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Abstract— In this paper, we have developed a novel block cipher 

involving a key bunch matrix supported by a key-based 

permutation and a key-based substitution. In this analysis, the 

decryption key bunch matrix is obtained by using the given 

encryption key bunch matrix and the concept of multiplicative 

inverse. From the cryptanalysis carried out in this investigation, 

we have seen that the strength of the cipher is remarkably good 

and it cannot be broken by any conventional attack. 
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I.  INTRODUCTION  

The development of block ciphers, basing upon a secret 
key, is a fascinating area of research in cryptography. Though 
there are several block ciphers, such as Hill Cipher [1], Fiestal 
Cipher [2], DES [3], together with its variants [4][5], and AES 
[6]. In all these ciphers, the processes, namely, iteration, 
permutation and substitution play a vital role in strengthening 
the cipher. More often, in all these ciphers, the block length and 
the key length are maintained as 64, 128, 192, or 256 binary 
bits. 

In a recent investigation, we have developed a set of block 
ciphers [7], [8], [9], “in press” [10], “unpublished” [11], [12], 
wherein, a secret key bunch matrix plays a prominent role. In 
all these ciphers, the encryption key bunch matrix contains a set 
of keys, in which each key is an odd number lying in [1-255]. 
In all these analyses, the corresponding decryption key bunch 
matrix, which is also containing odd numbers lying in [1-255], 
is obtained by using the concept of the multiplicative inverse 
[4]. In the development of all these block ciphers, the length of 
the plaintext can be taken as large as possible, at our will, as the 
size of the key bunch matrix can be chosen as big as possible, 
in an effective manner. This feature ensures the strength of the 
cipher in a remarkable way. 

In the present investigation, our objective is to develop a 
novel block cipher, by using the encryption key bunch matrix, 
and applying a key-based permutation and substitution which 
strengthen the cipher in a significant manner. The details of the 
permutation and the substitution processes are presented later. 

In what follows, we mention the plan of the paper.  In 
section 2, we discuss the development of the cipher. Further, 
we present flowcharts and algorithms required in this 
investigation. Here we deal with the key based permutation and 
substitution involved in this analysis. In section 3, we offer an 

illustration of the cipher. In this, we examine the avalanche 
effect, which acts as a benchmark in respect of the strength of 
the cipher. In section 4, we make a study of the cryptanalysis. 
Finally in section 5, we present the computations carried out in 
this analysis, and arrive at conclusions.  

II. DEVELOPMENT OF THE CIPHER 

Consider a plaintext P which can be represented in the form 
of a matrix given by  

P = [
ijp ], i=1 to n, j=1 to n,        (2.1) 

wherein each ijp
is a decimal number lying in [0-255]. 

Let  

E = [
ije ], i=1 to n, j=1 to n,        (2.2) 

be the encryption key bunch matrix, in which each ije
 is an 

odd number lying in [1-255], and  

 D= [
ijd ], i=1 to n, j=1 to n,                (2.3) 

be the decryption key bunch matrix, wherein each ijd
 is an 

odd number lying in [1-255]. ije
 and ijd

are connected by the 
relation  

 (
ije ×

ijd ) mod 256 = 1,                                    (2.4) 

Here it may be noted that the ijd
is obtained corresponding 

to every given ije
in an appropriate manner.   

The basic equations governing the encryption and the 
decryption processes of the cipher can be written in the form  

C = [
ijc ]=[

ije ×
ijp ] mod 256, i=1 to n, j = 1 to n          (2.5) 

and 

P = [
ijp ]=[

ijd ×
ijc ] mod 256, i=1 to n, j = 1 to n.       (2.6) 

On assuming that the cipher involoves an iteration process, 
the flowcharts governing the encryption and the decryption can 
be drawn as shown in Figs. 1 and 2. 

In this analysis, r denotes the number of rounds in the 
iteration process, and is taken as 16. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 12, 2012 

117 | P a g e  

www.ijacsa.thesai.org 

The function Substitute(), occurring in the flowchart of the 
encryption, denotes the key-dependant substitution process, 
that we are going to describe a little later. The function 
ISubstitute(), occurring in the decryption process, denotes the 
reverse process of the Substitute(). The function Mult(), which 

is in the decryption process, is used to find the decryption key 
bunch matrix D from the given encryption key bunch matrix E. 

The corresponding algorithms for the encryption and the 
decryption are written as follows. 

Algorithm for Encryption 

1. Read P,E,K,n,r 

2. For k = 1 to r do 

{ 

3. For i=1 to n do 

{ 

4. For j=1 to n do 

{ 

5. 
ijp  = (

ije ×
ijp )  mod 256 

} 

} 

6. P=[
ijp ] 

7. P=Permute(P) 

8. P=Substitute(P) 

} 

8.    C=P 

9.    Write(C) 

Algorithm for Decryption 

1. Read C,E,K,n,r 

2. D=Mult(E) 

3. For k = 1 to r do 

{ 

4. C=ISubstitute(C) 

5. C=IPermute(C) 

6. For i =1 to n do 

{ 

7. For j=1 to n do 

{ 

8. 
ijc = (

ijd ×
ijc ) mod 256 

} 

} 

9. C=[
ijc ] 

} 

10. P=C 

11. Write (P) 
To have a clear insight into the key dependent permutation 

process and key dependent substitution process, which we are 
adopting in this analysis, let us consider a typical example. Let 
us take a key K in the form  

         




















94150202174

123510164

127110107253

963314156

K

                                (2.7)

    (2.7) 

We write the elements of this key in a tabular form as 
shown below. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

156 14 33 96 253 107 110 127 164 10 5 123 174 202 150 94 

Here the first row shows the serial number and the second 
row is concerned to the elements in the key K.  

On considering the order of magnitude of the elements in 
the key, we can write the above table, by including one more 
row, in the following form 

TABLE I.  RELATION BETWEEN SERIAL NUMBERS AND NUMBERS IN 

ASCENDING ORDER 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

156 14 33 96 253 107 110 127 164 10 5 123 174 202 150 94 

12 3 4 6 16 7 8 10 13 2 1 9 14 15 11 5 

 
Here the 3rd row denotes the order of magnitude of the 

elements in the key.  

The process of permutation, basing upon the key used in 
this analysis, can be explained as follows. Let  

161514321 ,,,...,,, xxxxxx  

be a set of numbers. On using the numbers, occurring in the 

first and third rows of the Table-1, we swap the pairs  121, xx ,
 32 , xx

,
 64 , xx

,
 165 , xx

,
 87 , xx

,
 139 , xx

 and 
 1514, xx

. Here it is to be noted that, (x3, x4) are not swapped, 
as x3 is already swapped with x2. Similarly, we do not do any 

swapping in the case of the numbers
 43 , xx

,
 76 , xx

,

 108 , xx
,
 210, xx

,  111, xx ,
 912, xx

,
 1413, xx

,

 1115, xx
 and

 516, xx
. This is the basic idea of the 

permutation process, which we employ in the case of columns 

 Read C,E,K,n,r 

D = Mult(E) 

For k=1 to r 

 

For j=1 to n 

 

C = [ ijc ] 

 

Write (P) 

P =C 

 

For i=1 to n 

 

ijc = ( ijd × ijc ) mod 256 

C=ISubstitute(C) 

C=IPermute(C) 

 Read P,E,K,n,r 

For k=1 to r 

For i=1 to n 

For j=1 to n 

C=P 

Write (C) 

P=Substitute(P) 

 ijp = ( ijij pe   ) mod 256     

P = [ ijp  ] 

P=Permute(P) 

Figure 1. Flowchart for Encryption 

Figure 2. Flowchart for Decryption 
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of numbers as well as rows of numbers occurring in a matrix. 
For clarity of this process, we refer to the illustration that we 
are going to do in section 3, a little later.  

Let us firstly discuss the process of the key based 
permutation applied on a plaintext obtained in any round of the 
iteration process of the encryption. Consider the plaintext P= [

ijp
], i=1 to n, j=1 to n. Let us consider the first two rows of 

this matrix. On representing each decimal number ijp
 in its 

binary form, and writing the binary bits in a vertical manner, 
we get a matrix of size 16xn, for these two rows. On assuming 
that n is divisible by 16 (for convenience), we can represent 
these two rows in the form of n/16 sub-matrices, wherein each 
one is a square matrix of size 16. Then on swapping the rows 
(as pointed out in the case of the numbers x1 to x16) and the 
columns (subsequently one after another), we get the 
corresponding permuted matrices. After that, by taking the 
binary bits in a row-wise manner, we convert them into 
decimal numbers, and write them in a row-wise manner. Thus 
we get back a matrix of size 2×n.We carry out this process in a 
similar manner for every pair of rows and having n columns. 
Thus we complete the permutation of the entire matrix and get 
a permuted matrix of size nxn. However if n<16, the process of 
swapping is restricted according to the value of n. For example, 
let us suppose that n=4. And P is of the form given by 





















100865211

024549175

2231019256

124534198

P

           (2.8) 

On writing the 16 decimal numbers in terms of binary bits 
in a column-wise manner, the matrix (2.8) can be represented 
in the form of a matrix of size 8x16. This is given by 



































0  0  1  1  0  1  1  1  1  1  0  0  0  1  0  0   

0  0  0  1  0  0  0  1  1  0  0  0  0  0  1  1   

1  0  0  0  0  1  0  1  1  1  1  0  1  1  0  1   

0  1  0  0  0  0  0  1  1  0  1  1  1  1  0  0   

0  0  0  1  0  1  1  0  1  0  1  1  0  0  0  0   

1  0  0  0  0  1  1  1  0  1  0  1  0  1  1  0   

1  0  1  1  0  1  0  0  1  1  1  0  0  0  0  1   

0  0  0  1  0  1  0  1  1  0  0  0  0  0  0  1   

P

 
                          (2.9) 

Firstly, as suggested by Table-1, we interchange the row 
pairs (2,3), (4,6), and (7,8). Thus we get  



































0  0  0  1  0  0  0  1  1  0  0  0  0  0  1  1   

0  0  1  1  0  1  1  1  1  1  0  0  0  1  0  0   

0  0  0  1  0  1  1  0  1  0  1  1  0  0  0  0   

0  1  0  0  0  0  0  1  1  0  1  1  1  1  0  0   

1  0  0  0  0  1  0  1  1  1  1  0  1  1  0  1   

1  0  1  1  0  1  0  0  1  1  1  0  0  0  0  1   

1  0  0  0  0  1  1  1  0  1  0  1  0  1  1  0   

0  0  0  1  0  1  0  1  1  0  0  0  0  0  0  1 

P

 

          

(2.10) 

We need not interchange rows any more as we have only 8 
rows in this matrix. Now, we interchange the columns 
following the information in Table-1. This will lead to a matrix 
of size 8x16, which is given by  



































0  0  0  1  1  0  0  1  0  1  0  0  0  1  0  0   

0  1  0  1  0  1  1  1  1  1  0  0  0  0  1  0   

1  0  0  0  0  1  1  1  0  1  0  0  1  0  0  0   

1  0  1  1  0  0  0  0  0  1  1  0  1  0  1  0   

0  0  0  1  1  1  0  0  1  1  1  1  1  0  1  0   

0  1  0  0  1  1  0  1  1  1  0  1  1  0  0  0   

1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0   

0  0  0  1  1  1  0  1  0  1  0  0  0  0  0  0 

P

    

             (2.11)  
This completes the process of the permutation, denoted by 

the function Permute(). 

Let us now describe the process of the key-based 
substitution. We now consider the numbers [0-255] that are 
occurring in EBCDIC table. These numbers can be represented 
in the form of a square matrix of size 16 by writing the table in 
the form  

  (   )  [  (   )     ]                     

          (2.12) 
On using the basic idea of the key-based permutation 

process, we permute the rows (firstly) and the columns 
(subsequently), and obtain the substitution matrix, called SB, 
given by  



























































68 77 78 72 64 74 73 76 70 71 67 79 69 65 66 75  

212221222216208218217220214215211223213209210219 

228237238232224234233236230231227239229225226235 

132141142136128138137140134135131143133129130139 

4  13 14 8  0  10 9  12 6  7  3  15 5  1  2  11  

164173174168160170169172166167163175165161162171 

148157158152144154153156150151147159149145146155 

196205206200192202201204198199195207197193194203 

10010911010496 10610510810210399 11110197 98 107 

116125126120112122121124118119115127117113114123 

52 61 62 56 48 58 57 60 54 55 51 63 53 49 50 59  

244253254248240250249252246247243255245241242251 

84 93 94 88 80 90 89 92 86 87 83 95 85 81 82 91  

20 29 30 24 16 26 25 28 22 23 19 31 21 17 18 27  

36 45 46 40 32 42 41 44 38 39 35 47 37 33 34 43  

180189190184176186185188182183179191181177178187

SB

  

                       (2.13) 
The function Substitute() works as follows: On noticing the 

position of a decimal number (corresponding to a character in 
the plaintext, at any stage of the iteration process) in the 
EBCDIC table, we substitute that number in the plaintext by 
the decimal number occurring in the same position of the 
substitution matrix. 

The functions IPermute() and ISubstitute() denote the 
reverse processes of the Permute() and the Substitute(), 
respectively. The function Mult() is used to find the decryption 
key bunch matrix D for the given encryption key bunch matrix 
E. 
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III. ILLUSTRATION OF THE CIPHER AND THE AVALANCHE 

EFFECT  

Consider the plaintext given below. 

Dear Brother-in-law! Up to the time that you went abroad, 
that is a month back, my mother and father promised to give 
me to you in marriage. They do not want their daughter to go 
away to this country. They say that they cannot live without my 
presence along with this in this country. Now they are 
searching for an Indian match. You are highly qualified. You 
did your M.Tech. Now you are doing your Doctorate. How can 
I forget you? I all the while remember your charming 
personality and your pleasant talk. It is simply impossible for 
me to forget you and marry someone else. Whatever my father 
and mother say to me I want to escape from their clutches and 
reach you as early as possible. I am finishing my final year 
exams. I have already passed GRE and TOEFL. I would apply 
for bank loan with the cooperation of your father and get away 
from this country very soon and join you without any second 
thought.                                                                   (3.1) 

Let us focus our attention on the first 16 characters of the 
plaintext. This is given by  

Dear Brother-in-          (3.2) 
On using the EBCDIC code, the plaintext (3.2) can be 

written in the form of a matrix P given by  

          




















96 14913796  

153133136163 

15015319464  

153129133196

P
.        (3.3) 

Let us take the encryption key bunch matrix E in the form  

           





















17 23320337  

1  17115767  

22389 67 101 

39 17157 21

E
.        (3.4) 

On applying the concept of the multiplicative inverse, we 
get  

          





















24189227173

13181107

31233107109

1513961

D .        (3.5) 

On using the plaintext P, the encryption key bunch matrix E 
and the encryption algorithm, given in section 2, we get the 
ciphertext C in the form  

           





















80 17034 168 

11373 15491  

142171232247 

47 15219720

C .       (3.6) 

Now, on using the decryption key bunch matrix D, given by 
(3.5), the ciphertext C, given by (3.6), and applying the 

decryption algorithm, we get back the plaintext P, given by 
(3.3). 

Let us now examine the avalanche effect. On replacing the 
4th row 2nd column element, 137 by 169, we get a change of 
one binary bit in the plaintext. On using this modified plaintext, 
the encryption key bunch matrix E and applying the encryption 
algorithm, we get a new ciphertext C in the form 

                      




















2211163  252 

17472 35 75  

17 2195  120 

16 193187176

C
.       (3.7) 

On comparing (3.6) and (3.7), after converting them binary 
form, we notice that these two ciphertexts differ by 68 bits out 
of 128 bits. Let us now consider the case of a one bit change in 
the key bunch matrix E. This can be achieved by replacing 101 
(the 2nd row 1st column element of E) by 116. Now, on using 
the modified E, the plaintext P, given by (3.3), and applying the 
encryption algorithm, we get the corresponding ciphertext C in 
the form 

                   





















18623576 45  

186221116235 

10010269 77  

1  71 86 204

C .        (3.8) 

On converting the ciphertexts (3.6) and (3.8) into their 
binary form, and comparing them, we find that these two 
ciphertexts differ by 71 bits out of 128 bits.  

From the above analysis, we conclude that the cipher is 
expected to be a strong one. 

IV. CRYPTANALYSIS 

In the literature of the cryptography, the strength of a cipher 
can be decided by carrying out cryptanalysis. The different 
attacks that are available for breaking a cipher are 

1. Ciphertext only attack (Brute force attack), 

2. Known plaintext attack, 

3. Chosen plaintext attack, and 

4. Chosen ciphertext attack. 

Generally every cipher is designed, so that it withstands the 
first two attacks [4]. However the latter two attacks are 
examined intuitively and checked up whether the cipher can be 
broken by those attacks.  

Let us now consider the ciphertext only attack. In this 

cipher, the encryption key bunch matrix is of size n n. The 
key matrix used in the development of the permutation and the 
substitution is a square matrix of size 4. Hence the size of the 
key space is  

        
4.381.28.127.0101287 222

10)2(2   nnn
 

 If we assume that the time required for the computation of 

the cipher with one value of the key in the key space is 
710

seconds, then the time required for the execution of the cipher 
with all possible values of the key in the key space is  
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606024365

1010 74.381.2 2



 n

=
606024365

10 4.311.2 2



n

 

         =
4.231.2 2

1012.3  n
years 

In this analysis, as we have taken n=4, the time required for 

the execution assumes the form 
6.331012.3  years. As this is a 

very large number, it is simply impossible to break this cipher 
by the brute force attack.  

Let us now consider the known plaintext attack. In order to 
carry out this one, we know as many pairs of plaintexts and 
ciphertexts as we require. If we confine our attention to r=1, 
that is to the first round of the iteration process, then the basic 
equations governing the cipher are given by  

P = [
ije ×

ijp ] mod 256, i = 1 to n, j=1 to n,                 (4.1) 

P = Permute(P),          (4.2) 

P = Substitute(P),          (4.3) 

and 

C = P           (4.4) 
As C is known to us, the P on the right side of (4.4) is 

known. Thus, though P on the left side of (4.3) is known to us, 
the P on the right side of (4.3) cannot be determined as the 
Substitute() and the ISubstitute(), which depend upon the key 
K, are unknown to us. Hence this cipher cannot be broken by 
the known plaintext attack, even when r=1, as K is not known. 
However, if an attempt is made to tackle this problem by the 
brute force attack, that is choosing K in all possible ways, 
covering the entire key space of the key K, then the time 
required for developing the functions Permute() and 
Substitute() can be shown to be 

     .1012.3
606024365

102 4.23
7128

years


 

 

as the length of the key K is 128 binary bits. Here, it is 
assumed that the time required for the computation of 
Permute() and Substitute() (together with IPermute() and 

ISubstitute()) takes 
710 

seconds. As this time is very large, we 
firmly conclude that this cipher cannot be broken by the known 
plaintext attack, even when we supplement it with the brute 
force attack. 

As the equations governing the cipher, are non-linear and 
highly involved, due to permutation, substitution and modular 
arithmetic operations, we envisage that it is not possible to 
choose either a plaintext or a ciphertext for breaking the cipher 
by the third or the fourth attack.  

In the light of the above facts, we conclude that, this cipher 
is a strong one and it cannot be broken by any conventional 
attack. 

V. COMPUTATIONS AND CONCLUSIONS 

In this investigation, we have developed a novel block 
cipher by using a key bunch matrix. In this, we have made use 
of a permutation process and a substitution process basing upon 
a key matrix of size 4x4. The strength of a cipher has increased 
enormously as we have introduced iteration process and the 
functions Permute() and Substitute().  

The programs required for encryption and decryption are 
written in Java. 

When the size of the plaintext is very large, it is rather 
tedious to carry out the encryption process by using a key 
bunch matrix E of size 4x4. Thus, in order to carry out the 
encryption of the entire plaintext, given in (3.1), we take a key 
bunch matrix EK of size 16x16. This is taken in the form, given 
by (5.1). 
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



1967189631799510119979193251754118922575

1053924991477710721118125593131237131215231

16325552920313595247127167735999993175

9713159193233934315171334133195956185

911011753121551314920111161233225101223

2212071913119992111153243247691433339249

651191109911031512313719715191205191143151

139991932474122549147159103831132451997217

2171791934523193137141632391311151114993133

924387227191139107145117183779529209255

27618524719914915755971692551871723185131

11159392432731209153143115245187477312991

2131271491138381223243411852317247195233

1392137124917511115915789167959112179211253

55745133179292151431611916720710720722713

16923531392552252091638922516113321710916349

EK

 

            

(5.1) 
The plaintext given in (3.1) is containing 907 characters. 

This can be divided into 4 blocks, wherein each block is 
containing 256 characters. However, we have appended 117 
zeroes characters so that we make the last block a complete 
block. Now, on using K and EK, given in (2.7) and (5.1), and 
the encryption process, given in section 2, four times, we get 
the cipher text in the form, given in (5.2). 

In order to send the size key bunch matrix EK, in a secret 
manner, let us encrypt this one by using E as the key bunch 
matrix. Thus we arrive at the ciphertext corresponding to EK as 
shown in (5.3). 

It is to be noted here, that the sender has to send the 
ciphertext corresponding to entire plaintext, the number of 
characters added in the last block, and the ciphertext 
corresponding to EK to the receiver. Further the sender has to 
provide E and K in a secret manner. 

From the above analysis, we notice that this cipher is a 
strong one and it can be applied for the transmission of a 
plaintext of any length in a secured manner. It may also be 
noted here that this cipher is very much useful in encrypting 
black and white images and color images. 
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