
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

105 | P a g e

www.ijacsa.thesai.org

Architecture Aware Programming on

Multi-Core Systems

M.R. Pimple

Department of Computer Science & Engg.

Visvesvaraya National Institute of Technology,

Nagpur – 440010 (India)

S.R. Sathe

Department of Computer Science & Engg.

Visvesvaraya National Institute of Technology,

Nagpur – 440010 (India)

Abstract— In order to improve the processor performance, the

response of the industry has been to increase the number of cores

on the die. One salient feature of multi-core architectures is that

they have a varying degree of sharing of caches at different levels.

With the advent of multi-core architectures, we are facing the

problem that is new to parallel computing, namely, the

management of hierarchical caches. Data locality features need

to be considered in order to reduce the variance in the

performance for different data sizes. In this paper, we propose a

programming approach for the algorithms running on shared

memory multi-core systems by using blocking, which is a well-

known optimization technique coupled with parallel

programming paradigm, OpenMP. We have chosen the sizes of

various problems based on the architectural parameters of the

system like cache level, cache size, cache line size. We studied the

cache optimization scheme on commonly used linear algebra

applications – matrix multiplication (MM), Gauss-Elimination

(GE) and LU Decomposition (LUD) algorithm.

Keywords- multi-core architecture; parallel programming; cache

miss; blocking; OpenMP; linear algebra.

I. INTRODUCTION

While microprocessor technology has delivered significant
improvements in clock speed over the past decade, it has also
exposed a variety of other performance bottlenecks. To
alleviate these bottlenecks, microprocessor designers have
explored alternate routes to cost effective performance gains.
This has led to use of multiple cores on a die. The design of
contemporary multi-core architecture has progressively
diversified from more conventional architectures. An
important feature of these new architectures is the integration
of large number of simple cores with software managed cache
hierarchy with local storage. Offering these new architectures
as general-purpose computation platforms creates number of
problems, the most obvious one being programmability. Cache
based architectures have been studied thoroughly for years
leading to development of well-known programming
methodologies for these systems, allowing a programmer to
easily optimize code for them. However, multi-core
architectures are relatively new and such general directions for

application development do not exist yet.

Multi-core processors have several levels of memory
hierarchy. An important factor for software developers is how
to achieve the best performance when the data is spread across
local and global storage. Emergence of cache based multi-

core systems has created a “cache aware” programming
consensus. Algorithms and applications implicitly assume the
existence of a cache. The typical example is linear algebra
algorithms. To achieve good performance, it is essential that
algorithms be designed to maximize data locality so as to best
exploit the hierarchical cache structures. The algorithms must
be transformed to exploit the fact that a cache miss will move
a whole cache-line from main memory. It is also necessary to
design algorithms that minimize I/O traffic to slower
memories and maximize data locality. As the memory
hierarchy gets deeper, it is critical to efficiently manage the
data. A significant challenge in programming these
architectures is to exploit the parallelism available in the
architecture and manage the fast memories to maximize the
performance. In order to avoid the high cost of accessing off-
chip memory, algorithms and scheduling policies must be
designed to make good use of the shared cache[12]. To
improve data access performance, one of the well-known
optimization technique is tiling[3][10]. If this technique is
used along with parallel programming paradigm like OpenMP,
considerable performance improvement is achieved.
However, there is no direct support for cache aware
programming using OpenMP for shared memory environment.
Hence, it is suggested to couple OpenMP with tiling
technique for required performance gain.

The rest of the paper is organized as follows. Section II
describes the computing problem which we have considered.
The work done in the related area is described in section III.
Implementation of the problems is discussed in section IV.
Experimental setup and results are shown in section V. The
performance analysis is carried out in section VI.

II. COMPUTING PROBLEM

As multi-core systems are becoming popular and easily
available choice, for not only high performance computing
world but also as desktop machines, the developers are forced
to tailor the algorithms to take the advantage of this new
platform. As the gap between CPU and memory performance
continues to grow, so does the importance of effective
utilization of the memory hierarchy. This is especially evident
in compute intensive algorithms that use very large data sets,
such as most linear algebra problems. In the context of high
performance computing world, linear algebra algorithms have
to be reformulated or new algorithms have to be developed in
order to take advantage of the new architectural features of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

106 | P a g e

www.ijacsa.thesai.org

these new processors. Matrix factorization plays an important
role in a large number of applications. In its most general
form, matrix factorization involves expressing a given matrix
as a product of two or more matrices with certain properties.
A large number of matrix factorization techniques have been
proposed and researched in the matrix computation literature
to meet the requirements and needs arising from different
application domains. Some of the factorization techniques are
categorized into separate classes depending on whether the
original matrix is dense or sparse. The most commonly used
matrix factorization techniques are LU, Cholesky, QR and
singular value decomposition (SVD).

The problem of dense matrix multiplication (MM) is a
classical benchmark for demonstrating the effectiveness of
techniques that aim at improving memory utilization. One
approach towards the cache effective algorithm is to
restructure the matrices into sequence of tiles. The copying
operation is then carried out during multiplication. Also, for a
system AX=B, there are several different methods to obtain a
solution. If a unique solution is known to exist, and the
coefficient matrix is full, a direct method such as Gaussian
Elimination(GE) is usually selected.

LU decomposition (LUD) algorithm is used as the
primary means to characterize the performance of high-end
parallel systems and determine its rank in the Top 500 list[11].
LU Factorization or LU decomposition is perhaps the most
primitive and the most popular matrix factorization techniques
finding applications in direct solvers of linear systems such as
Gaussian Elimination. LU factorization involves expressing a
given matrix as product of a lower triangular matrix and an
upper triangular matrix. Once the factorization is
accomplished, simple forward and backward substitution
methods can be applied to solve a linear system. LU
factorization also turns out to be extremely useful when
computing the inverse or determinant of a matrix because
computing the inverse or the determinant of a lower or an
upper triangular matrix is relatively easy.

III. RELATED WORK

Since multi-core architectures are now becoming
mainstream, to effectively tap the potential of these multiple
units is the major challenge. Performance and power
characteristics of scientific algorithms on multi-core
architectures have been thoroughly tested by many
researchers[7]. Basic linear algebra operations on matrices
and vectors serve as building blocks in many algorithms and
software packages. Loop tiling is an effective optimization
technique to boost the memory performance of a program. The
tile size selection using cache organization and data layout,
mainly for single core systems is discussed by Stephanie
Coleman and Kathryn S. Mckinley [10].

LU decomposition algorithm decomposes the matrix that
describes a linear system into a product of a lower and an
upper triangular matrix. Due to its importance into scientific
computing, it is well studied algorithm and many variations to
it have been proposed, both for uni and multi-processor
systems. LU algorithm is implemented using recursive
methods [5], pipelining and hyperplane solutions [6]. It is also
implemented using blocking algorithms on Cyclops 64

architecture [8]. Dimitrios S. Nikolopoulos, in his paper [4]
implemented dynamic blocking algorithm. Multi-core
architectures with alternative memory subsystems are evolving
and it is becoming essential to find out programming and
compiling methods that are effective on these platforms. The
issues like diversity of these platforms, local and shared
storage, movement of data between local and global storage,
how to effectively program these architectures; are discussed
in length by Ioannis E. Venetis and Guang R. Gao [8]. The
algorithm is implemented using block recursive matrix scheme
by Alexander Heinecke and Michael Bader [1]. Jay
Hoeflinger, Prasad Allavilli, Thomas Jackson and Bob Kuhn
have studied scalability issues using OpenMP for CFD
applications[9]. OpenMP issues in the development of
parallel BLAS and LAPACK libraries have also been
studied[2]. However, the issues, challenges related with
programming and effective exploitation of shared memory
multi-core systems with respect to cache parameters have not
been considered.

Multi-core systems have hierarchical cache structure.
Depending upon the architecture, there can be two or three
layers, with private and shared caches. When implementing
the algorithm, on shared memory systems, cache parameters
must be considered. The tile size selection for any particular
thread running on a core is function of size of L1 cache, which
is private to that core as well as of L2 cache which is a shared
cache. If cache parameters like, cache level, cache size, cache
line size are considered, then substantial performance
improvement can be obtained. In this paper, we present the
parallelization of MM, GE and LUD algorithm on shared
memory systems using OpenMP.

IV. IMPLEMENTATION

In this paper we have implemented parallelization of most
widely used linear algebra algorithms, matrix multiplication,
gauss elimination and LU decomposition, on multi-core
systems. Parallelization of algorithms can also be implemented
using message passing interface (MPI). Pure MPI model
assumes that, message passing is the correct paradigm to use
for all levels of parallelism available in the application and
that the application “topology” can be mapped efficiently to
the hardware topology. However, this may not be true in all
cases. For matrix multiplication problem, the data can be
decomposed into domains and these domains can be
independently passed to and processed by various cores.
While, in case of LU decomposition or GE problem, task
dependency prevents to distribute the work load independently
to all other processors. Since the distributed processors do not
share a common memory subsystem, the computing to
communication ratio for this problem is very low.
Communication between the processors on the same node
goes through the MPI software layers, which adds to
overhead. Hence, pure MPI implementation approach is
useful when domain decomposition can be used; such that, the
total data space can be separated into fixed regions of data or
domains, to be worked on separately by each processor.

For GE and LUD problems, we used the approach of 1D
partitioning of the matrix among the cores and then used
OpenMP paradigm for distributing the work among number of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

107 | P a g e

www.ijacsa.thesai.org

threads to be executed on various cores. The approach of 2 D
partitioning of data among cores is more suitable for array
processors. For a shared memory platform, all the cores on a
single die share the same memory subsystem, and there is no
direct support for binding the threads to the core using
OpeMP. So, we restricted our experiments with 1D
partitioning technique and applied parallelization for achieving
speedup using OpenMP.

A. Architecture Aware Parallelization

To cope up with memory latency, all data required during
any phase of the algorithm are made available in the cache.
The data sets so chosen, are accommodated into the cache.
Considering the cache hierarchy, the tile size selection
depends upon cache size, cache line size to eliminate self
interference misses. Now depending upon the architecture of
the underlying machine, the computation work is split into
number of cores available. One dimensional partitioning of
data is done, so that, every core receives specific number of
rows (or columns), such that, the data fits in the shared cache.
The blocking technique is then used which ensures that the
maximum block size is equal to the size of private cache
belonging to the core. Parallel computation is carried out
using OpenMP pragmas by individual cores.

B. Determining Block Size

In order to exploit cache affinity, the block size is chosen
such that, the data can be accommodated into the cache. The
experiments were carried out on square matrix of size N. Let
„s‟ be the size of each element of matrix and „Cs‟ be the size of
shared cache. Let the block size be .

1. For blocked matrix multiplication, C = A x B, block of

matrix A & B, and one row of matrix C should be

accommodated into the cache. Then the required block

size can be calculated using :

For large cache size, we get,

 √
 ⁄ (1)

2. For GE problem, the size of input matrix is [] [
]. The required block size can be calculated with the

following equation:

So, the optimal block size,

 √ ⁄ (2)

3. For LU decomposition algorithm with same matrix used

for storing lower and upper triangular matrix, the optimal

block size comes out to be

 √ (3)

C. Effect of Cache Line Size

Let cache line size be Cls Without the loss of generality,
we assume that the first element of input array falls in the first
position of cache. The number of rows that completely fit in
the cache can be calculated as :

 Rows = Cs/Cls (4)
For every memory access, the entire cache line is fetched.

So block size will lead to self interference misses.
Also if , system will fetch additional cache lines,
which may in turn lead to capacity misses; as less number of
rows can be accommodated in the cache. So to take the
advantage of spatial locality, the block sizes chosen were
integral multiple of cache line size Cls. We assumed that, every
row in the selected tile is aligned on a cache line boundary.
After finding the row size, block size can be calculated.

Block Size B = k x Cls

 if (k is integer)

 Or ⌊

⌋

Maximum Speed up is achieved when -

 or

 when B is multiple of number of Rows
The algorithm for block size selection is presented in Fig.

1.

Further improvement in the performance is achieved by
using the technique of register caching for the array elements,
that are outside the purview of the “for” loop (like value
a[i][j] shown in Fig. 3). This value is cached, which is then
shared by all the threads executing the “for” loop The
OpenMP implementation of matrix multiplication and GE
problem is given in Fig. 2 and Fig. 3 respectively.

D. LU Decomposition

The main concept is to partition the matrix into smaller
blocks with a fixed size. The diagonal entry in each block is
processed by master thread on a single core. Then for
calculating the entries in the upper triangular matrix, each row
is partitioned into number of groups equal to number of cores;
so that each group is processed by each core. Similarly, for
calculating the entries in the lower triangular matrix, each
column is partitioned into number of groups equal to number
of cores; so that each group is processed by each core. The
implementation divides the matrix into fixed sized blocks, that
fit into the L1 data cache of the core creating first level of
memory locality. On the shared memory architecture, the
whole matrix is assumed to be in the globally accessible
memory address space. The algorithm starts by processing the
diagonal block on one processor, while all other processors
wait for the barrier. When this block finishes, the blocks on
the same row are processed by various cores in parallel. Then
the blocks on same column are processed by various cores in
parallel. In turn, each processor waits for the barrier again for

the next diagonal block.

The storage space can further be reduced by storing lower
and upper triangular matrices in a single matrix. The diagonal
elements of lower triangular matrix are made 1, hence, they
need not be stored. But this method suffers from the problem
of load imbalance, if number of elements processed in each
row or column by each core is not divisible by number of
cores available. Also, the active portion of the matrix is
reduced after each iteration and hence, load allocation after

each iteration is not constant.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

108 | P a g e

www.ijacsa.thesai.org

void forwardSubstitution() // GaussElimination loop//
// Matrix size (n x n)
{ int i, j, k, max, kk, p, q; float t;
 for (i = 0; i < n; ++i)
 { max = i;
 for (j = i + 1; j < n; ++j)
 if (a[j][i] > a[max][i]) max = j;
 for (j = 0; j < n + 1; ++j)
 { t = a[max][j]; a[max][j] = a[i][j];
 a[i][j] = t;
 }
 for (j = n; j >= i; --j)
 { for (k=i+1; k<n; k=k+B)
 { x=a[i][i]; // Register Caching //
 #pragma omp parallel for shared(i,j,k) private(kk)
schedule (static)
 for (kk=k; kk<(min(k+B, n)); ++kk)
 a[kk][j] -= a[kk][i]/x * a[i][j];
 }
 }
}

1) LUD computation:
Let A be an matrix with rows and columns

numbered from 0 to (n-1). The factorization consists of n
major steps. Each step consisting of an iteration of the outer
loop starting at line 3 of Fig. 5. In step k, first the partial
column [] us divided by []. Then the outer
product [] x [] is subtracted
from the x sub matrix [
]. For each iteration of the outer loop , the
next nested loop in the algorithm goes from .

Figure 1. Block Size Selection

Figure 2. Parallel Matrix Multiplication

A typical computation of LU factorization procedure in the

kth iteration of the outer loop is shown in Fig. 4. The kth

iteration of the outer loop does not involve any computation

on rows 1 to (k-1) or columns 1 to (k-1). Thus at this stage,

only the lower right (n-k) x (n-k) sub matrix of A is

computationally active. So the active part of the matrix

shrinks towards the bottom right corner of the matrix as the

computation proceeds.

The amount of computation increases from top left to

bottom right of the matrix. Thus the amount of work done

differs for different elements of matrix. The work done by the

processes assigned to the beginning rows and columns would

be far less than those assigned to the later rows and columns.

Hence, static scheme of block partitioning can potentially lead

to load imbalance. Secondly, the process working on a block

may idle even when there are unfinished tasks associated with

that block.

Figure 3. OpenMP parallelization of GE loop

This idling can occur if the constraints imposed by the
task-dependency graph do not allow the remaining tasks on
this process to proceed until one or more tasks mapped onto
other processes are completed.

2) LUD OpenMP parallelization:
For parallelization of LU decomposition problem on

shared memory, we used tiling technique with OpenMP
paradigm. The block size B is selected such that, the matrix
size is accommodated in a shared cache. The actual data block
used by each core is less than the size of private cache so that
locality of memory access for each thread is maintained.

For LUD algorithm, due to the task dependency at each
iteration level, the computation cannot be started
simultaneously on every core. So, algorithm starts on one core.
Diagonal element is executed by master core. After the
synchronization barrier, the computation part of non-diagonal
elements is split over the available cores.

After computing a row and column of result matrix, again
the barrier is applied to synchronize the operations for the next
loop. The size of data computed by each core is determined by
block size.

The size of data dealt by each core after each iteration is
not the same. With static scheduling, the chunk is divided
exactly into the available multiple threads and every thread
works on the same amount of data.

Fig. 5 illustrates the OpenMP parallelization. The size of
input matrix „a‟ is „N‟

Procedure BS(CS, CLS,N,B)
Input: CS: Cache Size
CLS: Cache Line Size
s: Size of each element in input
N: Input Matrix Rows
Output : B : Block Size(square)
Total cache lines = CS / CLS
No of rows (NR) from input problem size that can be
accommodated in cache
NR = ()
The optimal block size B
If (NR > CLS)
 B= k xCLS // Where k is integer constant
Else (B = CLS)

void mat-mult() // matrix multiplication //

{ for (i=0; i<N; i=i+B)

 { Read block of a & c;

 Read block ofbB;

 omp_set_num_threads(Omp_get_num_proc());

 #pragma omp parallel for shared(a,b,c,i)

 private(r,i1,j) schedule (static)

 for (r=i; r<(min(i+B, N)); r++)

 for (i1=i; i1<(min(i+B,N)); i1++)

 { for(j=0; j<N; j++)

 c[r][i1] += a[r][j] * b[j][i1];

 }

 Write block of c ;

 }}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

109 | P a g e

www.ijacsa.thesai.org

Figure 6. Matrix Multiplication: Data fits in L2 Cache

Figure 7. Gauss Elimination on 12 & 16 core machines,

Data accommodated in L2 cache

Figure 8. Speedup for LU Decomposition

on Dual core CPU

Figure 4.Processing of blocks of LU Decomposition

Figure 5. OpenMP implementation of LU Decomposition algorithm

V. EXPERIMENTAL SETUP & RESULTS

We conducted the experiments to test cache aware
parallelization of MM, GE, LUD algorithms on Intel Dual
core, 12 core and 16 core machines. Each processor had hyper
threading technology such that, each processor can execute
simultaneously instructions from two threads, which appear to
the operating system as two different processors and can run a
multi program workload. The configuration of the systems is
given in Table 1.

Each processor had 32 KB data cache as L1 cache. Intel
Xeon processors (12 & 16 cores) had an eight way set
associative 256 KB L2 cache and 12 MB L3 cache dynamically
shared between the threads. The systems run Linux 2.6.x
Blocked LU decomposition was parallelized at two levels
using OpenMP.

We used relatively large data sets, so that the performance
of the codes becomes more bound to the L2 and L3 cache miss
latencies. The programs were compiled with C compiler (gcc
4.3.2). Fig. 6 and Fig. 7 show the speed up achieved when the
block sizes are such that, the data fits in L2 cache for matrix
multiplication and Gauss elimination algorithm respectively.
Fig. 8 and Fig. 9 show the results of LU decomposition
algorithm for various matrix sizes on dual and 16 core system
respectively

Table 1. System configuration

Processors

Intel(R)

Core™2

Duo

CPU

E7500

Intel(R)

Dual

Core

CPU

E5300

Intel(R)

Xeon(R)

CPU

X5650

(12

cores)

Intel(R)

Xeon(R)

CPU

E5630

(16

cores)

Core

frequency
2.93 GHz 2.60 GHz 2.67 GHz 2.53 GHz

L1 Cache

size

32 KB I

cache,

32 KB D

cache

32 KB I

cache,

32 KB D

cache

32 KB I

cache,

32 KB D

cache

32 KB I

cache,

32 KB D

cache

L2 Cache

size

3072 KB,

shared

2048 KB,

Shared
256 KB 256 KB

L3 Cache

size
 --- --- 12 MB 12 MB

1. Lu-Fact (a)

2. {

3. for (k=0; k<N; k++)

4. { #pragma omp single

5. for(j=k+1; j<(N); j++)

6. a[j][k]=a[j][k]/a[k][k];

7. #pragma omp parallel for shared (a,k)

private(i) schedule static

8. for(j=k+1; j<(N); j=j+B)

9. for (jj=j; jj<min(jj+B, N), jj++)

10. { v=a[k][jj]; --- caching the value

11. #pragma omp parallel for shared

(a,k,jj) private(i) schedule static

12. for(i=k+1; i<(N); i++)

13. a[i][jj]= a[i][jj]- (a[i][k]*v);

14. }

15. }

16. }

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

110 | P a g e

www.ijacsa.thesai.org

Figure 9. Speedup for LU Decomposition on 16 core

machine

(Matrix size- NxN)

VI. PERFORMANCE ANALYSIS

The strategy of parallelization is based on two
observations. One is that the ratio computation to
communication should be very high for implementation on
shared memory multi-core systems. And second is that the
memory hierarchy is an important parameter to be taken into
account for the algorithm design which affects load and store
times of the data. Considering this, we implemented the
algorithms matrix multiplication and Gauss elimination with a
blocking scheme that divides the matrices into relatively small
square tiles. The optimal block size is selected for each core,
such that the tile is accommodated in the private cache of each
core and thus avoids the conflict misses. This approach of
distributing the data chunks to each core greatly improves the
performance. Fig. 6 and Fig. 7 shows the performance
improvement when block size is multiple of cache line size.
Whenever block size is greater or less than the cache line size,
performance suffers. This is due to reloading overheads of
entire new cache line for the next data chunk. With this
strategy, we got the speedup of 2.1 on 12 core machine and
speed up of 2.4 on 16 core machine. The sub linear
speedups in Fig. 6 and 7 for lower block sizes are attributed to
blocking overheads.

For Gauss elimination and LU decomposition problem, the
OpenMP pragma, splits the data among the available cores.
The size of data dealt by every core, after every iteration is
different. This leads to load imbalance problem. The chunk
scheduling scheme, demands the chunk calculations at every
iteration and hence affects performance. However, static
scheduling ensures equal load to every thread and hence
reduces the load imbalance. For LU decomposition problem
with 1D partitioning of data among the cores, we observed a
speedup of 1.39, & 2.46 for two dual core machines and
speedup of 3.63 on 16 core machine. The maximum speedup
is observed when the number of threads is equal to the number
of (hardware) threads supported by the architecture. Fig. 9
shows the speed up when 16 threads are running on a 16 core
machine. Speed up is directly proportional to the number of

threads. The performance degrades when more software
threads are in execution than the threads supported by
architecture. So, for 18 threads, scheduling overhead increases
and performance is degraded. However, when number of
threads is more than 8, performance degrades due to
communication overheads. This is because, 16 core Intel
Xeon machine comprises of 2 quad cores connected via QPI
link. Fig. 9 shows performance enhancement up to eight
threads and degradation in the performance when number of
threads is ten. When the computation is split across all the
available sixteen threads, speed up is again observed, where
communication overhead is amortized over all cores. Further
enhancement in the performance is achieved when method of
register caching is used for loop independent variables in the
program. Many tiling implementations do not consider this
optimal block size considerations with cache attributes.
However, our implementation considers the hierarchy of
caches, cache parameters and arrives at optimal block size.
The block size calculations are governed by the architecture of
the individual machine and the algorithm under consideration.
Once the machine parameters and input problem size is
available, the tailoring of the algorithm accordingly improves
the performance to a greater extent. Of course, there is a
significant amount of overhead in the OpenMP barriers at the
end of loops; which means that load imbalance and not data
locality is the problem.

VII. CONCLUSION & FUTURE WORK

We evaluated performance effects of exploiting
architectural parameters of the underlying platform for
programming on shared memory multi-core systems. We
studied the effect of private cache L1, shared cache L2, cache
line size on execution of compute intensive algorithms. The
effect of exploiting L1 cache affinity does not affect the
performance much, but the effects of exploiting L2 cache
affinity is considerable, due its sharing among multiple threads
and high reloading cost for larger volumes. If these factors are
considered and coupled with parallel programming paradigm
like OpenMP, performance enhancement is achieved. We
conclude that, affinity awareness in compute intensive
algorithms on multi-core systems is absolutely essential and
will improve the performance significantly. We plan to extend
the optimization techniques for the performance enhancement
on multi-core systems by considering the blocking technique
at register level and instruction level. We also plan to
investigate and present generic guide lines for compute
intensive algorithms on various multi-core architectures.

REFERENCES

[1] Alexander Heinecke and Michael Bader, “Towards many-core
implementation of LU decomposition using Peano Curves,” UCHPC-
MAW’09, May 18-20, 2009, Ischia, Itali.

[2] C. Addison, Y. Ren, and M. van Waveren, “OpenMP issues arising in
the development of Parallel BLAS and LAPACK libraries,” In
Scientific Programming Journal, Volume 11, November 2003, pages:
95-104,IOS Press.

[3] Chung-Hsing Hsu, and Ulrich Kremer, “A quantitative analysis of tile
size selection algorithms,” The Journal of Supercomputing, 27, 279-
294, 2004.

[4] Dimitrios S. Nikolopoulos, “Dynamic tiling for effective use of shared
caches on multi-threaded processors,” International Journal of High

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

111 | P a g e

www.ijacsa.thesai.org

Performance Computing and Networking, 2004, Vol. 2, No. 1, pp. 22-
35.

[5] F.G. Gustavson, “Recursion leads to automatic variable blocking for
dense linear algebra algorithms,” IBM Journal of Research and
Development, 41(6):737-753, Nov.,1997.

[6] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS
parallel benchmarks and its performance,” Technical report nas-99-011,
NASA Ames Research Centre, 1999.

[7] Ingyu Lee, “Analyzing performance and power of multi-core
architecture using multithreaded iterative solver,” Journal of Computer
Science, 6 (4): 406-412, 2010.

[8] Ioannis E. Venetis, and Guang R. Gao, “Mapping the LU decomposition
on a many-core architecture: Chanllenges and solutions,” CF’09, May
18-20, 2009, Ischia, Itali.

[9] Jay Hoeflinger, Prasad Alavilli, Thomas Jackson, and Bob Kuhn,
“Producing scalable performance with OpenMP: Experiments with two
CFD applications,” International Journal of Parallel computing.
27(2001), 391-413.

[10] Stephanie Coleman, and Kathryn S. McKinley, “Tile size selection using
cache organization and data layout,” Proceedings of the ACM SIGPLAN

Conference on Programming Language Design & Implementation,
California, United States, 1995, pages: 279-290

[11] The Top 500 List. http://www.top500.org

[12] Vahid Kazempour, Alexandra Fedorova, and Pouya Alagheband,
“Performance implications of cache affinity on multicore processors,”
Proceedings of the 14th International Euro-Par Conference on Parallel
Processing, Spain, 2008, pages:151-161

AUTHORS PROFILE

S.R. Sathe received M.Tech. in Computer Science from IIT, Bombay (India)
and received Ph.D. from Nagpur University(India). He is currently
working as a Professor in the Department of Computer Science &
Engineering at Visvesvaraya National Institute of Technology,
Nagpur(India). His research interests include paralle and distributed
systems, mobile computing and algorithms.

M.R. Pimple is working as a Programmer in the Department of Computer
Science & Engineering at Visvesvaraya National Institute of
Technology, Nagpur(India) and persuing her M.Tech. in Computer
Science. Her area of interests are computer architecture, parallel
processing.

