
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

19 | P a g e

www.ijacsa.thesai.org

Automating the Collection of Object Relational

Database Metrics

Samer M. Suleiman

Department of Computer Science, Faculty of Computer

and Information Technology,

Jordan University of Science and Technology,

Irbid, Jordan

Qasem A. Al-Radaideh, Bilal A. Abulhuda, Izzat M.

AlSmadi

Department of Computer Information Systems, Faculty of

Information Technology and Computer Sciences,

Yarmouk University,

Irbid, Jordan

Abstract— The quality of software systems is the most important

factor to consider when designing and using these systems. The

quality of the database or the database management system is

particularly important as it is the backbone for all types of

systems that it holds their data. Many researches argued that

software with high quality will lead to an effective and secure

system. Software quality can be assessed by using software

measurements or metrics. Typically, metrics have several

problems such as: having no specific standards, sometimes they

are hard to measure, while at the same time they are time and

resource consuming. Metrics need also to be continuously

updated. A possible solution to some of those problems is to

automate the process of gathering and assessing those metrics. In

this research the metrics that evaluate the complexity of Object

Oriented Relational Database (ORDB) are composed of the

object oriented metrics and relational database metrics. This

research is based on common theoretical calculations and

formulations of ORDB metrics proposed by database experts. A

tool is developed that takes the ORDB schema as an input and

then collects several database structural metrics. Based on those

proposed and gathered metrics, a study is conducted and showed

that such metrics’ assessment can be very useful in assessing the

database complexity.

Keywords- Object Oriented Relational Database; Metrics; Software

Quality.

I. INTRODUCTION

The need to store and retrieve data efficiently relative to
traditional file structure retrieving was the basic motivation to
introduce the relational databases, which is basically the
process of representing the data on the form of a collection of
related relations (i.e. tables) [1].

Due to the increasing demand on more efficient techniques
to store, retrieve and represent complex and huge data types
such as images, a new data model is presented with the
inspiration of object oriented programming languages. Object
Oriented Database (OODB) emerged to meet these demands.
OODB is the process of representing the data in a form of
complex columns (i.e. objects) that contain attributes and
operations to access them [1] [2] [3] [4].

Object Relational Databases (ORDB) have recently evolved
for two reasons: the first is the limitation of the traditional
relational databases against the increasing demands of the huge

applications for storage and fast retrieval of data. The second is
the great complexity of the pure OODB [5] [2]. The integration
between the relational and the object oriented methodologies
could overcome some of the drawbacks that are known in the
relational databases, as well as, enable developers to utilize
the powerful features of the relational and object oriented
databases such as simplicity and usability [5] [6].

Generally, an ORDB system has two main natures: (1) the
dynamic nature which reflects the external quality of the
system that can be collected from the system at runtime (i.e.
dynamic or runtime metrics) (2) the static nature of the system
which reflects the internal quality and that can be measured at
the design time (i.e. static metrics) [7].

In this scope, metrics are tools to show indications that can
help software management in several aspects. For example it
can help facilitating the maintenance effort of the schema and
hence improve the quality and reduce the complexity of the
resulting schema [5]. Controlling the quality of the database
system in the design phase may help in preventing the whole
system from collapsing in the later phases (e.g. the
implementation phase). It also saves the cost and time for the
development process in general [8]. The assumption here is that
these metrics are standardized and formulated in order to be
measured as numbers, and thus facilitates the automation
process.

The main metrics for ORDB are: Table Size (TS),
Complexity of Weighted Methods (CWM), Cohesion Between
Methods (CBM), Coupling Between Objects (CBO), Number
of Inherited Properties (NIP), Referential Degree (RD), and
Depth in the Relational Tree (DRT) [9] [5] [8] [10].

Several researchers deduced that the value of automation
process comes from making the collection and the evaluation
process for software and system metrics easier in comparison
with manual techniques. In an example in this direction,
Stojanovic and El-Emam [11] constructed an object oriented
prediction model that can detect the faulty classes based on
previous data. They described an open source tool for C++
source code that can calculate the object oriented metrics from
the interface specifications at the design phase; these metrics
are size, coupling, and inheritance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

20 | P a g e

www.ijacsa.thesai.org

There are several challenges facing the evaluation of the
metrics. One of the main challenges is the ambiguity in the
definitions and formulation of these metrics in addition to the
nature of the process of collecting, processing and evaluating
those metrics [9] [5] [6]. According to [8] , most of the
developed software metrics are programs’ oriented and they are
not dedicated to database systems.

Al-Ghamdi et al. [11] described three tools for the
collection; analysis and evaluation of object oriented metrics.
The tools are: (1) Brooks and Buells: which contains: a parser,
a query engine and a model class hierarchy. (2) The second tool
for analyzing C++, and (3) The third tool for gathering OO
metrics. In addition, they built their own tool which collects
and measures inheritance coupling in object oriented systems.
They compared their tool with the three other tools in terms of
differences and main features.

Scotto et al. [12] mentioned that there is no standardization
for software measure and metrics where they suggested using
an intermediate abstraction layer to handle the frequent changes
on the extraction process for these metrics. They used an
automated tool to collect several web metrics. They
recommend to separate the two primary activities for any tool
that is supposed to measure the metrics, these two activities are
the process of extraction and storing the information from the
source code, and the second one is the process of analyzing
these information and get some conclusion from it.

AL-Shanag and Mustafa [13] proposed and built a tool to
facilitate the maintenance and understanding effort for C#
source code. The assumption is that software maintenance
process can benefit indirectly from software metrics through
predicting complexity and possible areas of problems in the
software code. Such metrics can help the developer and
maintenance software engineers in understanding the source
code of programs especially those that have no or little
documentation. The proposed tool collects several code
elements such as: interfaces, classes, member data and methods
from the source code. The tool can also collect the following
code metrics: Weighted methods per Class, Depth of
inheritance tree, Lines of code, Number of public methods, and
Data access metric.

As for this research, the main objective is to build a tool
that can collect and evaluate ORDB metrics that will enable
designers to calibrate and tune the database schemas to increase
usability, maintainability and quality for schemas. The
automation of this process becomes essential to overcome the
complexity of the evaluation process. Based on the most
common definitions of these metrics and units, this research
automates the collection of these metrics and realizes them by
units scale based on some formal definitions for these metrics.
For testing purposes, the proposed automation tool assumes
that the input schema is syntactically correct with respect to a
standard MS SQL database (particularly MS SQL 2003).

II. RESEARCH BACKGROUND

The challenge in OORD metrics is to find suitable
definitions and formulas in order to measure these metrics.
These measures are assumed to facilitate the process of

controlling the quality of the schema which will enhance the
overall performance of the associated information systems [9].

The evaluation of the quality of the database schema must
be validated formally. These metrics have to be validated
formally through both theoretical and practical approaches.
Piattini et al. [8] stated that the concentration is on the practical
approaches through developing practical experiments. They
developed an experiment to validate the ORDB metrics in
order to ensure the benefits of these metrics. They proof the
formality and validity of these metrics by repeating the same
experiments twice in CRIM center in Canada and University of
Castilla-La Mancha in Spain and get similar results. These
results showed that Table Size (TS) and Depth in the Relational
Tree (DRT) can be used as indicators for the maintainability of
database tables.

In ORDB, the table consists of two types of columns: the
first is the Standard Column (SC) which is defined as integer or
dynamic string data types, and the other one is the Complex
Column (CC) which is the User Defined Type (UDT) column.
According to this categorization, the metrics also are classified
as table related metrics. Those can be applied to a table which
includes: TS, DRT, RD, and Percentage of Complex Columns
of tables (PCC), Number of Involved Classes (NIC), and
Number of shared classes (NSC). Other metrics are applied to
schema which includes the DRT, RD, PCC, NIC, and NSC [8].

ORDB schema requires an extra metric due to additional
capabilities which come from the object oriented features in
order to ensure its internal quality which will be reflected on its
external quality in terms of understandability, usability and
reliability [9].

A. Metrics of ORDB

Justus and Iyakutti [9] defined and formulated the metrics
of ORDB based on three schemas. These metrics are:

 Table Size (TS): It represents the summation of the size

of both the simple columns (SC) which includes the

traditional attributes data types, such as integer and

varchar, and the complex columns (CC) which represents

the User Defined Types (UDTs). The larger the value of

this metric leads to a higher maintenance cost [9] [8]. It is

calculated as follows:

 ∑

 ∑

 (1)

Where is a metric function, SC represents the Simple

Columns and n represents their numbers, CC is complex

columns and m’s are their numbers.

 Complexity of Weighted Methods (CWM): It represents

the summation of the whole complexities for each

weighted method in the table [9] [14]. It is calculated as

follows:

 ∑

 (2)

Where Ci is the complexity of method i.

 Cohesion Between Methods (CBM): It measures the

connectivity between two or more methods and it is

measured as the proportion between the similar used

attributes in the methods of the class to the total number

of attributes. High cohesion is desired which indicates that

we are grouping together related methods. Low cohesion

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

21 | P a g e

www.ijacsa.thesai.org

should have a negative impact on maintenance [9] [7] [14]

[3]. It is calculated as follows.

 (3)

Where I is the instance of the attributes for the class, and

V is the total number of variables.

 Coupling Between Objects (CBO): It represents the

dependency or the connectivity between two methods that

exist in two different classes. While high cohesion is

desired, high coupling is not as it complicates the design

and will complicate maintenance effort, update and reuse

[9][7]. It is calculated as follows:

 ∑

 ∑

 (4)

Where Min vj is the number of methods called and the

average number of arguments involved in each

invocation.

 Number of Inherited Properties (NIP): It represents the

number of the properties that have been inherited by the

child and thus its value determines high coupling

complexity as a trade off from its reuse [9]. It is

calculated as follows:

 ∑

 ∑

 (5)

Where Mj= [No. of types * CWM] + [No. of methods *

CBO].

 Referential Degree (RD): It represents the number of

foreign and reverse refernce keys in the database schema

[9] [15] [8]. It is calculated as follows:

 ∑
 ∑

 (6)

Where FK is the foreign key and Rvref is the inverse

reference.

 Depth in the Relational Tree (DRT): It represents the

longest referential path between the tables in or of a

database schema [9] [10]. It is calculated as follows:

 ∑

 (7)

Where d is the distance between the related tables.

B. Metrics Units

In an attempt to unitize the ORDB metrics, Justus S and K
Iyakutti [9] proposed to formulate and calibrate some of these
metrics. This is because there is a great need for a standard
scale for these ORDB metrics to be correlated with software
code metrics. Justus and Iyakutti [9] proposed some units for
this purpose based on some experimental studies. The units are:

 Column Complexity (clm) unit for the TS metric. Figure 1

shows the relation between TS and the cost in term of clm

unit.

If the value is in one of the scaled ranges then we can

conclude its cost and complexity. For example if the TS

value is 50 clm, this means that the maintenance table cost

is between optimal and low scale.

Low Optimal High

≤ 31-45 46-60 61-75 76-90 91-115 ≥
Figure 1: The Table Size unit scale.

 Number of interactions per variables set (intr/vs) unit. It is

used to measure the cohesion metric as calculated in

equation (3).

 Number of messages imported or exported per interaction

(msgs/intr) unit. It is used to measure the coupling metric

as shown in equation (4).

For both intr/vs and msgs/intr, Figure 2 shows the relation

between these two measures against reusability and

maintainability where high intr/vs indicates a high class

reusability. However, the situation with msgs/intr is the

opposite which means that when msgs/intr is high, this

indicates a less class reusability.

Low High

0 1
Figure 2: The COM and CBO Units Scale.

 The laxity unit is used to measure the reusability metric

(NIP). The reusability denotes the usage of the same

class-type another time in another class or type. Figure 3

shows the relationship between the reusability of the

class-type and this unit. The higher the value of laxity the

more the probability for the class-type to be reused.

Low High

≤ 4.5 - 6 6.1-7.5 7.6 – 9 9.1-10.5 10.6 – 12 ≥
Figure 3: The NIP laxity unit scale.

III. THE DEVELOPED TOOL

The goal of developing this tool is to automatically collect and

evaluate ORDB metrics. The proposed tool should enable

designers to calibrate and tune the database schemas to

increase usability, maintainability and quality for schemas.

The proposed tool consists of three main modules: The

tokenizer, the lexical analyzer, and the metrics calculator. The

lexical analyzer is considered to be the main module of the

tool. The architecture of the developed tool is illustrated in

Figure 4 and the basic data model for the tool is illustrated in

Figure 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

22 | P a g e

www.ijacsa.thesai.org

Figure 4: The Lexical Analyzer Architecture

A. Tokenizer

The tokenizer aims to facilitate the evaluation process by
reading the stream of the text file (i.e. the schema) and tokenize
it by recognizing each word individually. In this phase, there is
no need to build the relationships between these tokens where
the analyzer will handle this job. Tokens will be stored in the
database and tagged in order to be used later. Some of these
tokens will not be stored in the database for efficiency reasons
and because it will not produce any relevant information to the
process such as punctuation marks and other language related
symbols.

The tokenizer also stores the schema as an entry to the
database and links it with other objects and artifacts, in order to
create a dataset and accomplish related statistics to obtain a
design trend for each dataset. It is worth to mention here that
some metrics could be calculated directly such as Lines of

 Code (LOC). As a summery for this part: the input for the
tokenizer is a schema text, and the output is a set of tokens.

B. Analyzer

The analyzer is the main part of the tool. It actually
accomplishes a great percentage of the evaluation process for
the schema. It acts as the bridge between the other parts of the
tool. The analyzer starts by reading the tokens from the
tokenizer and loads them onto the computer memory in order
to be processed and classified into the basic objects for the
evaluations. These objects are: the tables, the complex columns
and their methods. The challenge here is to reserve the
relational structure of the database that will be used
subsequently.

The analyzer will check each token against a set of
constraints. It will check if the token is an SQL reserved word
and if this word is related to the measures or not. For example
the table name which can be known if it appears after the two
reserved words:―create table‖ or at least the word, table, hence
will be stored in the database and connect all the following
distinguished tokens with this entry until the next table name
appears.

The tool will store all the information that the metrics’
formulas mentioned earlier may need to be collected in
efficient and smooth manners. The design of the tool is based
on separating the analyzer from the rest of other modules. This
may help for any future changes on the metrics equation and
guarantee that these changes will not affect the analyses
process.

The analyzer distributes the tokens in different connected
relational tables and ensures that all the tokens have been
stored in the exact place. The equation metrics can easily be
applied on these values that we can get from the tables. To
summarize: the analyzer inputs are stored tokens, the output
from the analyzer categorizes tokens are stored in related
tables.

C. The Calculator Engine

The calculator engine module uses the information stored in
tables to calculate the different metrics presented in section 2.
The results are saved in the database associated with each
schema for later possible revisions. The calculator module has
two sub-modules: the scalar and the evaluator. The scalar role
is to map the result of each equation against the scales
presented in section II.

The scalar gives meaning to these numbers by assigning a
suitable unit to each one of them. The Evaluator evaluates the
overall quality of the schema based on the quantized numbers
that have been already obtained from the previous units.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

23 | P a g e

www.ijacsa.thesai.org

Figure 5: The Tool Data Model

IV. EXPERIMENTS AND EVALUATION

In order to evaluate the tool we will provide a complete
example that shows how the tool is used to accomplish the
tasks. Figure 6 represents a small part of a schema definition
adopted from [9] that contains several tables. Table 1
represents the analysis for the table’s tokens. Figure 7 shows a
sample script for creating a ―person_t” type for the same
schema definition.

CREATE TABLE Tab_Staff

(emp_no varchar(4),

 person_info person_t,

 do_joining date ,

 working_department department_t ,

 work_for varchar (7) FK Tab_Student (roll_no) inverse ref) ;

CREATE TABLE Tab_Student

(roll_no varchar(7),

 person_info person_t,

 in_department department_t,

 ward_for varchar(4));

Figure 6: A Sample Schema Definition Script (Justus and Iyakutti, 2008)

As mentioned earlier, the main input for the tool is the
schema script (written in SQL 2003 standards) and it is
assumed to have object-oriented and relational features that are
syntactically correct. The schema is read by the tool as a stream
of words or tokens. The main two segments are: the schema
definition segment and the implementation segment. They are
separated using a special tag or flag.

TABLE 1: TABLES OF THE SAMPLE IN FIGURE 6

tabID tabName schID No_fk No_rev

1 Tab_Staff 1 1 1

2 Tab_Student 1 0 0

CREATE TYPE person_t

(Name varchar(20) ,

 Gender varchar(1) ,

 Birth_date date,

 Address_info address_t,

 MEMBER FUNCTION set_values () RETURN person_t,

 MEMBER PROCEDURE print_person ());

Figure 7: A Sample Schema definition for UDT

The tool analyzes this UDT table and relates each member
to this new defined type:

 Simple attributes: those represent the standard types just like

the simple columns each recognized one is stored in

―SimpleAttributes‖ table and relates to its entry in the CC

table. Table 2 represents the record Instances for the

―SimpleAttributes‖ table after the tool reads the script.

TABLE 2. SIMPLE ATTRIBUTES INSTANCES

aID aName typeID

1 Name 1

2 Gender 1

3 Birth_date 1

 Complex Attributes: the other possible member items for the

UDT is the complex column which is either stored on the

―Types‖ table or need to be treated as we did with the same

item member in table type. It can be related to one of the CC

entries. Table 3 represents the record Instances for the

―ComplexAttributes‖ table after the tool reads the script.

TABLE 3. COMPLEX ATTRIBUTES INSTANCES

caID caName typeID

1 Address_info 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

24 | P a g e

www.ijacsa.thesai.org

 Member methods. These members are recognized by the

keywords PROCEDURE and FUNCTION, so once the tool

has read one of these tokens it will consider the next one as

a member function and insert it to the ―Members‖ table and

relates it to its entry in the CC table. Table 4 represents the

record Instances for the ―ComplexAttributes‖ table after the

tool reads the script.

TABLE 4: MEMBERS INSTANCES

mID mName typeID

1 set_values 1

2 print_person 1

After this analysis is accomplished, all the necessary

information for the schema definition are already stored in the
database tables. The following subsection describes the
calculation for the Tables Size, RD and DRT metrics, by using
the stored data.

A. Calculations

The following sub sections present the calculations process
for Table size metrics, Referential Degree, and Depth of
Referential Tree

The Calculation of TS
In order to calculate the table size, the following

information has to be retrieved from relevant tables:

 ―Tables‖: choose every record which represents a unique

table, and retrieve the ―tabid‖, in order to be used to retrieve

the related records from the other tables.

 ―SimpleColumns‖: the tool retrieves the related simple

columns records from the table for a specific ―tabid‖ value

through the ―FK_Tables_SimpleColumns‖ relation (see

Figure 8). The number of the retrieved records is stored

temporarily in order to be used later.

 ―ComplexCoulmns‖ the tool retrieves the related complex

columns records from the table for a specific ―tabid‖ value

through the ―FK_Tables_ComplexColumns‖ relation. The

number of the retrieved records is stored temporarily in

order to be used later.

 The tool checks some other tables which are:

‖SimpleAttributies‖, ‖ComplexAttributies‖, and

―Members‖. It retrieves all the related records for the type of

the complex columns and stores the count sequentially.

 The retrieving process is making use of the following

relation between related tables:

FK_Types_ComplexColumns,

FK_ComplexColumns_SimpleAttributes,

FK_ComplexColumns_Members

FK_ComplexColumns_ComplexAttributes.

The result of this activity is a number that represents the

size of the specific type that is mentioned in the table
definition. The calculation is based on equation (1) presented in
section 2 and the extracted size is stored on the ―size‖ field of
the ―Types‖ table. Table 5 illustrates these calculations.

TABLE 5: UDT INSTANCES WITH SIZES

typeID typeName Size

1 person_t 14

2 department_t 16

3 address_t 7

By summation of all the retrieved values from these tables,

the tool can calculate the size for each table (i.e. number of
records from the ―SimpleCoulmns‖ table + size of the existing
UDT type(number of records from ―SimpleAttributies‖ table +
number of records from ―ComplexCoulmns‖ table + number
of records from the ―Memebers‖ table). This is illustrated in
Table 6.

TABLE 6: TABLE SIZES

tabID tabName schID No_fk Size

1 Tab_Staff 1 1 22

2 Tab_Student 1 0 23

To understand these numbers the tool will check them

against the proposed scale as in Figure 1. This indicates that
tables in this schema fall in the first scale (<= 31-45) and they
have low complexity level. Comparing this automatic
measurement process with the manual calculations presented
by Justus and Iyakutti [9] for TS metric for the same sample
schema, the tool shows the same results.

The Calculation of RD metric
The calculation of this metric depends on equation (6)

presented in section 2. The tool looks for the existence of the
keywords ―FK‖ which stands for foreign key and for ―inverse
ref‖ which stands for inverse reference that means the relation
is bidirectional between the two subject tables.

The tool counts the frequency for FK token in the schema
definition and stores the summation on the ―no_fk‖ field for
each table as illustrated in Table 1. The same process is applied
on the inverse reference to get the number that represents their
counts. In order to calculate the value for this metric, the tool
adds the two summations (i.e. sum of FK’s and sum of inverse
ref’s) for each table. Thus we can conclude the complexity of
the schema according to the value for this metric. The higher
the value of RD means the higher the level of complexity for
the schema. Comparing results with [9] for this metric for the
same sample schema, the tool gets the same results as they had.

The Calculation of DRT metric
The calculation of this metric depends on equation (7), in

which the tool stores the referential path between tables by
analyzing the foreign key constraint. It stores the id for the
referencing and referenced table. It compares the frequency of
the same ―tabid‖ value in both columns and then counts this
frequency to get the depth of the referential tree.

The tool gets the length of DRT as a single number that
represents the number of tables associated with this relation.
Each time it counters the FK keyword, it stores both tables
name in the ―Tree‖ table. The first table name after FK

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

25 | P a g e

www.ijacsa.thesai.org

keyword is stored in the ―DetailTab‖ field where as the current
processing table is stored in ―MasterTable‖ field. Table 7
illustrates these findings:

TABLE 7: DRT FOR THE SAMPLE SCHEMA

MasterTable DetailTab

Tab_Student Tab_Staff

Tab_Staff Exam

The tool then performs an SQL Statement that counts the

existence frequency of each table in both columns for each
record in the ―Tree‖ table.

B. Tool Evaluation

Table 8 summarizes the results of this research and the
output for the developed tool compared with Justus and
Iyakutti [9] manual work to calculate the table size. The results
in Table 8 show that the tool gets the same results in addition to
storing each object in a relational manner in order to be
retrieved when they are required. Justus and Iyakutti [9]
calculated neither the ―Exam‖ table size nor the ―subject-t‖
type size. Our tool calculates them and compared with the
results of manual calculations which are the same.

The same comparison is made between the two approaches
with respect to the remaining calculated metrics; the
Referential degree (RD) and DRT. The result is illustrated in
Table 9, which shows that the automation process facilitates the
evaluations for these metrics since the manual approach
requires human memorization and tracing.

Figure 8 presents a screen shot of the analysis process that
appears for the ―Get Tokens‖ button. All the analyzed tokens
appear in the targeted grid view.

V. CONCLUSION AND FUTURE WORK

The evaluation process for the software system quality in
general is said to be complex especially for the ORDB metrics.
This is due to different aspects such as the lack of formal
definitions and standard evaluation. In addition to the lack of
such tools that are capable to perform this evaluation.

However, one key point that was investigated in this
research is the need to separate the analysis process from the
evaluation and calculations processes regarding to these

metrics. This separation makes the two main processes
independent from one another and handles, partially, the
problem of changing the metrics evaluation or definition.

The developed tool performs the analysis process on the
schema definition, separates different ORDB artifacts and
stores them separately. These artifacts include: tables, their
simple columns, their new defined types for the complex
columns and the objects created for the complex columns
which includes the simple attributes and the members of these
objects (i.e. procedures or functions).

The automation process facilitates metrics gathering and
evaluation and gives the designers and developers more
capabilities and perspectives to ensure the quality of the ORDB
systems. It performs the same equations proposed by [9] for
TS, DRT, and RD metrics and gets the same results in terms of
accuracy compared with manual metrics calculation while
improving the performance through calculating those metrics
automatically.

The tool is adaptable to the changes of the metrics
equations since it separates the analysis process from the
evaluation process and this may be useful for the
standardization effort by tuning only the evaluation parts of this
tool. The analysis may not have to be changed or it may require
a little modification. This can help in the continuous evolution
of metrics’ formulas’ construction and assessment.

In future, the automation process should be extended to
include the remaining proposed metrics such as: (COM) and
(CWM). It should be also extended to include more metrics
that will be further investigated through looking at different
database systems. Another future issue to deal with is that some
proposed metrics have no formal scale that enables the
designers to conclude the quality of the schema in terms of its
complexity and maintainability, and thus future work may
define a formal scale for these kinds of metrics.

It is recommended to extend the automation process to
include different schemas written in different databases and
formats such as: Oracle and MySql. Once these modifications
are implemented, there is a need to build a dataset to test them
and calibrate their results. The tool may be extended to have
the ability to obtain the schema from an existing database and
perform the same process as it did with the text schema format.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

26 | P a g e

www.ijacsa.thesai.org

TABLE 8: COMPARISON BETWEEN MANUAL AND AUTOMATE TABLE SIZE CALCULATIONS

TABLE 9: A COMPARISON BETWEEN MANUAL AND AUTOMATE RD AND DRT CALCULATIONS

Table Name
Foreign Key

Statement

Manual Automation

RD DRT RD DRT

Foreign

Key
inverse ref

Memorize master,

detail

Foreign

Key

inverse

ref

Store Master, Detail

Tab_Staff

work_forvarchar (7)

FK Tab_Student

(roll_no) inverse ref

1 1
counterFK +

counterINVREF=2

Tab_Student 0 0 0

Exam

Staff_chargevarchar

(4) FK Tab_Staff

(emp_no) inverse ref

1 1
Memorize master,

detail

counterFK +

counterINVREF=2
Store Master, Detail

Trace for detail

for each

memorized master

Select count(*) where

master=detail from tree=1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

27 | P a g e

www.ijacsa.thesai.org

Figure 8: Screen Shot of Results

REFERENCES

[1] Elmasri R. and Navathe S.,"Fundamental of Database Systems", 5th
edition, 2007.

[2] Behm A., Geppert A., and Dittrich K.,‖On The Migration Of Relational
Schemas and Data to Object-Oriented Database Systems‖ In Proc. of the
5th International Conference on Re-Technologies in Information
Systems, Klagenfurt, Austria, December, 1997.

[3] Vaishnavi V., Purao S. and Liegle J. ―Object-oriented product metrics: A
generic framework‖, Information Sciences 177 (2007) pp. 587–606.

[4] Van Zyl P. and Boake A., ―Comparing the Performance of Object
Databases and ORM Tools‖ in Proceedings of the 2006 annual research
conference of SAICSIT, 2006.

[5] Baroni A.L., Coral C., Brito e Abreu1 F., and Piattini M., ―Object-
Relational Database Metrics Formalization‖, Proceedings of the Sixth
International Conference on Quality Software (QSIC'06), 2006.

[6] Justus S. and Iyakutti K., ―Measurement Units and Scales for Object-
Relational Database Metrics‖, First International Conference on
Emerging Trends in Engineering and Technology, 2007(a).

[7] Justus S. and Iyakutti K., ―Assessing the Object-level behavioral
complexity in Object Relational Databases‖, International Conference on
Software – Science, Technology and Engineering, 2007(b).

[8] Piattini M., Genero M., Coral C. and ALARCOS G., ‖Data Model
Metrics‖ In Handbook of Software Engineering and Knowledge
Engineering: Emerging Technologies, World Scientific, 2002.

[9] Justus S. and Iyakutti K., ―A Formal Suite of Object Relational Database
Metrics‖, International Journal of Information Technology 4:4, pp. 251-
260, 2008.

[10] Stojanovic M. and El Emam K. ―ES1: A Tool for Collecting Object-
Oriented Design Metrics‖, 2001.

[11] Al-Ghamdi J., Elish M. and Ahmed M., ―A tool for measuring
inheritance coupling in object-oriented systems‖, Information
Sciences—Informatics and Computer Science: An International Journal,
v.140 n.3, p.217-227, 2002.

[12] Scotto M., Sillitti A., Succi G., and Vernazz T., ―A Relational Approach
to Software Metrics‖, 2004.

[13] Al-Shanag F. and Mustafa S., ‖Clustering Data Retrieved from C#
Source Code To Support Software Maintenance‖, Master graduation
project, Department of computer and information system, Yarmouk
university, 2009.

[14] Marinescu R.,‖Using Object-Oriented Metrics for Automatic Design
Flaws Detection in Large Scale Systems‖, Object-Oriented Technology
(ECOOP’98 Workshop Reader), LNCS 1543, 1998

[15] Mao C., "DBViewer: A Tool for Visualizing and Measuring Dependency
Relations between Tables in Database," wcse, vol. 4, pp.13-17, World
Congress on Software Engineering, 2009.

