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Abstract—Hierarchical planar graph embedding (sometimes 

called level planar graphs) is widely recognized as a very 

important task in diverse fields of research and development. 

Given a proper hierarchical planar graph, we want to find a 

geometric position of every vertex (layout) in a straight-line grid 

drawing without any edge-intersection. An additional objective is 

to minimize the area of the rectangular grid in which G is drawn 

with more aesthetic embedding.  In this paper we propose several 

ideas to find an embedding of G in a rectangular grid with area, (

 -1) × (k-1), where   is the number of vertices in the longest 

level and k is the number of levels in G.) 

Keywords-level graphs; hierarchical graphs; algorithms; graph 

drawing. 

I.  INTRODUCTION  

The drawing of directed acyclic graphs (DAG) is widely 
recognized as a very important task in diverse fields of research 
and development. Examples include VLSI Design and plant 
layout [1], graphical user interfaces [2], software and 
information engineering, project management, visual languages 
[3], subroutine-call graphs, Interpretative Structural Modeling 
[4], organization charts, hierarchical relationships, system 
theory and other research fields. The usefulness of a graph 
depends on its layout that should be readable, understandable 
and easy to remember. A fundamental issue in Automatic 
Graph Drawing is to display hierarchical network structures, as 
they appear in many applications. The network is transformed 
into a directed acyclic graph (DAG) that has to be drawn with 
edges that are strictly monotone with respect to the vertical 
direction. Many applications imply a partition of the vertices 
into levels that have to be visualized by placing the vertices that 
belonging to the same level on a horizontal line. The 
corresponding graphs are called level graphs, and the drawing 
of the networks that correspond to this category of graphs 
means the drawing of level graphs (see [5]).  

The use of integer coordinates in embedding a graph on the 
grid has many advantages such as speed, accuracy, and it 
guarantees automatically that the resultant picture has fairly 
good properties. A straight line drawing is a grid drawing if 
each vertex is at a grid point, and the edges are represented as 
straight-line segments between their endpoints without any 
edge-intersection. See Figure 1. 

Usually, we use one of some aesthetic criteria (such as 
drawing area minimization, minimizing the number of edge 
crossings, symmetry, bends minimization or distributing the 
vertices uniformly) in order to make the layout of a graph 
readable and understandable [6],[7].  Reducing the number of 
edge crossings or distributing the vertices uniformly have been 
proposed and evaluating goodness of drawing based on these 
criteria has been reported [8], [9], [10]. Many works have been 
published area requirements for drawing hierarchically planar 
graphs [6],[7], [8], [11]. 

 

Figure 1.  Straight line drawing of level planar graph 

In [6] introduced genetic algorithms (GAs) with the 
problem of drawing of level planar graph or hierarchical planar 
graph, and explored the potential use of GAs to solve this 
particular problem. They showed that the GAs can help find a 
layout of levels and hierarchical planar graphs without any 
crossing edges. 

Lin and P. Eades [12] show that for each hierarchically 
planar straight-line drawing of G, where each pair of vertices in 
the same layer are at least distance 1 apart, has width at least 

))!12((  n  where n  is the number of vertices in the graph. J. 
Abello [13] highlighted the main tasks behind the computation 
of hierarchical graph maps and provided several examples. The 
techniques have been used experimentally in the navigation of 
very large graphs. 

In this paper, we are concerned with drawing of level planar 
G in the plane such that the vertices of G are represented as 
grid points, and the edges are represented as straight-line 
segments between their endpoints without any edge-
intersection. An additional objective is to minimize the area of 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 12, 2012 

 

105 | P a g e  

www.ijacsa.thesai.org 

the rectangular grid in which G is drawn. We introduce new 
algorithms these find an embedding of G.  These new 
algorithms gives level planar drawing in a rectangular grid with 

area (   -1)×(k-1), where   is the number of vertices in the 

longest level. 

This paper is organized as follows. After summarizing the 
necessary preliminaries in the next section. In the first 
algorithm, SimpleProperLevel, we explain proper placement 
for the vertices of a level graph with minimum area in the third 
section. In the fourth section we explain the second algorithm, 
FixedDistance, redistribute of the vertices with fixed distance 
between any two consecutive vertices in the same level on the 
grid drawing. In section five, DegreeDistance algorithm, 
redistribute of the vertices on the grid according to its degrees. 
Finally, Conclusion and references are presented. 

II. PRELIMINARIES 

Given a directed acyclic graph ),,( EVG  . A leveling of 

G is a topological numbering of G, where V:  mapping 

the vertices of G to integers such that 1)()(  uv   for all 

Evu  ),( . G is called a level graph if it has a leveling. If 

jv  )( , then v is a level-j vertex. Let )(1 jV j    denote the 

set of level-j vertices. Each jV is a level of G. If ),,( EVG   

has a leveling with k being the largest integer such that kV is 

not empty, G is said to be a k-level graph. For a k-level graph 

G, we sometimes write );,...,,( 21 EVVVG k . 

  

(a) A level graph. (b) A hierarchy 

Figure 2.  Examples of proper level graphs, sources are drawn black 

A drawing of G in the plane is a level drawing if the 

vertices of every jV ,  1  j k, are placed on a horizontal line 

}),{( Rxjkxl j  , and every edge Evu  ),( , iVu , 

jVv , kji 1 , is drawn as a monotone decreasing curve 

between the lines 
il
 and 

jl . A level drawing of G is called level 

planar if no two edges cross except at common endpoints. A 
level graph is level planar if it has a level planar drawing.   A 
level graph ),,( EVG   is said to be proper, if every edge 

 connects only vertices belonging to consecutive levels. 

Usually, level graph G has sinks and sources placed on various 
levels of the graph. For example, Figure 2.a, taken from 
[14],[15], shows a level graph. Hierarchy is a level graph such 

that all sources belong to the first level 1V  of the graph. As a 

consequence, we consider only hierarchies with 11 V . Figure 

2.b shows a hierarchy. 

  

(A) (B) 

  

(C) (D) 

Figure 3.  Four different embeddings of the same level graph in area 7x4 

In Figure 3 we give four different embeddings of the same 
level graph in a rectangular grid with area 7×4. From Figure 3, 
it is so easy to observe that for a level graph, there are several 
embeddings; each one differs in view from the others. The 
difference in view between several embeddings of the same 
graph is due to the differences in the distances between each 
two consecutive levels in the graph, and to the differences in 
the distances between each two consecutive vertices in each 
level. According to a certain application, an embedding of a 
level graph may be more convenient than the other ones, and 
the convenient embedding may be inconvenient to another 
application. 

Jünger, Liepert and Mutzel [16] have given a level planarity 
test algorithm of G in linear time. Using PQ-tree data structure, 
Jünger and Liepert [5] have given an algorithm that embeds a 
level planar graph in linear time, that algorithm was based on a 
level planarity test in [16]. 

By P(v) we will denote the current position of vertex v in 
the grid, i.e., P(v):=(x(v),y(v)). By P(u,v) we denote the 
embedding of edge e(u,v), that is, the line segment that 
connects P(u) with P(v). The following symbols will be used in 
this paper: 

hI is the vertical distance between any two consecutive 

levels in the graph. 

di  is the horizontal distance between any two 

consecutive vertices in the level V 
i
. 

D is the horizontal distance between any two 

consecutive vertices in the longest level. 

lI is the number of vertices that belong to the level V 
i
. 

  is the number of vertices in the longest level. 

K is the number of levels in given level graph G. 

i  is the total degree of the vertices in the level  

j  is the degree of the vertex  j  in the level  

H,W are the height and the width of the used rectangular 

grid, respectively. 

 

Ee
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In Figure 4 an example to illustrate some of above symbols 
of given proper level graph, with four levels. The longest level 
is V 

3
 with five vertices. 

 

 

 

Figure 4.  Example of proper level graph k=4. 

III. EMBEDDING OF GRAPH IN MINIMUM AREA 

Let );,...,,( 21 EVVVG k be a given proper level graph with 

n vertices. An embedding of a level graph can be aesthetic if 
we redraw the graph by making the distances between each two 
consecutive vertices, di are equal in the same level, and for 
every level the distances between each two consecutive levels, 
hi are equal also.  

Now we describe the embedding strategy of the first 
algorithm.  Simply, we put   di =1 and hi =1 for all levels, but 
the positions of vertices for each level distributed about the 
middle point of the width W at this level. The value [W / 2] 
means that, the integer part of real value W/2. It is clear that, 
the high of the used rectangular grid, H = h1 + h2 +… hk-1 =k-1 
and the width is the total distances di in the longest level.  i.e W 

=  di =  -1.  

The complete SimpleProperLevel ( ),,( EVG  ) algorithm can 

now be described as follows: 

 

Algorithm SimpleProperLevel ( ),,( EVG  ); 

Input: A given level planar graph );,...,,( 21 EVVVG k  with n 

vertices. 

Output: An embedding of the level graph G on grid 

drawing. 

  Begin 

         Let   is the number of vertices in the longest level. 

         Now we compute the x- and y-coordinate of 

         kivvvV
il

i ,...,2,1),,...,,( 21  , as follows:  

For i=1 to k  

Begin  

     Let ),...,,( 21 il

i vvvV  . li is the number of  

     vertices in level i . 

For j=1 to li  

Begin  

y(vj)= k- i                       (1) 

x(vj)= [  / 2] - [ li / 2] + j – 1     (2)         

End  

{ Now we have a drawing of Gi.}  

End  

Output the drawing of G. 

   End. 
 

Lemma 1: For each 1< i  k, when we add iV , then after 

applying the equations (1)&(2), all neighbors of iV  are 

visible, that the edges between iV and 1iV do not intersect 

themselves. 

Proof: Since );,...,,( 21 EVVVG k be a given proper level 

graph. All neighbors of iVv  in Gi-1 are only in the previous 

level 1iV .  The y-coordinate value is k- i +1 of 1 iVv  and  k- 

i of any vertex in the consecutive level iV . So, all neighbors of 
iVv  are visible. Since the vertices in the levels are ordered, 

The x-coordinate values of ),...,,( 21 il

i vvvV  are determined 

by equation (2) according to its order in iV , so the edges 

between iV and 1iV do not intersect. 

The lemma above implies immediately that adding iV ,1< i 

 k, satisfies the conditions of drawing level graph, as stated in 
the corollary below. 

Corollary 1: For each 1< i  k, The sub-graphs 

);,...,,( 21 EVVVG i   of G remain proper level graph during 

the algorithm. 
 

Theorem 1: SimpleProperLevel algorithm constructs a  

straight-line embedding of any proper level  graph 

);,...,,( 21 EVVVG k  into a (   -1)×(k-1) grid, where   is the 

number of vertices in the longest level in G.  
Proof: It is clear that, the height H of drawing grid, H = h1 

+ h2 +…+ hk-1, since hi =1 as minimum value for all levels, then 
H =k-1. Also, from equation (1), H= y (v) = k-1 ,  for any

1Vv .  The width is equal to x-coordinate value of vertex 

number  in the longest level. Replace li by  in equation (2), 

W = x (v  ) = [  /2] - [ /2] + -1 = -1. Hence, the area 

used for drawing any given proper level graph is a function of 
the number of levels and the number of vertices in the longest 
level. Hence, the proof is completed. 

Theorem 2: Let );,...,,( 21 EVVVG k  be given, then 

SimpleProperLevel algorithm can be computed in linear-time. 
Proof: We embed one level every one-time run of outer-

loop in the algorithm. Since k is the number of levels in given 
level graph G, outer-loop is run in k-times. In inner-loop, every 
vertex in a level will be visited once. But li is number of 
vertices in a level iV . Hence the algorithm can be computed in   


 


k

i

l

j

j

i

nv
1 1

 times. Hence, the proof is completed. 

Notice: We can get more aesthetic embedding of any level 
graph G by replacing the equation (2) by the following 
equation: 

            x(vj)= [(  +1 )/ 2 ] – [( li +1 )/ 2] + j - 1                (3) 

We can see the difference between using SimpleProper-
Level algorithm with the two equations (1&2) and with the two 
equations (1&3), by embedding the given graph in figure 4. It 
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is clear that the embedding of Figure (5.b) is more aesthetic 
than the one given in Figure (5.a). 

  

(a) using   equations (1&2).  (b) using   equations (1&3) 

Figure 5.  Example of proper level grap using SimpleProperLevel algorithm 

IV. DISTRIBUTING THE VERTICES WITH CONSTANT 

DISTANCES  

     Let );,...,,( 21 EVVVG k be a given level planar graph 

with n vertices. The values of the distance di between each two 
consecutive vertices in a level are computed by dividing the 

number of vertices in the longest level  by the number of 

vertices in that level i. Its means that di= [ / li ]. Since  is 

greater than or equal to li , then we ensure that di is at least one 

grid unit . Note that the distance di between each two 

consecutive vertices is constant value through level i.  In order 
to determine P(vj) , j=1,2,…,li , in the proposed algorithm , 

when adding a vertex vj , we determine its location in the grid  

by placing vj such that P(vj)=(x, y), where: 

         y(vj)= k- i           

         x(vj)= [  / 2 - (li –1)*di / 2] + ( j – 1)*di                      (4)         

In the equation (4), we will locate the leftmost and 
rightmost vertices in the longest level to the left and right 
boundaries of the grid respectively. And for the other levels we 
keep to equal distances, one between the left boundary and the 
leftmost vertex and the other one between the right boundary 

and the rightmost vertex using the term [(  / 2 - (li –1)*di / 2]. 

The output of this algorithm is an embedding of the level graph 
G on grid drawing with constant distance di and more visible 

distribution of vertices than the SimpleProperLevel algorithm. 
The complete ConstantDistance( ),,( EVG  ) algorithm can 

now be described as follows: 

Algorithm ConstantDistance ( ),,( EVG  ); 

Input: A given );,...,,( 21 EVVVG k  with n vertices. 

Output: An embedding of G on grid drawing. 

  Begin 

     For i=1 to k  

     Begin  

di= [  / li ] 

For j=1 to li  

Begin  

    y(vj)= k- i     

    x(vj)= [  / 2 - (li –1)*di / 2] + ( j – 1)*di  

End  

     End  

    Output the drawing of G. 

   End. 

Here we give an example to compare the above algorithms. 
In this example, we embed a given level graph with seventeen 
vertex (n=17), sixteen edge (m=16 ), five levels (k=5), and 5 
vertices in the longest level which is the level number 2 or 4, (

 =5). We embed it using SimpleProperLevel algorithm, where 

the distance between any two vertices is one unit, see Figure 
(6.a). Figure (6.b) shows a new embedding of the same level 
graph after applying of ConstantDistance algorithm, where 
according to number of vertices in a level the distance di is 

computed.  

 
 

(a) SimpleProperLevel algorithm.  (b) ConstantDistance algorithm   

Figure 6.  Illustration of the distribution of vertices on grid 

Theorem 3: ConstantDistance algorithm constructs a straight-

line embedding of level graph );,...,,( 21 EVVVG k  into a (  -

1)×(k-1) grid.  

Proof: It is clear that, the high of drawing grid, H = y(v 1V ) = 

k-1.  The width is equal to x-coordinate value of vertex  in 

the longest level. Since di= [  / li ], put li =  in equation (4), 

then we obtain that W =  x(v  )= [ / 2 - (  –1)*di / 2] + ( j – 

1)*di = [  / 2 - ( –1)*1 / 2] + (  – 1)*1 =   – 1. Hence, the 

proof is completed. 

Theorem 4: Let );,...,,( 21 EVVVG k  be a given , then 

ConstantDistance algorithm can be computed in linear-time. 

Lemma 2: The proper level graph );,...,,( 21 EVVVG k  can be 

embedded in any constant area, such that W   –1 and H  k–

1.    

Proof: Using ConstantDistance algorithm, Scince W=  –1 as 

minimum width in grid, then we can  take di= [(W+1)/li] for   

W   –1 and the equation (4) become  

x(vj)= [(W+1)/ 2 - (li –1)*di / 2] + ( j – 1)*di 

Applying the equation (4), we ensure that all vertices are 
embeds in the width W.  On the other hand, the hight is 
arbitrary positive integer value between any two levels in level 
graph G.  The proof is completed. 
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(a) W=8 , H=4 

 
  

(b) W=9 , H=4 

 
  

(c) W=5 , H=6 

 
  

(d) W=10 , H=6 

 
  

Figure 7.  Embedding of the same level graph in Figure 6 in 4 different areas. 

Figure 7 illustrate lemma 2, embedding of the same level 
graph in Figure 6 in four different areas. It is so easy to observe 
that for a level graph, there are several embeddings, each one 
differs in view from the others and the convenient embedding 
may be inconvenient to another application. 

V.  DISTRIBUTION ON GRID USING  DEGREES OF VERTICES 

In this section we distribute the vertices on the grid 
according to its degree. So, the distance between each two 
consecutive vertices is not fixed value in the same level i. Let 

i  is the total degrees of the vertices in the level i, and 
j  is 

the degree of the vertex  j.  We calculate the weight j  of each 

vertex in any level i, as the average value of the vertex vj 

degree and the degress of its left and right vertices, 

3/)( 11   jjjj  .  Note that if there is not any left  

or right vertex we consider that the degree of left or right equal 
to zero.  Hence, we can calculate the distance dij between the 

vertex vj-1 and vj as a function of total degree i  of the level 

and its weight j , so we can put dij= [  * j / i ]. To 

overcome confidingness, if  dij = 0 , j >1 , we consider dij = 1.   

In this case, when adding a vertex vj , we determine its location 

in the grid by placing vj such that P(vj)=(x, y), where: 

            y(vj)= k- i           

            x(vj)= x(vj-1)+ dij ,  where  dij= [ * j / i ]            (5) 

The complete DegreeDistance( ),,( EVG  ) algorithm can 

now be described as follows: 

 

Algorithm DegreeDistance( ),,( EVG  ); 

 Input: A given );,...,,( 21 EVVVG k  with n vertices. 

 Output: An embedding of the level graph G on grid drawing. 

  Begin 

       For i=1 to k  

       Begin  

For j=1 to li  

Begin  

     dij= [ * j / i ]; 

      If  (dij= 0) and ( j>1)  Then  dij= 1;  

x(vj)= x(vj-1) + dij  ; 

 y(vj)= k- i       

End  

        End  

        Output the drawing of G. 

   End. 

 
Consequently, from above algorithm, we obtain the 

following theorem:  

Theorem 5: DegreeDistance algorithm constructs a straight-

line embedding of proper level graph );,...,,( 21 EVVVG k , 

which   needs a rectangular  grid  with  area at least (   -1) × 

(k-1) grid and it can be computed in linear-time. 

Proof: It is clear that, the high of drawing grid, H = y(v 
1V ) = k-1.  At least the width is equal to x-coordinate value of 

vertex  in the longest level. Since dij1, From equation (5), 

we obtain that W =  d j   –1. Then in this case, embedding 

of proper level graph );,...,,( 21 EVVVG k , which needs a 

rectangular grid with area at least (   -1)×(k-1) grid. Since we 

embed one level every one-time run of outer-loop in the 
algorithm. And k is the number of levels in given level graph 
G, outer-loop is run in k-times. In inner-loop, every vertex in a 

level will be visited once in a level iV . Hence the algorithm 
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can be computed in linear-time times. Hence, the proof is 
completed. 

 
(a) using SimpleProper-Level algorithm 

 
(b) using ConstantDistance algorithm 

 
(c) using DegreeDistance algorithm 

Figure 8.  Three different embeddings of the same graph in minimum area. 

 Here we give an example to compare the above three 
algorithms. In this example, we embed a given level graph with 
n=45,  m=64, six levels (k=6), and twelve vertices in the 

longest level which is the level number 4, (  =12). In Figure 

8.(a) using SimpleProper-Level algorithm. The output of this 
drawing has the property that the distance between any two 
vertices for all vertices is constant and equal to one grid unit. 
Figure 8.(b) using ConstantDistance algorithm. This drawing 
has the property that the distance between any two vertices in 
the same level are constant and is equal to one or more one grid 
unit. In Figure 8.(c) using DegreeDistance algorithm. The 
output of this drawing depends on the degree of the vertex and 
its neighbors for all vertices. 

VI. CONCLUSION 

In this paper, we introduced new three algorithms for 
embedding a proper level graph on a grid with minimum width. 
These algorithms keep a proper placement for the nodes that 
belonging to the same level for each level in the graph. An 

additional objective is to minimize the area of the rectangular 
grid in which G is drawn with more aesthetic embedding, that 
is clearly in the second algorithm.  These algorithms run in 
time )(nO where n  is the number of nodes in the graph. It is 

possible to draw a given level graph within the area W×H. One 
of the goals of this area of research should be to extend this 
further, and to determine an optimal width-height tradeoff for 
grid drawings. Then for any feasible pair (W, H) we could 
apply a method that gives best drawings on grids of size (W, 
H).  In this paper we introduced several ideas to find an 

embedding of G in a rectangular grid with area, (  -1)×(k-1), 

where   is the number of vertices in the longest level and k is 

the number of levels in G. 
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