to the number of updations. As a result, there 
will be much more accurate results when compared to that of 
the Kalman filter. This is applied to a realistic example like 
tracking a freely falling body. EKF is implemented for a 
specific application, tracking a freely falling body through the 
atmosphere for 100 Monte-Carlo simulations and the result 
shows that EKF provides better probability of state estimation 
compared to Kalman filter. 

VII. FUTURE SCOPE 

The Extended Kalman filter linearizes the nonlinear model 
through a single point altogether. In addition, if the initial 
estimate of the state is wrong, or if the process is modeled 
incorrectly, the filter may quickly diverge, owing to its 
linearization. Another problem with the extended Kalman filter 
is that the estimated covariance matrix tends to underestimate 
the true covariance matrix and therefore risks becoming 
inconsistent in the statistical sense without the addition of 
"stabilizing noise". Linearization of nonlinear system with 
Unscented Kalman filters and particle filters may provide better 
probability of state estimation. 
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