
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 11, 2012 

 

139 | P a g e  

www.ijacsa.thesai.org 

A Randomized Fully Polynomial-time Approximation 

Scheme for Weighted Perfect Matching in the Plane 

Yasser M. Abd El-Latif 

Faculty of Science,  

Ain Shams University,  

Cairo, Egypt 

 

 

Salwa M. Ali 

Faculty of Science,  

Ain Shams University,  

Cairo, Egypt 

 

Hanaa A.E. Essa 

Faculty of Science,  

Tanta University,  

Tanta, Egypt  

 

Soheir M. Khamis 

Faculty of Science,  

Ain Shams University,  
Cairo, Egypt

Abstract— In the approximate Euclidean min-weighted perfect 

matching problem, a set V of n2  points in the plane and a real 

number 0 are given. Usually, a solution of this problem is a 

partition of points of V into n pairs such that the sum of the 

distances between the paired points is at most )1(  times the 

optimal solution. 

In this paper, the authors give a randomized algorithm which 

follows a Monte-Carlo method. This algorithm is a randomized 

fully polynomial-time approximation scheme for the given 

problem. Fortunately, the suggested algorithm is a one tackled 

the matching problem in both Euclidean nonbipartite and 

bipartite cases. 

The presented algorithm outlines as follows: With repeating 

 /1  times, we choose a point from V to build the suitable pair 

satisfying the suggested condition on the distance. If this 

condition is achieved, then remove the points of the constructed 

pair from V and put this pair in M  (the output set of the 

solution). Then, choose a point and the nearest point of it from 

the remaining points in V  to construct a pair and put it in M . 

Remove the two points of the constructed pair from V  and 

repeat this process until V becomes an empty set. Obviously, this 

method is very simple. Furthermore, our algorithm can be 

applied without any modification on complete weighted graphs 

mK  and complete weighted bipartite graphs
nnK ,

, where 

1, mn and m is an even. 

Keywords- Perfect matching; approximation algorithm; Monte-

Carlo technique; a randomized fully polynomial-time 

approximation scheme; and randomized algorithm. 

I. INTRODUCTION 

In this paper, the authors deal with Euclidean min-
weighted perfect matching problem. This problem and its 
special cases are very important since they have several 
applications in many fields such as operations research, 
pattern recognition, shape matching, statistics, and VLSI, see 
[1], [2], and [3]. 

The previous studies treated the underlining problem in 
several versions, e.g. (un-)weighted general graphs, bipartite 
graphs, and a case of a set of points in Euclidean plane.  For 
un-weighted bipartite graphs, Hopcroft and Karp showed that 

maximum-cardinality matchings can be computed in )( nmO  

time [1].  In [4], Micali and Vazirani introduced an )( nmO

algorithm for computing maximum-cardinality matchings on 

un-weighted graphs. Goel et al. [5] presented an )log( nnO
algorithm for computing the perfect matchings on un-weighted 
regular bipartite graphs. 

In 1955, Kuhn used the Hungarian method for solving the 
assignment problem. He introduced the first polynomial time 
algorithm on weighted bipartite graphs having n vertices for 

computing min-weighted perfect matching in )( 3nO time [6]. 

The matching problem on complete weighted graphs with n2
vertices was solved in )( 4nO by Edmonds' algorithm [7]. In 

[8], Gabow improved Edmonds' algorithm to achieve 

))log(( nnmnO   time, where m is the number of edges in a 

graph. For the Euclidean versions of the matching problem, 
Vaidya [9] showed that geometry can be exploited to get 

algorithms running in )log( )1(2/5 nnO O  time for both the 

bipartite and nonbipartite versions.  Agarwal et al. [10] 

improved this running time for the bipartite case to )( 2 nO , 

where 0  is an arbitrarily small constant.  For nonbipartite 

case, the running time was improved to )log( 2/3 npolynO , see 

details in [11]. 

Several researchers did more efforts to find good 
approximation algorithms for optimal matching which are 
faster and simpler than the algorithms obtained the optimal 
solutions (e.g. [12], [13]).  

In [13], Mirjam and Roger gave an approximation 
algorithm for constructing a minimum-cost perfect matching 
on complete graphs whose cost functions satisfy the triangle 

inequality. The running time of that algorithm is )log( 2 nnO

and its approximations ratio is nlog .  For bipartite version 

on two disjoint n -point sets in the plane, Agarwal and 

Varadarajan [14] showed that an  -approximate matching can 

be computed in )log)/(( 52/3 nnO   time. In [15], Agarwal and 

Varadarajan proposed a Monte Carlo algorithm for computing 
an ))/1(log( O -approximate matching in )( 1 nO  time. 

Based on Agarwal's ideas, Indyk [16] presented an 

)log( )1( nnO O  algorithm with probability at least 1/2 and a cost 

at most )1(O  times the cost of the optimal matching.  

Sharathkumar and Agarwal [17] introduced a Monte-Carlo 
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algorithm that computes an -approximate matching in 

)log)/(( )( npolynO dO
 
time with high probability. 

In this paper, a randomized approximation algorithm for 
Euclidean min-weighted perfect matching problem is 
demonstrated. This algorithm follows Monte-Carlo technique. 

It computes an -approximate Euclidean matching of a set of 

n2 points with probability at least 1/2.  The probability is 

improved when running the algorithm more and more. We 
show that the algorithm is a RFPTAS (Randomized Fully 
Polynomial Time Approximation Scheme) for underline 
problem. We apply this algorithm for the Euclidean cases 
having n2 points and for general complete weighted graphs 

having n2 vertices. 

The paper is organized as follows. In the next section, 
some basic definitions and concepts needed for the description 
of the topic are introduced. In section III, the description of 
our randomized algorithm for the min-weighted perfect 
matching problem in the plane is given. It is also proven that 
the given algorithm is a RFPTAS. Moreover, the same section 
contains some results of computational experiments on some 
classes of graphs. Finally, a conclusion of the paper is 
introduced in section IV. 

II. BASIC DEFINITIONS AND CONCEPTS 

Henceforth, let V be a set of n2  points in the plane. A 

matching of V  is a collection M of pairs of V such that no 

point in V belongs to more than one pair in M  [14]. A 

perfect matching of V  is a matching of V in which every 

point in V  belongs to exactly one pair of ),( 71 uudz  and 

so, a perfect matching of V  has n  pairs. Let ),( vud  be 

referred to the specified distance between u and v . The 

weight of a matching M  is defined by summing the 

Euclidean distances between the paired points. For 0 , an 

-approximate perfect matching is a perfect matching

such that the weight of M is at most )1(   times the weight 

of a minimum weighted perfect matching [17]. In this paper, 
we consider the approximate Euclidean min-weighted perfect 
matching problem that finds an  -approximate perfect 

matching of .  Let U  be an optimization problem. An 

algorithm  is called a Randomized Fully Polynomial-Time 

Approximation Scheme (RFPTAS) [18] for U if there exists a 

function NRNp  : , such that for every input ),( x , 

1))(),(Pr(  xMxA   {for every random choice A  

computes a feasible solution of  U }, 

 2/1)1),(Pr(  xR {a feasible solution, whose 

approximation ratio is at most )1(  , is produced with the 

probability at least 1/2}, and 

)|,(|),( 11    xpxTime
 and 

p
 is a polynomial in 

both its arguments 
|| x
 and 

1 . 

In the approximate Euclidean bipartite min- weighted 

perfect matching problem, a real number 0  and two 

disjoint sets 1V and 2V such that each of which has points 

are given.  In this version, if a pair ),( vu  belongs to the 

matching, then 1Vu   and 2Vv  . The solution of this 

problem is to find an -approximate perfect bipartite 

matching of 
21 VV  . 

In the following, the definition of an admissible pair is 
given. This definition is very important to design the main 
condition of our algorithm. We introduce first the meaning of 

a near point. Suppose V is a set of points. For any ,Vv 

Vu   is called a near point of v if for all Vu ' ; 

)u'd(v,u)d(v , .  

Definition 2.1 Let V  be a set of points. For any Vvu , , 

a pair ),( vu  is called an admissible pair if 

)u'ε)d(u,+(v)d(u, 1 or )v'ε)d(v,+(v)d(u, 1 , 

otherwise it is called an inadmissible pair, where ',' vu are the 

near points of vu, , respectively. 

Let V  be a set of points and nV 2||  .  For each pair

),( vue   and Vvu , , we consider a random variable eX

defined by 1eX  if e is an inadmissible pair and 0eX  

otherwise. Since each point Vu  has at least a point Vu '
such that the pair )',( uue   is an admissible pair (e.g. 'u is 

the near point of u ). Thus, 

 and
22 /)1(1)0Pr( nnXe  . Let X be a random variable 

defined by 



Me

eXX  , where M is any matching of V . 

This means that X counts the number of inadmissible pairs in 

any matching M .  

Let Vv  and VV ' . Assume that v is a near point of 

every point in 'V . The next lemma gives the upper bound of 

the cardinality of 'V .  

Lemma 2.1   Let V  be a set of n2  points in the plane. If 

Vv  and VV ' satisfying v  is a near point to every point 

in 'V , then 6|'| V .              

Proof. Assume that 7|'| V and v is a near point to every 

point in 'V . First, consider 7|'| V , i.e., },...,,{' 721 uuuV  . In 

the plane, connect the point v to all points in 'V as shown in 

Fig.1. Clearly from computational geometry that there exist at 

least one angle,  . Consider w.l.o.g. 

 M

V

A

n



2222 /)1()2/()22()1Pr( nnnnX e 
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71vuu . To complete the proof, connect 1u to
7u . From 

Fig.1, ),( 1uvdx  , ),( 7uvdy  , and ),( 71 uudz  .  

Note that
yx 

So,  

 

Since 
 60 and yx  . So, 2/1cos   and we obtain

yz  . 
 
This means that 1u  is a near one to 7u  rather than 

and this is contradiction. Evidentially, when 7|'| V , there 

exist more angles less than 60 and so we reach to the same 

contradiction. Therefore, cardinality of 'V ' should be less 

than or equal 6.                 ■                                                                                                        

x

y
         60

u1

   u7

v

                       u2

u3

       u4

u5 u6

z

 
Figure 1. An illustrative example of the proof of Lemma 2.1. 

III. A RANDOMIZED ALGORITHM FOR WEIGHTED PERFECT 

MATCHING 

In this section, we describe a Randomized Perfect 
Matching, RPM, algorithm to construct an  -approximate 

matching of a set V of n2 points in the plane. The analysis of 

running time and the derivation of an approximation ratio 

algorithm is a Randomized Fully Polynomial Time 
Approximation Scheme.  

This section is organized as follows. Section A is devoted 
to describe the RPM-algorithm. In addition, we derive that the 
RPM-algorithm is a RFPTAS for Euclidean min-weighted 
perfect matching problem in section B. Some results of 

computational experiments in cases of the set of n2  points in 

the plane, the Euclidean bipartite version, complete weighted 
graphs, and complete weighted bipartite graphs are contained 
in section C.  

A. The description of RPM-algorithm 

This part contains the details of the RPM-algorithm for 
Euclidean min-weighted perfect matching problem. The idea 
of the algorithm summarizes as follows. First, we choose 

uniformly at random a point v  from V and get a near point to 

it fromV , see u . Then, check the suggested condition of 

Definition 2.1 on ),( uvd : If the condition is satisfied, then 

the pair ),( uv is taking into the output solution M  and 

eliminate uv, from V . Second, after repeating the process 

 /1  times, choose uniformly at random a point 'u , get a 

near point to it fromV , see 'v , and put a pair )','( vu  in M . 

Delete ',' vu from V and repeat this work until V  becomes 

empty. Note that deciding that a pair is admissible based on 

computing near points w.r.t. all n2  points in V ; i.e. before 

removing any point during the execution of the RPM-
algorithm.    

The steps of the RPM-algorithm are introduced in the 
following: 

Algorithm RPM 

Input: a set V of n2  points in the plane and a real number

0 .  

Output:  M //  a perfect matching of V . 

N // the number of admissible pairs which is used                                                 

insure that the probability of success ≥1/2.    
Begin                                                                                         

  1: M

 

  2:   /1k
;  

  3:  0N ;                                                                                          

  4:  VW  ;   

  5:  for 1i   to k do   

  6:   choose uniformly at random a point v  fromW ; 

  7:  find u which is a near point to v  in W ;  

  8:  find 'v which is a near point to v in V ; 

  9:  find 'u which is a near point to u  in V ; 

10:  if a pair 
),( uv

 is an admissible pair then 

11:   put a pair 
),( uv

  in M ;                                         

12:   
},{ uvWW 

;             

13:   1 NN ;         

14:  while 
W

 do 

15:  choose uniformly at random a point u  from W ; 

16:   find v which is a near point to u  in W ;  

17:   
},{ vuWW 

;  

18:   put a pair 
),( vu

 in M  ; 

19:   find 'v  which is a near point to v  in V ; 

20:  find 'u  which is a near point to u  in V ;   

 cos2)cos()sin(z 22222 xyyxxyx 

v
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21:  if a pair 
),( vu

is an admissible pair then  

22:  1 NN ; 

23:  return M and N ; 

End 

 As shown in the RPM-algorithm, the steps of this 
algorithm are simple and can be easily implemented. The main 
advantage of this method is that it can be applied on any 

weighted complete graph. This is because V can be 

considered as the set of vertices of a graph and the distance 
between any two vertices is measurable by the weight of an 
edge. Without any modification, this algorithm is also applied 
on any complete weighted bipartite graph. The results of the 
RPM-algorithm for solving the underlining problem in cases 

of the set of n2  points in the plane, the Euclidean bipartite 

version, complete weighted graphs, and complete weighted 
bipartite graphs are given in section C. 

B. The analysis of RPM-algorithm 

In this part, we prove that the RPM-algorithm is a 
RFPTAS for Euclidean min-weighted perfect matching 
problem. At first, we prove that the probability of success is 
greater than 1/2, via using the following two lemmas.                                                                  

Assume that 'M is the set of inadmissible pairs obtained 
from the output matching of the RPM-algorithm. The 
following lemma gives an upper bound of the cardinality of 

'M . 

Lemma 3.1 Let V be a set of 4,2 nn , points in the 

plane. If 'M is the set of inadmissible pairs obtained from the 

produced matching M of the RPM-algorithm, then

7/5|'| nM  . 

Proof. We partition the set V  into disjoint 1, kk , 

subsets such that each subset contains a point v and all points 

that v  is a near point to each of them. From Lemma 2.1, we 

conclude that the number of subsets in this partition is at least

7/2n . We can obtain at least an admissible pair in each 

subset in this partition. Thus, the number of admissible pairs in 

the matching M is at least 7/2n . Since the cardinality of the 

matching M is n . Therefore, the number of inadmissible pairs 

in M is at most 7/5n .                ■                                                                                                                                 

Lemma 3.2 Let V  be a set of n2  points in the plane. 

Suppose M  is a matching of V which is constructed by the 

RPM-algorithm and X  is a random variable whose value is 

the number of inadmissible pairs in M . Then, 

2./12/Pr  )n(X  

Proof.  Let 'M be the set of inadmissible pairs in M . As 
mentioned in Lemma 3.1, 7/5|'| nM  . So, the number of 

points in inadmissible pairs is at most 7/10n and the 

probability of choosing one of them is at least n10/7 . In the 

RPM-algorithm, the steps of for-loop repeat k times, 

 /1k

give admissible pairs is at most kn)10/7( . Thus, the number 

of the admissible pairs which can be obtained in this loop is at 
least knn )10/)710((  . Therefore, the number of the pairs that 

can be constructed in while-loop does not exceed

knnnA )10/)710((  .  

From linearity of expectation, we obtain  

.,
n

1)-(n
1Pr

2

2

A)=(X=)E(X=)XE(=E(X)
Me

e

Me

e

Me

e 


where X and eX  are given in section II.         

Let )n(nk 2840/30 2  , (as a result of executing of the 

RPM-algorithm more and more). From Morkov's inequality 

[19], 
32 /))1(2()2//()()2/Pr( nAnnXEnX  . 

By using knnnA )10/)710((  , 

.)10/710(/1)-2(n2/Pr 32 n)k)n((nn)n(X 
 

Substituting )n(nk 2840/30 2  , we get

2/12/)1()2/Pr( 22  nnnX .  

Therefore, 2/1)2/Pr(1)2/Pr(  nXnX . 

This completes the proof.                ■                                                                                                                                                                                                                                               

Now, we show that the RPM-algorithm is a RFPTAS. 

Theorem 3.3 The RPM-algorithm is a RFPTAS for 
Euclidean min-weighted perfect matching problem. 

Proof.  First, we determine the running time of the RPM-

algorithm. The time of steps 7- 9 is proportional to )(nO . So, 

the for-loop is executed in time )(nkO , where  /1k . 

 Since the number of the pairs that can be constructed in 

while-loop does not exceed knnnA )10/)710((   

and the time of steps 16 and 19- 20 are proportional to O(n), 

so the time of while-loop is )(nAO . Thus, the running time 

of the RPM-algorithm is )( nAnkO  . 

Now, we show that the RPM-algorithm finds an -

approximate prefect matching of V with probability at least 

1/2.  It is clear that the output solution M of the RPM-

algorithm is a perfect matching of V  with cardinality n .  

From Lemma 3.2, we obtain that the number of inadmissible 

pairs in M is lees than 2/n  with probability at least 1/2, 

hence the number of admissible pairs in M is greater than 

2/n  with the same probability.  Let m  be the number of 

admissible pairs in M . According to Definition 2.1, any 

admissible pair ),( vu  satisfies  ),()1(),( xudvud   or

),()1(),( yvdvud  , where x  is a near point of u  and y

is a near point of v  in V . Without loss of generality, we 

consider the pair ),( xu  satisfies the above inequality. So, 
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
mm

x)d(u,v)d(u, . . Since u is one coordinate of a pair in 

an optimal solution, OPT, see ),( zu  and  2/nm   with 

probability at least 1/2. Thus, 

ε)OPT+(z)d(u,ε)+(v)d(u,
mm

11  
. 

Obviously, one can deduce from the last equation that the 

approximation ratio of the RPM-algorithm is at most )1(   

with probability at least 1/2. This means that the RPM-
algorithm is a RFPTAS.                ■ 

C. The results of RPM-algorithm  

In this section, we provide some results of the 
experimental evaluation of the proposed algorithm. We will 
show that the RPM-algorithm can be applied on four classes 
without any modification in its steps. These classes are:  

Class 1: Euclidean plane. 

Class 2: Euclidean bipartite plane.  

Class 3: complete weighted graphs.  

Class 4: complete weighted bipartite graphs.   

In the first two classes, the inputs of the RPM-algorithm 

are a real number 0 and a set V . V  is the set of n2  

points which are generated at random. The inputs of the RPM-

algorithm in the last two classes are a real number 0  and 

a complete weighted (bipartite) graph.  The weights of edges 
are positive numbers which are generated at random (in 
Classes 3, 4) and are the Euclidean distances between any two 
points (in Classes 1, 2). In table 1, we introduce the numbers 
of admissible pairs which are produced from the RPM-
algorithm for some examples of each class. 

Table 1. The performance of the RPM-algorithm. 

The values 

of n 
Class 1 Class 2 Class 3 Class 4 

20 13 18 16 19 

50 33 48 36 49 

100 72 90 66 94 

300 215 273 190 283 

500 364 450 295 454 

600 436 538 364 544 

1000 714 910 577 912 

1200 848 1068 865 1088 

1500 1044 1351 873 1379 

2000 1376 1776 1122 1819 

2030 1395 1807 1137 1850 

 

Since the number of admissible pairs is greater than 2/n  

for each example, so the probability of success of the RPM-
algorithm is greater than 1/2. From these results, the algorithm 
is suitable for execution on all examples and for any value of 
n .  

Fig. 2 shows the relation between the values of n and the 
number of admissible pairs. The algorithm is implemented by 
the Java language. The program works on a 3.00GHz Pentium 
IV personal computer. 

IV. CONCLUSION 

In this paper, we introduce a randomized approximation 
algorithm which follows a Monte-Carlo method for treating 
the weighted perfect matching problem in the plane. The idea 
of this algorithm is very simple. Since this algorithm succeeds 

in computing an -approximation matching with probability at 

least 1/2 in )( nAnkO  time, where  /1k  and

knnnA )10/)710((  , so this algorithm is a RFPTAS.  

Our algorithm can be applied without any modification on 

complete weighted graphs 
mK  and complete weighted 

bipartite graphs
nnK ,

, where 1, mn and nm 2 . The inputs 

of our algorithm are a set V of n2  points in the plane or a 

complete weighted graph and a real number 0 and the 

outputs are a perfect matching of an input instance and the 
number of admissible pairs in this matching. The numbers of 
admissible pairs which are produced from the suggested 
algorithm for some examples of each state are summarized in 
Table 1. 

 

Figure 2. The relation between the values of n and the number of admissible 

pairs. 
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