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Abstract— In this paper, an effective hybrid algorithm based on 

Particle Swarm Optimization (PSO) is proposed for solving the 

Traveling Salesman Problem (TSP), which is a well-known NP-

complete problem. The hybrid algorithm combines the high 

global search efficiency of fuzzy PSO with the powerful ability to 

avoid being trapped in local minimum. In the fuzzy PSO system, 

fuzzy matrices were used to represent the position and velocity of 

the particles in PSO and the operators in the original PSO 

position and velocity formulas were redefined. Two strategies 

were employed in the hybrid algorithm to strengthen the 

diversity of the particles and to speed up the convergence process. 

The first strategy is based on Neighborhood Information 

Communication (NIC) among the particles where a particle 

absorbs better historical experience of the neighboring particles. 

This strategy does not depend on the individual experience of the 

particles only, but also the neighbor sharing information of the 

current state. The second strategy is the use of Simulated 

Annealing (SA) which randomizes the search algorithm in a way 

that allows occasional alterations that worsen the solution in an 

attempt to increase the probability of escaping local optima. SA is 

used to slow down the degeneration of the PSO swarm and 

increase the swarm’s diversity.  In SA, a new solution in the 

neighborhood of the original one is generated by using a designed 

λ search method. A new solution with fitness worse than the 

original solution is accepted with a probability that gradually 

decreases at the late stages of the search process.  The hybrid 

algorithm is examined using a set of benchmark problems from 

the TSPLIB with various sizes and levels of hardness. 

Comparative experiments were made between the proposed 

algorithm and regular fuzzy PSO, SA, and basic ACO. The 

computational results demonstrate the effectiveness of the 

proposed algorithm for TSP in terms of the obtained solution 

quality and convergence speed.   

Keywords- Information Communication; Particle Swarm 

Optimization; Simulated Annealing; TSP. 

I. INTRODUCTION  

Traveling Salesman Problem (TSP) is a well-known NP-
complete problem that has important practical applications as 
many complicated problems in various fields can be abstracted 
and changed to TSP [1-3]. The problem can be described as a 
single salesman who wants to visit a number of cities. The 
main objective of TSP is to find a minimal length closed tour 
that visits each city exactly once. TSP has been studied 

extensively over the past several decades. Although it is simple 
to model the TSP mathematically, there is no definite algorithm 
that can be used to solve TSP in polynomial time. It is evident 
that the computational cost of TSP by exhaustive permutations 
is O(n!). Today many bio-inspired intelligence techniques are 
rapidly developing such as Genetic Algorithms (GA), Ant 
Colony Optimization (ACO), and Particle Swarm Optimization 
(PSO) are used to solve combinational optimization problems 
such as TSP. 

PSO is a computation paradigm based on group intelligent 
global optimization methods initially introduced by Kennedy 
and Eberhart in 1995 [4 - 6] to simulate the process of birds 
forage for food. PSO is different from other evolutionary 
algorithms, as it convergences quickly, has less parameters, 
encodes with real numbers and can directly deal with the 
problem domain, without conversion. PSO is simple, easy-to 
implement, and is widely used, in continuous function 
optimization problems where it yields excellent optimization 
performance.  Recently, some researches apply this algorithm 
to problems of discrete quantities. However, the basic PSO 
algorithm suffers a serious problem that all particles are prone 
to be trapped into the local minimum in the later phase of 
convergence. The optimal value found is often a local 
minimum instead of a global minimum.  

Aiming at solving the shortcoming of the basic PSO 
algorithm, many variations, such as Fuzzy PSO [3, 6], Hybrid 
PSO [7], Intelligent PSO [8], Niching PSO [9] and Guarantee 
Locally Convergent PSO [10] have been proposed to increase 
the diversity of particles and improve the convergence 
performance.  In this paper, a new algorithm that combines the 
fuzzy PSO algorithm with Neighborhood Information 
Communication (NIC) strategy and Simulated Annealing (SA) 
was proposed and applied to solve the TSP. The NIS strategy 
incorporates the shared information provided by the 
individual’s neighborhood into the PSO update equations. SA 
is a kind of stochastic method that is well known for its 
effective capability of escaping local optima. By integrating 
NIC and SA to the fuzzy PSO, the new algorithm, which we 
call it PSO-NIC-SA can not only escape from local minimum 
trap in the later phases of convergence, but also simplify the 
implementation of the algorithm. In the experiments, three 
additional algorithms: fuzzy PSO, SA, and ACO have been 
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implemented and the results have been compared to the results 
of the proposed algorithm. Test results demonstrate that the 
PSO-NIC-SA algorithm outperforms the other algorithms in 
solving TSP. The rest of this paper is organized as follows: The 
basic particle swarm optimization algorithm is presented in 
Section II. The mathematical model for TSP and the Fuzzy 
PSO algorithm for solving the TSP are described in Section III. 
In Section IV, the proposed PSO-NIC-SA algorithm for TSP is 
explained. The experimental results are reported in Section V. 
Finally, we summarize the paper with some concluding 
remarks in Section VI. 

II. PARTICLE SWARM OPTIMIZATION  

PSO proposed by Dr. Eberhart and Dr. Kennedy in 1995 is 
a computational technique based on the idea of collaborative 
behavior and swarming in biological populations inspired by 
the social behavior of bird flocking or fish schooling [4 - 6].  

The algorithm, which is based on a metaphor of social 
interaction, searches a space by adjusting the trajectories of 
individual vectors, called “particles” as they are conceptualized 
as moving points in multidimensional space. The individual 
particles are drawn stochastically toward the position of their 
own previous best performance and the best global 
performance among its neighbors.  

The PSO algorithm is simple, easy to implement, robust to 
control parameters, and computationally efficient compared to 
other heuristic optimization techniques. The original PSO has 
been applied to a learning problem of neural networks and 
function optimization problems, and the efficiency of the 
method has been confirmed. 

When PSO is used to solve an optimization problem, a 
swarm of particles, is used to explore the solution space for an 
optimum solution. Each particle represents a candidate solution 
and is identified with specific coordinates in the D-dimensional 
search space. The position of the i'th particle is represented as 
Xi = (xi1, xi2,….., xiD).  The velocity of a particle is denoted as Vi 
= (vi1, vi2, …….., viD). The fitness function is evaluated for each 
particle in the swarm and is compared to the fitness of the best 
previous result for that particle and to the fitness of the best 
particle among all particles in the swarm. After finding the two 
best values, the particles evolve by updating their velocities and 
positions according to the following equations: 
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Where i = (1, 2,……., Pop_Size) and Pop_Size is the size of 
the swarm; pi_best is the particle best reached solution and gbest 
is the global best solution in the swarm. c1 and c2 are cognitive 
and social parameters that are bounded between 0 and 
2.    rand1 and rand2 are two random numbers, with uniform 

distribution U[0,1]. −Vmax ≤ 1t
iV   ≤ Vmax   (Vmax is the 

maximum velocity).  

The inertia weight ω is a factor used to control the balance of 
the search algorithm between exploration and exploitation. 
The recursive steps will go on until we reach the termination 
condition. 

III. TRAVELING SALESMAN PROBLEM 

A. Mathematical Model of TSP 

The TSP can be described as follows: In the graph G = (X, E), 
X is the set of nodes, or cities to be visited, E is the set of edges, 

E= {(xi, xj): xi, xj X}. The objective of TSP is to find a 
minimal length closed tour that visits a number of cities 'n' such 
that each city is visited exactly once. This closed tour is called 
the Hamiltonian cycle. When the total distance traveled is the 
main metric for evaluating the cost then the problem of finding 
the best path S is the same as the minimization of the target 
fitness function F(S) defined as follows: 
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Where d(xi, xi+1), 0≤ i≤  n-1 is the Euclidean distance from city 
xi to city xi+1. If for all pairs of nodes xi, xj, the distances d(xi, xj) 
and d(xj, xi)  are equal then the problem is said to be symmetric, 
otherwise it is said to be asymmetric. In the TSP the solution 
space increases rapidly as the total number of cities increases. 
For example, with number of cities n=100, the total number of 
possible solution paths will be 4.67*10 155. Tremendous 
research has focused on this research problem due to its 
significance both in theory and applications.  

B. Fuzzy Matrix to Represent TSP Solution 

The Fuzzy Discrete PSO (FD-PSO) was first introduced by 
Wei Pang et al. [1, 2] to solve the TSP, and subsequently used 
and improved in [11] and was found to achieve satisfactory 
results. 

1) Construction of Fuzzy Matrix 

Assume the solution of TSP is T= {(x1, x2), (x2, x3),….., (xn-

1, xn), ( xn, x1)} , where n is the number of cities, xi (i =1, …..,n) 
is the i-th visited city (node) in this solution, and (x1, x2), (x2, 
x3),….., (xn-1, xn), ( xn, x1) are the visited directed edges in turn. 
Then fuzzy position matrix can be represented as an nxn 
matrix P as follows: 

                            p11……… p1n 

                           P=         .                  . 

                                       pn1……… pnn                                              (4)                                                                                                                                                                        

Where    pij[0, 1] means the possibility of choosing directed 
edge (xi, xj) , after city xi has been chosen in the TSP solution. 
In order to avoid directed edge (xi, xi) for (i =1,…..,n) 
appearing in TSP solution, we need to set the elements in 
diagonal of fuzzy matrix to very small values, thus let pii (i= 
1,…… ,n) =−Max.  

The velocity of the particle is defined as: 

                                  v11……… v1n 

                             V=      .                 . 

                                       vn1...……vnn                                            (5)                                                  

2) Fuzzy PSO operators 

The original PSO position and velocity equations (1) and 
(2) should be redefined to the form of matrices. The symbol 

"" was used to denote the modified multiplication operator 
which represents a scalar matrix multiplication where all 
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elements in the matrix are multiplied by the scalar. The 

symbols "" and "  " denote the addition and subtraction 

between matrices respectively. The modified position and 
velocity vectors can be rewritten as follows:
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3) Initialization 

The elements of the position matrix P given in (4) are 
randomly generated subject to the following constraints: 
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Similarly, the elements of the velocity matrix V given in 
equation (5) are randomly generated subject to the following 
constraint: 
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4) Normalization of the Position Matrix 

The position matrix P may violate the constraint given in 
(9) after the update of the position matrix in the forthcoming 
generations. Thus, it is necessary to normalize the position 
matrix. First, all negative elements in P are converted to 0. 
The other elements in P are recalculated according to the 
following transformation: 
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5) Defuzzication 

The fuzzy position matrix P represents the potential 
solution for the TSP. However, matrix P has to be decoded in 
order to obtain the feasible solution representing the best route 
(the ordered sequence of nodes or cities visited). This 
procedure is called "Defuzzication". In this paper the global 
maximum method is used for the Defuzzication of the position 
matrix. In this method we have a flag array to record whether 
we have selected the columns of the matrix and a route array 
to record the route solution, first all the columns are not 
selected, then for each row of the matrix, we choose the 
element which is not selected by the previous rows and has the 
max value, then we mark the column of the max element 
“selected”, and the column number are recorded to the route 
array. After all the rows have been processed, we get the route 
solution from the route array and the cost of the TSP route is 
calculated according to (3). 

 

6) Fuzzy PSO Algorithm for TSP 

The pseudo code of the fuzzy PSO algorithm for solving 
the TSP is presented in Fig. 1. 

IV. HYBRID ALGORITHM FOR TSP 

PSO algorithm is problem-independent, which means little 
specific knowledge relevant to the given problem is required. 
This advantage makes PSO more robust than many other 
search algorithms. However, as a stochastic search algorithm, 
PSO is prone to lack global search ability at the end of its run. 
PSO may fail to find the required optima as it can easily get 
trapped into local optima in complex optimization problems. 
Two strategies were proposed in the hybrid algorithm to 
strengthen the diversity of the particles and to speed up the 
convergence process. The first strategy is based on NIC 
among the particles where a particle absorbs better historical 
experience of the neighboring particles. The second strategy is 
the use of SA which randomizes the search algorithm in a way 
that allows occasional alterations that worsen the solution in 
an attempt to increase the probability of escaping local optima. 
The NIC and the SA strategies are explained in more detail in 
the following Sections. 

A. Neighborhood Information Communication 

Biological results suggest that information sharing among 
neighboring individuals contributes to evolution as the current 
state of neighbors significantly impact on the decision process 
of group members. However, PSO, as a simulation of group 
foraging behavior, does not include any neighborhood 
information sharing into its evolutionary equations. In 
traditional PSO, the global best solution gbest is the only 
information shared among the particles of the swarm. In this 
paper, an information sharing strategy among the particles is 
utilized in the proposed hybrid algorithm. In the renewing 
process of the position and velocity matrices, a particle 
absorbs better historical experience of the neighboring 
particles with better fitness values than its own. Better 
particles will guide the other particles to improve their fitness. 
This results in a very small probability to be trapped by local 
optima. All particles in the swarm will be ranked according to 
their fitness values. In minimization problems, the particle 
with the smallest fitness value will be ranked 1 and similarly 
for all other particles. Each particle shows interest in other 
particles according to their rank. The modified velocity matrix 
can be rewritten as follows: 

)(inf_)))(*1 iosocialX(grandX(prand *  VV t
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Where social_info(i) is calculated as shown in Fig. 2. The 
social_info() module gives the direction of the swarm by 
sharing information with all other individuals that have better 
fitness values. Vmax has been set to small values to prevent 
abrupt variations in the solution domain. 
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Figure 1. Fuzzy PSO Algorithm. 

 

 

Figure 1. Fuzzy PSO Algorithm 

Figure 2. Neighborhood Information Communication Algorithm. 

 

B. SA-based Local Search for TSP 

SA is an intelligent stochastic strategy used in solving 
optimization problems. It was successfully applied to the 
optimization problems by Kirkpatrick [3, 12].  SA employs 
certain probability to avoid becoming trapped in a local 
optimum by allowing occasional alterations that increases the 
diversity of the particles in the swarm. In the search process, 
the SA accepts not only better but also worse neighboring 
solutions with a certain probability. Such mechanism can be 
regarded as a trial to explore new space for new solutions, 
either better or worse. The probability of accepting a worse 
solution is larger at higher initial temperature. As the 
temperature decreases, the probability of accepting worse 
solutions gradually approaches zero. More specifically, 
starting from an initial state, the system is perturbed at random 
to a new state in the neighborhood of the original one. Then 
the change ΔE of the fitness function value is calculated. For 
minimization problems, the new state is accepted with 
probability min{1, exp(−ΔE /T)} , where T is a control 
parameter corresponding to the temperature in the analogy. 
The SA algorithm generally starts from a high temperature, 
and then the temperature is gradually lowered. At each 
temperature, a search is carried out for a certain number of 

iterations. The above technique can increase the diversity in 
the particles and enable PSO to accept a bad solution with a 
probability that will gradually decrease to zero as the 
temperature decreases. In this paper a simple λ search method 
is designed for generating the SA neighborhood solutions, 
where λ is a parameter representing the depth of the local 
search. The λ search method includes two steps:  

1. Swap the order of a pair of randomly selected rows in 
the position matrix 

2. Perform the matrix normalization transformation 
according to (11)  

This process is repeated for λ randomly selected pairs of 
rows and λ new solutions are produced. The best solution 
among the λ generated solutions is selected as the newly 
produced solution.  

C. Hybrid PSO-NIC-SA Algorithm   

The objective of TSP is to minimize the fitness function 
given in (3) that represents the cost of a particular route. 
Combining the fast optimal search ability of fuzzy PSO with 
the Neighboring Information Communication model and the 
probability jump property of SA, we design a new algorithm  

Step1: initialization  
   1.1. Initialize the swarm size to Pop_Size and the maximum number of     

iterations Max_iterations 
   1.2. Initialize the position and velocity matrices for all particles in the 

swarm. 
   1.3. Evaluate the fitness of each particle  

   1.4. Initialize the local best for every particle 0
ii XP   and the global best 

bestg  is the best among all 
iP  

Step 2: if Current_iteration equals Max_iterations goto step 5. 
Step 3: for i:=0 to Pop_Size -1 
   3.1. Current_iteration= Current_iteration +1 
   3.2. Calculate the new velocity matrices according to equation (6) 
   3.3. Calculate the new position matrices according to equation (7) 
   3.4. Normalize the position matrices according to equation (11) 
   3.5. Defuzzy the new position matrices and calculate the cost for each        
        position matrix using(3). 
   3.6. If the cost of the new position of a particle is less than that of the   
        local best of the particle then update the local best position with   
        new position 
Step 4: If the cost of the local best of some particles is less than the g  then   

update the g  with the local best particle. Goto step 2 
Step 5: output g  route and its corresponding cost 

 

social_info(i) 
{ 
  social_effect =0; 
     for k=1: Pop_Size  
         if F(k)<F(i) 

             social_effect= social_effect +(1/rank(k)*rand )  ( )t
i

t
k XX  ) 

      if (social_effect > V  ) 
           return V  
      else  
         return social_effect } 
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Figure 3. Hybrid  PSO-NIC-SA Algorithm

PSO-NIC-SA to solve TSP problem.  The pseudo code of 
the PSO-NIC-SA algorithm for solving the TSP is shown in 
Fig. 3.  

In the proposed algorithm, fuzzy PSO is performed first 
using the position and velocity update equations that 
incorporates the neighborhood information communication 
strategy. If the best particle gbest does not improve for a 
specified number of generations gen, then SA is used. The best 
individual from the fuzzy PSO algorithm provides the initial 
solution for SA during the hybrid search process. The hybrid 
algorithm implements easily and reserves the generality of 
PSO and SA. Moreover, it can be applied to many 
combinatorial optimization problems by simple modification. 

V.  EXPERIMENTAL RESULTS 

The proposed algorithm has been implemented using 
MATLAB 7.1 and executed on a Pentium IV, 2.8 GHz 
computer. To evaluate the efficiency of the proposed 
algorithm and for comparison purpose, three other artificial 
algorithms including fuzzy PSO, basic SA, and basic ACO 
have been implemented, and applied to the same TSP 
problems. Three TSP benchmark problems (Burma14, 
Berlin52, Eil75) selected from the TSPLIB [13] were tested. 
The parameters used in PSO, NIC and SA were determined 

through the preliminary experiments. The following parameter 
setting was used in the proposed algorithm: the swarm size 
Pop_Size = 50, Max_iterations= 1000, initial temperature 
T0=1000, final temperature Tend =1, rate of cooling β=0.99 and 
the SA search parameter λ=5.  All algorithms were run 20 
times for all the TSP problems. The results shown in Table I 
represent the mean and best solutions found by running the 
various trails of each method. 

From the results of the four algorithms, it is clear that our 
algorithm is significantly better than the other algorithms. For 
example, in Burma14 problem, the best fitness value 30.87 
achieved by the hybrid PSO-NIC-SA algorithm is not only the 
smallest value among the four algorithms but also the optimal 
solution for the problem. Meanwhile the mean value case, 
performance is also greatly improved by the new algorithm. It 
is shown that the new algorithm is a better and more effective 
means to solve TSP problem. Fig. 4 presents the convergence 
speed for the various algorithms in the Burma14 benchmark. 
The Figure shows the mean fitness found versus the number of 
iterations in the four implemented algorithms. As can be seen 
from Fig. 4, the proposed PSO-NIC-SA algorithm was able to 
reach good solutions faster than other methods in the early 
stages of the search process, and reach better solutions than 
others at the end of the search process. 

 

Step1: initialization  
   1.1. Initialize the swarm size to Pop_Size and the maximum number of     

iterations Max_iterations 
   1.2. Initialize the position and velocity matrices for all particles in the swarm. 
   1.3. Evaluate the fitness of each particle  

   1.4. Initialize the local best for every particle 0
ii XP   and the global best bestg  

is the best among all particles in the swarm. 
   1.5 initialize c , c , Current_iternation=0 

   1.6 set Simulating annealing parameters: Initial temperature T , Final  
       temperature T  and rate of cooling β, indicator m=0; current  

       temperature T= T  
Step 2: if Current_iternation equals Max_iterations goto step 5. 
Step 3: for i:=0 to Pop_Size -1 
   3.1. Current_iteration= Current_iteration +1; 
   3.2. Calculate the new velocity matrices according to equation (6) 
   3.3. Calculate the new position matrices according to equation (7) 
   3.4. Normalize the position matrices according to equation (11) 
   3.5. Defuzzy the new position matrices and calculate the cost for each        
        position matrix using(3). 
   3.6. if the cost of the new position of a particle is less than that of the   
        local best of the particle then update the local best position with   
        new position 
Step 4: if the cost of the local best of some particles is less than the g       
        position then update the g  with the local best particle.  
              if (g  does not improve) 
                    m ++;  
              if (m= gen){ 
                  while ( T> Tend ){  
                      Generate a neighbor solution g’best from gbest; 
                      Calculate fitness of g’best; 
                      Calculate ΔE = F (g’best) - F (gbest); 
                       if (min[1,exp(-ΔE / T )] >random[0,1])  
                         gbest= g’best; 
                       T = β T;} 
               m=0;}  
         Goto step 2 
Step 5: output global best route and its corresponding cost 
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TABLE I.  COMPARISONS OF FUZZY PSO, SA, ACO AND PSO-NIC-SA FOR BURMA14, BERLIN52, EIL75 BENCHMARKS 

 

 

 

 

 

 

 
Figure 4. Convergence Curves for the Different Algorithms in Burma14. 

 

VI. CONCLUSIONS 

In this paper, an effective hybrid algorithm based on fuzzy 
PSO is proposed for solving the TSP, which is a well-known 
NP-complete problem. The proposed algorithm combines the 
high global search efficiency of fuzzy PSO with the powerful 
ability to avoid being trapped in local minimum. In the fuzzy 
PSO system, fuzzy matrices were used to represent the 
position and velocity of the particles in PSO and the operators 
in the original PSO position and velocity formulas were 
redefined.  

Two strategies were employed in the hybrid algorithm to 
strengthen the diversity of the particles and to speed up the 
convergence process. The first strategy is based on 
neighborhood information communication among the particles 
where a particle absorbs better historical experience of the 
neighboring particles. This strategy integrates the individual 
experience of the particles with the neighbor sharing 
information of the current state.  

The second strategy is the use of simulated annealing which 
randomizes the search algorithm in a way that allows 
occasional alterations that worsen the solution in an attempt to 
increase the probability of escaping local optima. SA is used to 
slow down the degeneration of the PSO swarm and increase the 
swarm’s diversity.  In SA, a new solution in the neighborhood 
of the original one is generated by using a designed λ search 
method. A new solution with fitness worse than the original 
solution is accepted with a probability that gradually decreases 
at the late stages of the search process.  The hybrid algorithm is 
examined using a set of benchmark problems from TSPLIB 
with various sizes and levels of hardness.  

Comparative experiments were made between the proposed 
algorithm and PSO, SA, and basic ACO. The computational 
results validate the effectiveness of the proposed approach. 
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