(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

A Novel Block Cipher Involving a Key bunch Matrix
and a Key-based Permutation and Substitution

Dr. V.U.K.Sastry

Professor (CSE Dept), Dean (R&D)
SreeNidhi Institute of Science & Technology, SNIST
Hyderabad, India

Abstract— In this paper, we have developed a novel block cipher
involving a key bunch matrix supported by a key-based
permutation and a key-based substitution. In this analysis, the
decryption key bunch matrix is obtained by using the given
encryption key bunch matrix and the concept of multiplicative
inverse. From the cryptanalysis carried out in this investigation,
we have seen that the strength of the cipher is remarkably good
and it cannot be broken by any conventional attack.

Keywords- Key bunch matrix; encryption; decryption; permutation;
substitution; avalanche effect; cryptanalysis.

l. INTRODUCTION

The development of block ciphers, basing upon a secret
key, is a fascinating area of research in cryptography. Though
there are several block ciphers, such as Hill Cipher [1], Fiestal
Cipher [2], DES [3], together with its variants [4][5], and AES
[6]. In all these ciphers, the processes, namely, iteration,
permutation and substitution play a vital role in strengthening
the cipher. More often, in all these ciphers, the block length and
the key length are maintained as 64, 128, 192, or 256 binary
bits.

In a recent investigation, we have developed a set of block
ciphers [7], [8], [9], “in press” [10], “unpublished” [11], [12],
wherein, a secret key bunch matrix plays a prominent role. In
all these ciphers, the encryption key bunch matrix contains a set
of keys, in which each key is an odd number lying in [1-255].
In all these analyses, the corresponding decryption key bunch
matrix, which is also containing odd numbers lying in [1-255],
is obtained by using the concept of the multiplicative inverse
[4]. In the development of all these block ciphers, the length of
the plaintext can be taken as large as possible, at our will, as the
size of the key bunch matrix can be chosen as big as possible,
in an effective manner. This feature ensures the strength of the
cipher in a remarkable way.

In the present investigation, our objective is to develop a
novel block cipher, by using the encryption key bunch matrix,
and applying a key-based permutation and substitution which
strengthen the cipher in a significant manner. The details of the
permutation and the substitution processes are presented later.

In what follows, we mention the plan of the paper. In
section 2, we discuss the development of the cipher. Further,
we present flowcharts and algorithms required in this
investigation. Here we deal with the key based permutation and
substitution involved in this analysis. In section 3, we offer an

K. Shirisha

Computer Science & Engineering
SreeNidhi Institute of Science & Technology, SNIST
Hyderabad, India

illustration of the cipher. In this, we examine the avalanche
effect, which acts as a benchmark in respect of the strength of
the cipher. In section 4, we make a study of the cryptanalysis.
Finally in section 5, we present the computations carried out in
this analysis, and arrive at conclusions.

Il. DEVELOPMENT OF THE CIPHER

Consider a plaintext P which can be represented in the form
of a matrix given by

P=[p;l.i=lton j=1ton, (2.1)

wherein each Pi is a decimal number lying in [0-255].
Let

E=[e;] i=lton,j=1ton, (2.2)

be the encryption key bunch matrix, in which each ®i is an
odd number lying in [1-255], and

D=[d;],i=1ton,j=1ton, (2.3)

be the decryption key bunch matrix, wherein each dj is an

odd number lying in [1-255]. €i and dj are connected by the
relation

(e;xd;) mod 256 = 1, (24)

Here it may be noted that the d” is obtained corresponding

. €. . .
to every given ~Yin an appropriate manner.

The basic equations governing the encryption and the
decryption processes of the cipher can be written in the form

C=[c;l=[e;* p;]1mod256,i=1ton,j=1ton (2.5)

and
P=[p;]=[d;*xc;] mod 256,i=1ton,j=1ton. (2.6)

On assuming that the cipher involoves an iteration process,
the flowcharts governing the encryption and the decryption can
be drawn as shown in Figs. 1 and 2.

In this analysis, r denotes the number of rounds in the
iteration process, and is taken as 16.

116 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

The function Substitute(), occurring in the flowchart of the
encryption, denotes the key-dependant substitution process,
that we are going to describe a little later. The function
ISubstitute(), occurring in the decryption process, denotes the
reverse process of the Substitute(). The function Mult(), which

[ReadPEKnr | Read CEKnr |
|
| For I(tl tor | _
; | D = Mult(E) |
[Fori=lton | i
— | Fork=1tor |
| Forj=lton | l
¢ | C=ISubstitute(C) |
[p,=(e,x p,)mod256 | I
| | | C=IPermute(C) |
P=[p,;] —
v | Fori=1lton |
| P=Permute(P) | 4%
: | Forj=1ton |
| P=Substitute(P) | l
|
| CZP | |cii=(d”xcii)mod 256 |
¢ |
| Write (C) | | el |
Figure 1. Flowchart for Encryption | P+=C |
y
| Write (P) |

Figure 2. Flowchart for Decryption

is in the decryption process, is used to find the decryption key
bunch matrix D from the given encryption key bunch matrix E.

The corresponding algorithms for the encryption and the
decryption are written as follows.

Algorithm for Encryption
1. ReadP,EKn,r
2. Fork=1tordo

{
3. Fori=ltondo

{
4. Forj=ltondo

{
5. p; = (eij X pij) mod 256
}
}
P=[p;]
. P=Permute(P)
8. P=Substitute(P)

}
8. C=P
9. Write(C)

Algorithm for Decryption
1. Read C,E,Knr

2. D=Mult(E)
3. Fork=1tordo
{

Vol. 3, No. 12, 2012

C=ISubstitute(C)
C=IPermute(C)
Fori=1ltondo

{
For j=1to ndo

S

~
~

= (d;; x¢;;) mod 256

10. P=C

11. Write (P)

To have a clear insight into the key dependent permutation
process and key dependent substitution process, which we are
adopting in this analysis, let us consider a typical example. Let
us take a key K in the form

(156 14 33 96
253 107 110 127
164 10 5 123
1174 202 150 94 2.7)

We write the elements of this key in a tabular form as
shown below.

1(2|3|4|5|6|7|8|9(10)111|12|13|14|15]|16

156 (143396 (253|107 |110{127 {164 (10| 5 |123|174|202|150| 94

Here the first row shows the serial number and the second
row is concerned to the elements in the key K.

On considering the order of magnitude of the elements in
the key, we can write the above table, by including one more
row, in the following form

TABLE I. RELATION BETWEEN SERIAL NUMBERS AND NUMBERS IN

ASCENDING ORDER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1§

156| 14 33 96| 253 107| 110 127| 164 10| 5| 123 174 202 150| 94

120 3 4 6 16 7 8§ 10 13 2 1 9 14 15 11 5

Here the 3rd row denotes the order of magnitude of the
elements in the key.

The process of permutation, basing upon the key used in
this analysis, can be explained as follows. Let

Xy Xo s Xgyeees X4y X553 Xi

be a set of numbers. On using the numbers, occurring in the
first and third rows of the Table-1, we swap the pairs (Xl Xlz),
(XZ’ X3) , (X4’ XG) , (XS’ X16) , (X7' XS) , (XQ’ X13) and
(s, XlS). Here it is to be noted that, (x3, x4) are not swapped,
as x3 is already swapped with x2. Similarly, we do not do any
swapping in the case of the numbers ((XG’ X7)
(XS' 10) (X107 Xz) (Xll, Xl) (X12' Xg) (X13’ X14)

(s, 11) and (e, 5) This is the basic idea of the
permutation process, WhICh we employ in the case of columns

117|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

of numbers as well as rows of numbers occurring in a matrix.
For clarity of this process, we refer to the illustration that we
are going to do in section 3, a little later.

Let us firstly discuss the process of the key based
permutation applied on a plaintext obtained in any round of the
iteration process of the encryption. Consider the plaintext P= [

Pij], i=1 to n, j=1 to n. Let us consider the first two rows of

this matrix. On representing each decimal number P in its
binary form, and writing the binary bits in a vertical manner,
we get a matrix of size 16xn, for these two rows. On assuming
that n is divisible by 16 (for convenience), we can represent
these two rows in the form of n/16 sub-matrices, wherein each
one is a square matrix of size 16. Then on swapping the rows
(as pointed out in the case of the numbers x1 to x16) and the
columns (subsequently one after another), we get the
corresponding permuted matrices. After that, by taking the
binary bits in a row-wise manner, we convert them into
decimal numbers, and write them in a row-wise manner. Thus
we get back a matrix of size 2xn.We carry out this process in a
similar manner for every pair of rows and having n columns.
Thus we complete the permutation of the entire matrix and get
a permuted matrix of size nxn. However if n<16, the process of
swapping is restricted according to the value of n. For example,
let us suppose that n=4. And P is of the form given by

Vol. 3, No. 12, 2012

We need not interchange rows any more as we have only 8
rows in this matrix. Now, we interchange the columns
following the information in Table-1. This will lead to a matrix
of size 8x16, which is given by

00 0 0 0 0 L 0 L 0 L 1 L 0 0 0
01 1 0 1 0 0 1 0 1 1 0 1 0 01

0 0 0 1 1 0 1 1 L 0 1 1 0 0 1 0

P:O 10 1 1 1t 1t 1t 0 0 1 1 1 0 0 0
0t 0t 0t 1 0 0 0 0 0 1 1 0 1

00 0 t 0 0 1 0 1 1 1 0 0 0 0 1

01 0 0 0 0 1 1 L 1 1 0 1 0 1 0

000 1 0 0 0 1 0 1 0 0 L 1 0 0 0
(2.11)

This completes the process of the permutation, denoted by
the function Permute().

Let us now describe the process of the key-based
substitution. We now consider the numbers [0-255] that are
occurring in EBCDIC table. These numbers can be represented
in the form of a square matrix of size 16 by writing the table in
the form

EB(i,j))=[16(i—1)+j—1],i=1to 16, j=1to 16
(2.12)
On using the basic idea of the key-based permutation

198 34 45 12

o |6 92 1 2 (28)
175 49 245 0
211 65 8 100

process, we permute the rows (firstly)
(subsequently), and obtain the substitution
given by

and the columns
matrix, called SB,

On writing the 16 decimal numbers in terms of binary bits
in a column-wise manner, the matrix (2.8) can be represented
in the form of a matrix of size 8x16. This is given by

10 0 0 0 0 0 L L 01 0 1 0 0
L0000 1 1t 00 10 1t 01
001 L 0 1 0 1 0 L 1 1 0 0 0 01
o0 I T S R N N N N O R A
00 1 1 1 1 0 1 1 00 0 0 0 1 0
0ttt 0 1ttt 0t 0 0 0 0 1
11 0 0 0 0 0 1 1 0 0 0 1 0 0 0
D01 0 0 0 1 1 1 1 1 01 1 0 0

(2.9)

Firstly, as suggested by Table-1, we interchange the row
pairs (2,3), (4,6), and (7,8). Thus we get

1 0 0

0 110
1 0 1 1
0 10 0
0 110
1 110
1 101
0 111
0 110

P T T
o o o o o o o o
e il — T = e — S
o P o o o b o o
o o o ko o o o
oo o o e O

0
1
1
1
0
0
1
0

o o o e e S o

0
011
10 0
10 1
00 1
00 0
00 1
110

o o o ok o o

(2.10)

SB=

187

X]
27
91
21
59
123
107
203
155
m
1
139
235
29

18
34
18
82
LY
50
114
9%
194
146
162
2
130
226
210
66

1
3
17
81
241
4
13
97
193
145
161
1
129
25
209
65

181
3
21
85
U5
5
17
101
197
149
165
5
133
29
pAK]
69

191
4
kil
9
25
63
127
1
207
159
175
15
143
239
23
n

179
%
19
83
U3
51
115
99
19
147
163
3
131
21
A1
67

183
3
3
87
U1
5%
19
103
199
151
167
7
135
21
25
1

182
3
2
86
246
5
118
102
198
150
166
b
134
230
214
70

188
44
28
92
252
60
124
108
204
156
172
12
140
236
20
76

185
4
%
89
249
57
121
105
20
153
169
9
137
233
a1
K]

186
42
2%
90
250
58
122
106
202
154
170
10
138
234
218
4

176
32
16
80
240
4
12
96
192
144
160
0
128
24
208
64

184
40
4
88
248
5
120
104
200
152
168
8
136
232
26
7

190
4
3
94
254
62
126
110
206
158
174
14
142
238
22
78

189
4
29
93
253
61
125
109
205
157
13
13
141
27
21
m

180]
3%
20
84
24
5
116
100
19%
148
164
4
13
228
212
68

L 75 J

(2.13)
The function Substitute() works as follows: On noticing the
position of a decimal number (corresponding to a character in
the plaintext, at any stage of the iteration process) in the
EBCDIC table, we substitute that number in the plaintext by
the decimal number occurring in the same position of the
substitution matrix.

The functions IPermute() and ISubstitute() denote the
reverse processes of the Permute() and the Substitute(),
respectively. The function Mult() is used to find the decryption
key bunch matrix D for the given encryption key bunch matrix
E.

118 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Il. ILLUSTRATION OF THE CIPHER AND THE AVALANCHE
EFFECT

Consider the plaintext given below.

Dear Brother-in-law! Up to the time that you went abroad,
that is a month back, my mother and father promised to give
me to you in marriage. They do not want their daughter to go
away to this country. They say that they cannot live without my
presence along with this in this country. Now they are
searching for an Indian match. You are highly qualified. You
did your M.Tech. Now you are doing your Doctorate. How can
I forget you? | all the while remember your charming
personality and your pleasant talk. It is simply impossible for
me to forget you and marry someone else. Whatever my father
and mother say to me | want to escape from their clutches and
reach you as early as possible. I am finishing my final year
exams. | have already passed GRE and TOEFL. | would apply
for bank loan with the cooperation of your father and get away
from this country very soon and join you without any second
thought. (3.1)

Let us focus our attention on the first 16 characters of the
plaintext. This is given by

Dear Brother-in- (3.2)
On using the EBCDIC code, the plaintext (3.2) can be
written in the form of a matrix P given by
196 133 129 153
p_| 64 194 153 150,
| 163 136 133 153
96 137 149 96
Let us take the encryption key bunch matrix E in the form

21 57 171 39
e 101 67 89 223/
| 67 157 171 1

37 203 233 17

On applying the concept of the multiplicative inverse, we
get

(3.3)

3.4)

61 9 3 151
D- 109 107 233 31 . (3.5)
107 181 3 1
173 227 89 241
On using the plaintext P, the encryption key bunch matrix E

and the encryption algorithm, given in section 2, we get the
ciphertext C in the form

20 197 152 47

Co 247 232 111 142} (3.6)
91 154 73 113
168 34 170 80

Now, on using the decryption key bunch matrix D, given by
(3.5), the ciphertext C, given by (3.6), and applying the

Vol. 3, No. 12, 2012

decryption algorithm, we get back the plaintext P, given by
(3.3).

Let us now examine the avalanche effect. On replacing the
4th row 2nd column element, 137 by 169, we get a change of
one binary bit in the plaintext. On using this modified plaintext,
the encryption key bunch matrix E and applying the encryption
algorithm, we get a new ciphertext C in the form

176 187 193 16
120 5 219 17
75 35 72 174
252 3 116 221

On comparing (3.6) and (3.7), after converting them binary
form, we notice that these two ciphertexts differ by 68 bits out
of 128 bits. Let us now consider the case of a one bit change in
the key bunch matrix E. This can be achieved by replacing 101
(the 2nd row 1st column element of E) by 116. Now, on using
the modified E, the plaintext P, given by (3.3), and applying the
encryption algorithm, we get the corresponding ciphertext C in
the form

C= (3.7)

204 8 71 1

c_| 76 102 100) 38)

235 116 221 186

45 76 235 186

On converting the ciphertexts (3.6) and (3.8) into their
binary form, and comparing them, we find that these two
ciphertexts differ by 71 bits out of 128 bits.

From the above analysis, we conclude that the cipher is
expected to be a strong one.

IV. CRYPTANALYSIS

In the literature of the cryptography, the strength of a cipher
can be decided by carrying out cryptanalysis. The different
attacks that are available for breaking a cipher are

1. Ciphertext only attack (Brute force attack),
2. Known plaintext attack,

3. Chosen plaintext attack, and

4. Chosen ciphertext attack.

Generally every cipher is designed, so that it withstands the
first two attacks [4]. However the latter two attacks are
examined intuitively and checked up whether the cipher can be
broken by those attacks.

Let us now consider the ciphertext only attack. In this
cipher, the encryption key bunch matrix is of size nXn. The
key matrix used in the development of the permutation and the
substitution is a square matrix of size 4. Hence the size of the
key space is

27n2+128 _ (210)0.7n2+12.8 z102.1n2+38.4

If we assume that the time required for the computation of

-7
the cipher with one value of the key in the key space is 10
seconds, then the time required for the execution of the cipher
with all possible values of the key in the key space is

119|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

2
102.1n +31.4

102.1n2 +38.4 % 10—7
365x 24 x 60x 60 365 x 24 x 60 x 60

2
=3.12x10*" **** years
In this analysis, as we have taken n=4, the time required for

the execution assumes the form 3-12 x10% years. As this is a
very large number, it is simply impossible to break this cipher
by the brute force attack.

Let us now consider the known plaintext attack. In order to
carry out this one, we know as many pairs of plaintexts and
ciphertexts as we require. If we confine our attention to r=1,
that is to the first round of the iteration process, then the basic
equations governing the cipher are given by

P= [eij X p;] mod 256,i=1ton, j=1ton, (4.2)
P = Permute(P), (4.2)
P = Substitute(P), (4.3)
and

C=P (4.4)

As C is known to us, the P on the right side of (4.4) is
known. Thus, though P on the left side of (4.3) is known to us,
the P on the right side of (4.3) cannot be determined as the
Substitute() and the ISubstitute(), which depend upon the key
K, are unknown to us. Hence this cipher cannot be broken by
the known plaintext attack, even when r=1, as K is not known.
However, if an attempt is made to tackle this problem by the
brute force attack, that is choosing K in all possible ways,
covering the entire key space of the key K, then the time
required for developing the functions Permute() and
Substitute() can be shown to be

2128 x 1077

365x 24 x 60 x 60
as the length of the key K is 128 binary bits. Here, it is
assumed that the time required for the computation of
Permute() and Substitute() (together with IPermute() and

ISubstitute()) takes 107 seconds. As this time is very large, we
firmly conclude that this cipher cannot be broken by the known
plaintext attack, even when we supplement it with the brute
force attack.

=3.12x10%* years.

As the equations governing the cipher, are non-linear and
highly involved, due to permutation, substitution and modular
arithmetic operations, we envisage that it is not possible to
choose either a plaintext or a ciphertext for breaking the cipher
by the third or the fourth attack.

In the light of the above facts, we conclude that, this cipher
is a strong one and it cannot be broken by any conventional
attack.

V. COMPUTATIONS AND CONCLUSIONS

In this investigation, we have developed a novel block
cipher by using a key bunch matrix. In this, we have made use
of a permutation process and a substitution process basing upon
a key matrix of size 4x4. The strength of a cipher has increased
enormously as we have introduced iteration process and the
functions Permute() and Substitute().

Vol. 3, No. 12, 2012

The programs required for encryption and decryption are
written in Java.

When the size of the plaintext is very large, it is rather
tedious to carry out the encryption process by using a key
bunch matrix E of size 4x4. Thus, in order to carry out the
encryption of the entire plaintext, given in (3.1), we take a key
bunch matrix EK of size 16x16. This is taken in the form, given
by (5.1).

49 163 109 217 133 161 225 89 163 209 225 255 39 31 235 169
13 227 27 107 207 67 191 161 143 215 29 179 133 45 57 5
253 211 79 121 91 95 167 89 157 159 111 175 249 71 213 139
233 195 241 7 231 185 41 243 223 81 83 113 149 27 1 213
91 129 73 47 187 245 115 143 153 209 31 27 243 39 159 11
131 185 23 17 187 255 169 97 55 157 149 199 247 8 61 27
255 209 29 9% 77 183 117 145 107 139 91 1 21 81 43 9
13393 49 111 115 131 239 63 141 137 193 23 45 193 179 217
207 97 19 245 113 83 103 159 147 49 225 41 247 193 99 139
151 143 191 205 91 151 197 137 23 151 103 91 109 91 11 65
249 39 33 143 69 247 243 53 11 211 99 119 13 19 207 22
223 101 225 233 61 111 201 149 3 1 5 121 3 175 100 91
85 61 95 195 33 41 33 71 151 43 93 233 193 159 13 97
175 93 9 9 59 73 167 127 247 95 135 203 29 55 25 163
231 215 131 237 131 93 255 181 211 107 77 47 91 249 39 105
|75 225 189 41 75 251 193 79 199 101 9 179 63 189 67 19 |
(5.1)
The plaintext given in (3.1) is containing 907 characters.
This can be divided into 4 blocks, wherein each block is
containing 256 characters. However, we have appended 117
zeroes characters so that we make the last block a complete
block. Now, on using K and EK, given in (2.7) and (5.1), and
the encryption process, given in section 2, four times, we get
the cipher text in the form, given in (5.2).

EK =

In order to send the size key bunch matrix EK, in a secret
manner, let us encrypt this one by using E as the key bunch
matrix. Thus we arrive at the ciphertext corresponding to EK as
shown in (5.3).

It is to be noted here, that the sender has to send the
ciphertext corresponding to entire plaintext, the number of
characters added in the last block, and the ciphertext
corresponding to EK to the receiver. Further the sender has to
provide E and K in a secret manner.

From the above analysis, we notice that this cipher is a
strong one and it can be applied for the transmission of a
plaintext of any length in a secured manner. It may also be
noted here that this cipher is very much useful in encrypting
black and white images and color images.

REFERENCES
[1] Lester Hill, (1929), “Cryptography in an algebraic alphabet”, (V.36 (6),
pp. 306-312.), American Mathematical Monthly.

[2] Fiestal H., Cryptography and Computer Privacy, Scientific American,
May 1973.

[3] National Bureau of Standards NBS FIPS PUB 46 “Data Encryption
Standard (DES)”, US Department of Commerce, January 1977.

[4] William Stallings: Cryptography and Network Security: Principle and
Practices”, Third Edition 2003, Chapter 2, pp. 29.

[5] Tuchman, W., “ Hellman presents no Shortcut Solutions to DES”, IEEE
Spectrum, July, 1979.

[6] Daemen J., Rijman V., “Rijndael, The Advanced Encryption Standard
(AES)”, Dr. Dobb’s Journal, vol. 26, No. 3, March 2001, pp. 137-139.

120|Page

www.ijacsa.thesai.org

[71

(8]

[9]

[10]

[11]

223
121
189
129
88
233
105
130
198
203
60
165
44
202
21
68

34
16
107

150
247
137
200
176
254
12

126
197
80

212

(IJACSA) International Journal of Advanced Computer Science and Applications,

Dr. V.UK. Sastry, K.Shirisha, “A Novel Block Cipher Involving a Key
Bunch Matrix”, in International Journal of Computer Applications (0975
— 8887) Volume 55— No.16, Oct 2012, Foundation of Computer Science,
NewYork, pp. 1-6.

Dr. V.UK. Sastry, K.Shirisha, “A Block Cipher Involving a Key Bunch
Matrix and Including Another Key Matrix Supplemented with Xor
Operation ”, in International Journal of Computer Applications (0975 —
8887) Volume 55— No.16, Oct 2012, Foundation of Computer Science,
NewYork, pp.7-10.

Dr. V.U.K. Sastry, K.Shirisha, “A Block Cipher Involving a Key Bunch
Matrix and Including another Key Matrix Supported With Modular
Arithmetic Addition”, in International Journal of Computer Applications
(0975 — 8887) Volume 55— No.16, Oct 2012, Foundation of Computer
Science, NewYork, pp. 11-14.

Dr. V.UK. Sastry, K.Shirisha, “A novel block cipher involving a key
bunch matrix and a permutation”, International Journal of Computers
and Electronics Research (IJCER), in press.

Dr. V.UK. Sastry, K.Shirisha, “A block cipher involving a key bunch
matrix, and a key matrix supported with xor operation, and
supplemented with permutation”, unpublished.

Dr. V.U.K. Sastry, K.Shirisha, “A block cipher involving a key bunch
matrix, and a key matrix supported with modular arithmetic addition,
and supplemented with permutation”, unpublished.

241 161 13 58 52 154 202 32
39 196 90 88 91 197 252 96
132 82 3 45 208 66 85 62
160 72 21 246 93 91 29 75
219 168 114 10 133 194 178 249
148 80 51 235 204 235 115 239
227 176 240 113 3 12 74 151
153 4 158 188 202 15 197 52
3 184 60 138 1 46 120 200
43 90 35 37 198 133 38 136
173 43 77 169 151 148 188 134
156 127 144 210 226 82 208 186
141 63 218 151 48 210 37 50
89 201 175 183 99 58 125 171
223 53 6 66 165 35 185 41
244 63 124 221 208 186 126 236
190 74 206 29 42 171 196 57
149 250 131 103 182 200 194 3
217 242 176 61 164 124 112 177
205 77 188 160 140 243 72 13
93 173 227 45 85 4 13 109
68 119 196 192 125 251 245 202
237 225 186 187 144 82 220 85
81 131 34 167 119 252 109 57
52 184 200 182 153 199 58 219
250 36 137 218 149 92 159 150
106 183 133 195 232 237 124 244
55 101 97 218 15 252 68 43
69 175 193 105 109 150 48 217
242 122 48 126 88 249 176 21
120 170 72 142 205 146 144 218
1 138 154 44 133 195 9 167

Vol. 3, No. 12, 2012

AUTHORS PROFILE

Dr. V. U. K. Sastry is presently working as Professor in the Dept. of

Computer Science and Engineering (CSE), Director (SCSI), Dean (R &
D), SreeNidhi Institute of Science and Technology (SNIST), Hyderabad,
India. He was Formerly Professor in 11T, Kharagpur, India and worked
in 1T, Kharagpur during 1963 — 1998. He guided 14 PhDs, and
published more than 86 research papers in various International Journals.
He received the Best Engineering College Faculty Award in Computer
Science and Engineering for the year 2008 from the Indian Society for
Technical Education (AP Chapter), Best Teacher Award by Lions Clubs
International, Hyderabad Elite, in 2012, and Cognizant- Sreenidhi Best
faculty award for the year 2012. His research interests are Network
Security & Cryptography, Image Processing, Data Mining and Genetic
Algorithms.

K. Shirisha is currently working as Associate Professor in the Department of

81
78
158
113
91
223
190
225
16
58
188
55
188
78
42
14

131
183
56
118
83
227
56
28
222
148
121
53
119
96
118
180

Computer Science and Engineering (CSE), SreeNidhi Institute of
Science & Technology (SNIST), Hyderabad, India, since February 2007.
She is pursuing her Ph.D. Her research interests are Information Security
and Data Mining. She published three research papers in International
Journals. She stood University topper in the M.Tech.(CSE).

6 150 237 156 161 183
118 17 201 95 137 127
217 227 42 11 113 104
73 79 246 108 54 97
152 182 241 251 74 148
38 40 24 64 34 65
81 165 7 112 111 241
121 52 84 3 214 24
180 52 117 21 62 168
192 176 215 28 171 253
76 5 211 62 207 55
45 44 114 144 234 20
78 100 66 83 120 225
232 81 9 110 238 185
81 35 66 150 201 104
230 11 184 224 209 58
13 226 53 29 140 190
181 19 62 128 177 61
234 167 60 190 102 152
184 20 27 28 216 119
190 183 254 44 116 147
175 255 240 28 233 185
15 82 136 86 86 211
145 75 189 155 130 226
95 55 46 150 123 49
194 42 139 153 169 71
153 149 15 111 250 35
199 156 13 193 191 131
165 196 200 93 198 2
189 108 223 20 103 O
24 199 36 133 143 97
153 230 18 232 230 129

121|Page

www.ijacsa.thesai.org

96

139
108
92

154
22

238
203
163
73

195
150
216
162

132

175
110
184
185
251
246
117
144
214
152
10

97

121
197
208
47

[113
163
98
101
115
149
247
75
188
124
106
105
109
33

34

49

181
151
91

238
57

44

197
174
122
191
135
116
203
161
115

213
131
106
50

101
79

210

245
34

175
182
190
238
216
248

73
158
91
252
55
113
69
223
77
108
242
184
12
15
95
38

188
252
14
46
238
33
12
72
140
80
32
175
114
160
190
175

230
39
138
151
66
17
13
201
158
210
11
174
103
119
180
48

66
75
235
70
85
194
167
70
47
85
28
24
148
59
140
184

112
174
72
174
40
35
225
114
226
143
244
43

20
31
134

188
230
210
140
108
51

36

125
201
198

42
125
91
176
34

92
34
68
162
16
100
204
220
145
97
236

237
207
134
252

107
248
145
129
35
108
133
207
76
105
64
43
20
89
14
60

248
166
251
253
54

226
64

213
168
251
194
88

218
129
14

135

33
247
203
63
102
34
194

165
134
187
163
225
172
160
222

141
98
228
134
232
80
232
99
105
146
42
30
109
234
189
136

27
152
94
90
90

52

216
139
191
247
184
102
217
27

186

16
172
52
209
144
60
215
123
250
37
64
238
180
241
30
57

222
53
52
28
177
156
13
62
49
148
185
79
72
236
213
18

35
240
208

42
176
191
83
68

249
216
182

146
60

91
222
99
94
138
85
235
188
126
232
255
34
125
219
140
78

157
127
53
84
185
75
38
144
52
111
129
76
238
104

161

68
255
57
216
250
86
216
64

146
194
221
84

121
157
178

169
66
80
114
86
46

42
80
132
79
20
196
95
47

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

170
218
70

214
167
102
73

43

55

136
215
184
216
233
207

34

197
174
206
69

114
132
136
221
82

177
242
59

205
214
108

52
121
36
78
254
117
240
122
175
170
233
142
254
156
94
46

205
66
105
192
104
41
103
25
55
29
129
216
14
156
246
52

106
110
201
172
147
154
251
217
20
162
63
61
20
189
11
255

245
200
60
75
13
204
52
130
39
252
145
213
196
214
174

46
139
19
149
28
230
162

78
174
33
135
215
240
69
249

240
230
215
143
82
93
226
242
135
51
246
93
67
158
150
230

249
217
125
208
61

242
46

106
141
236
78

185
192
230
151
30

109
137
118
81
48
146
224
33
78
98

150
228
151
125
201

15
25

106
243
244
127
96

64

142
157
102

116
210
20

254

45
190
7

230
107
161
217
45
134
54
81
104
250
224
96

178
250
36
53
208

112
78
120
78
253
255
172
239
94
39

74
33
108
115

85
201
255
208
160
49
195
220
44
19
58

45
113
109
119
165
29
53
74
186
228
237
233
21
71
47
108

253
100
191
192
240
207
129
111
67

119
106
160
248
148
13

86

205
96

174
120
252
175
235
26

182
224
206
56

245
189
162
65

131 17
23
33
66
215 168
166 100
216 147
225 145
78

118
157
112

11

17
98

54 125

163
87
156

214

52
203

165
150
156
186
93
233
227
84
2
51
132
105
98
68
254
62

130
243
45
179
139
189
66
145
65
80
88
157
62
208
30

48
136
14

126
208
195
148
122
229
126
91

40

229
233
26

222
187
146
15

15

195
153
171
121
229
236
253
27

168
154
122

192
43
175
13
53
80
122
141
192
142
30
186
187
69
139
66

Vol. 3, No. 12, 2012

(5.2)

(5.3)

122 |Page

