
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

116 | P a g e

www.ijacsa.thesai.org

 A Novel Block Cipher Involving a Key bunch Matrix

and a Key-based Permutation and Substitution

Dr. V.U.K.Sastry

Professor (CSE Dept), Dean (R&D)

SreeNidhi Institute of Science & Technology, SNIST

Hyderabad, India

K. Shirisha

Computer Science & Engineering

SreeNidhi Institute of Science & Technology, SNIST

Hyderabad, India

Abstract— In this paper, we have developed a novel block cipher

involving a key bunch matrix supported by a key-based

permutation and a key-based substitution. In this analysis, the

decryption key bunch matrix is obtained by using the given

encryption key bunch matrix and the concept of multiplicative

inverse. From the cryptanalysis carried out in this investigation,

we have seen that the strength of the cipher is remarkably good

and it cannot be broken by any conventional attack.

Keywords- Key bunch matrix; encryption; decryption; permutation;

substitution; avalanche effect; cryptanalysis.

I. INTRODUCTION

The development of block ciphers, basing upon a secret
key, is a fascinating area of research in cryptography. Though
there are several block ciphers, such as Hill Cipher [1], Fiestal
Cipher [2], DES [3], together with its variants [4][5], and AES
[6]. In all these ciphers, the processes, namely, iteration,
permutation and substitution play a vital role in strengthening
the cipher. More often, in all these ciphers, the block length and
the key length are maintained as 64, 128, 192, or 256 binary
bits.

In a recent investigation, we have developed a set of block
ciphers [7], [8], [9], “in press” [10], “unpublished” [11], [12],
wherein, a secret key bunch matrix plays a prominent role. In
all these ciphers, the encryption key bunch matrix contains a set
of keys, in which each key is an odd number lying in [1-255].
In all these analyses, the corresponding decryption key bunch
matrix, which is also containing odd numbers lying in [1-255],
is obtained by using the concept of the multiplicative inverse
[4]. In the development of all these block ciphers, the length of
the plaintext can be taken as large as possible, at our will, as the
size of the key bunch matrix can be chosen as big as possible,
in an effective manner. This feature ensures the strength of the
cipher in a remarkable way.

In the present investigation, our objective is to develop a
novel block cipher, by using the encryption key bunch matrix,
and applying a key-based permutation and substitution which
strengthen the cipher in a significant manner. The details of the
permutation and the substitution processes are presented later.

In what follows, we mention the plan of the paper. In
section 2, we discuss the development of the cipher. Further,
we present flowcharts and algorithms required in this
investigation. Here we deal with the key based permutation and
substitution involved in this analysis. In section 3, we offer an

illustration of the cipher. In this, we examine the avalanche
effect, which acts as a benchmark in respect of the strength of
the cipher. In section 4, we make a study of the cryptanalysis.
Finally in section 5, we present the computations carried out in
this analysis, and arrive at conclusions.

II. DEVELOPMENT OF THE CIPHER

Consider a plaintext P which can be represented in the form
of a matrix given by

P = [
ijp], i=1 to n, j=1 to n, (2.1)

wherein each ijp
is a decimal number lying in [0-255].

Let

E = [
ije], i=1 to n, j=1 to n, (2.2)

be the encryption key bunch matrix, in which each ije
 is an

odd number lying in [1-255], and

 D= [
ijd], i=1 to n, j=1 to n, (2.3)

be the decryption key bunch matrix, wherein each ijd
 is an

odd number lying in [1-255]. ije
 and ijd

are connected by the
relation

 (
ije ×

ijd) mod 256 = 1, (2.4)

Here it may be noted that the ijd
is obtained corresponding

to every given ije
in an appropriate manner.

The basic equations governing the encryption and the
decryption processes of the cipher can be written in the form

C = [
ijc]=[

ije ×
ijp] mod 256, i=1 to n, j = 1 to n (2.5)

and

P = [
ijp]=[

ijd ×
ijc] mod 256, i=1 to n, j = 1 to n. (2.6)

On assuming that the cipher involoves an iteration process,
the flowcharts governing the encryption and the decryption can
be drawn as shown in Figs. 1 and 2.

In this analysis, r denotes the number of rounds in the
iteration process, and is taken as 16.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

117 | P a g e

www.ijacsa.thesai.org

The function Substitute(), occurring in the flowchart of the
encryption, denotes the key-dependant substitution process,
that we are going to describe a little later. The function
ISubstitute(), occurring in the decryption process, denotes the
reverse process of the Substitute(). The function Mult(), which

is in the decryption process, is used to find the decryption key
bunch matrix D from the given encryption key bunch matrix E.

The corresponding algorithms for the encryption and the
decryption are written as follows.

Algorithm for Encryption

1. Read P,E,K,n,r

2. For k = 1 to r do

{

3. For i=1 to n do

{

4. For j=1 to n do

{

5.
ijp = (

ije ×
ijp) mod 256

}

}

6. P=[
ijp]

7. P=Permute(P)

8. P=Substitute(P)

}

8. C=P

9. Write(C)

Algorithm for Decryption

1. Read C,E,K,n,r

2. D=Mult(E)

3. For k = 1 to r do

{

4. C=ISubstitute(C)

5. C=IPermute(C)

6. For i =1 to n do

{

7. For j=1 to n do

{

8.
ijc = (

ijd ×
ijc) mod 256

}

}

9. C=[
ijc]

}

10. P=C

11. Write (P)
To have a clear insight into the key dependent permutation

process and key dependent substitution process, which we are
adopting in this analysis, let us consider a typical example. Let
us take a key K in the form





















94150202174

123510164

127110107253

963314156

K

 (2.7)

 (2.7)

We write the elements of this key in a tabular form as
shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

156 14 33 96 253 107 110 127 164 10 5 123 174 202 150 94

Here the first row shows the serial number and the second
row is concerned to the elements in the key K.

On considering the order of magnitude of the elements in
the key, we can write the above table, by including one more
row, in the following form

TABLE I. RELATION BETWEEN SERIAL NUMBERS AND NUMBERS IN

ASCENDING ORDER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

156 14 33 96 253 107 110 127 164 10 5 123 174 202 150 94

12 3 4 6 16 7 8 10 13 2 1 9 14 15 11 5

Here the 3rd row denotes the order of magnitude of the

elements in the key.

The process of permutation, basing upon the key used in
this analysis, can be explained as follows. Let

161514321 ,,,...,,, xxxxxx

be a set of numbers. On using the numbers, occurring in the

first and third rows of the Table-1, we swap the pairs  121, xx ,
 32 , xx

,
 64 , xx

,
 165 , xx

,
 87 , xx

,
 139 , xx

 and
 1514, xx

. Here it is to be noted that, (x3, x4) are not swapped,
as x3 is already swapped with x2. Similarly, we do not do any

swapping in the case of the numbers
 43 , xx

,
 76 , xx

,

 108 , xx
,
 210, xx

,  111, xx ,
 912, xx

,
 1413, xx

,

 1115, xx
 and

 516, xx
. This is the basic idea of the

permutation process, which we employ in the case of columns

 Read C,E,K,n,r

D = Mult(E)

For k=1 to r

For j=1 to n

C = [ijc]

Write (P)

P =C

For i=1 to n

ijc = (ijd × ijc) mod 256

C=ISubstitute(C)

C=IPermute(C)

 Read P,E,K,n,r

For k=1 to r

For i=1 to n

For j=1 to n

C=P

Write (C)

P=Substitute(P)

 ijp = (ijij pe ) mod 256

P = [ijp]

P=Permute(P)

Figure 1. Flowchart for Encryption

Figure 2. Flowchart for Decryption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

118 | P a g e

www.ijacsa.thesai.org

of numbers as well as rows of numbers occurring in a matrix.
For clarity of this process, we refer to the illustration that we
are going to do in section 3, a little later.

Let us firstly discuss the process of the key based
permutation applied on a plaintext obtained in any round of the
iteration process of the encryption. Consider the plaintext P= [

ijp
], i=1 to n, j=1 to n. Let us consider the first two rows of

this matrix. On representing each decimal number ijp
 in its

binary form, and writing the binary bits in a vertical manner,
we get a matrix of size 16xn, for these two rows. On assuming
that n is divisible by 16 (for convenience), we can represent
these two rows in the form of n/16 sub-matrices, wherein each
one is a square matrix of size 16. Then on swapping the rows
(as pointed out in the case of the numbers x1 to x16) and the
columns (subsequently one after another), we get the
corresponding permuted matrices. After that, by taking the
binary bits in a row-wise manner, we convert them into
decimal numbers, and write them in a row-wise manner. Thus
we get back a matrix of size 2×n.We carry out this process in a
similar manner for every pair of rows and having n columns.
Thus we complete the permutation of the entire matrix and get
a permuted matrix of size nxn. However if n<16, the process of
swapping is restricted according to the value of n. For example,
let us suppose that n=4. And P is of the form given by





















100865211

024549175

2231019256

124534198

P

 (2.8)

On writing the 16 decimal numbers in terms of binary bits
in a column-wise manner, the matrix (2.8) can be represented
in the form of a matrix of size 8x16. This is given by



































0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1

1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1

0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0

0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0

1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0

1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1

0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1

P

 (2.9)

Firstly, as suggested by Table-1, we interchange the row
pairs (2,3), (4,6), and (7,8). Thus we get



































0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1

0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0

0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0

0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0

1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1

1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1

1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0

0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1

P

(2.10)

We need not interchange rows any more as we have only 8
rows in this matrix. Now, we interchange the columns
following the information in Table-1. This will lead to a matrix
of size 8x16, which is given by



































0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0

0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0

1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0

1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0

0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0

0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0

1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0

P

 (2.11)
This completes the process of the permutation, denoted by

the function Permute().

Let us now describe the process of the key-based
substitution. We now consider the numbers [0-255] that are
occurring in EBCDIC table. These numbers can be represented
in the form of a square matrix of size 16 by writing the table in
the form

 () [()]

 (2.12)
On using the basic idea of the key-based permutation

process, we permute the rows (firstly) and the columns
(subsequently), and obtain the substitution matrix, called SB,
given by



























































68 77 78 72 64 74 73 76 70 71 67 79 69 65 66 75

212221222216208218217220214215211223213209210219

228237238232224234233236230231227239229225226235

132141142136128138137140134135131143133129130139

4 13 14 8 0 10 9 12 6 7 3 15 5 1 2 11

164173174168160170169172166167163175165161162171

148157158152144154153156150151147159149145146155

196205206200192202201204198199195207197193194203

10010911010496 10610510810210399 11110197 98 107

116125126120112122121124118119115127117113114123

52 61 62 56 48 58 57 60 54 55 51 63 53 49 50 59

244253254248240250249252246247243255245241242251

84 93 94 88 80 90 89 92 86 87 83 95 85 81 82 91

20 29 30 24 16 26 25 28 22 23 19 31 21 17 18 27

36 45 46 40 32 42 41 44 38 39 35 47 37 33 34 43

180189190184176186185188182183179191181177178187

SB

 (2.13)
The function Substitute() works as follows: On noticing the

position of a decimal number (corresponding to a character in
the plaintext, at any stage of the iteration process) in the
EBCDIC table, we substitute that number in the plaintext by
the decimal number occurring in the same position of the
substitution matrix.

The functions IPermute() and ISubstitute() denote the
reverse processes of the Permute() and the Substitute(),
respectively. The function Mult() is used to find the decryption
key bunch matrix D for the given encryption key bunch matrix
E.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

119 | P a g e

www.ijacsa.thesai.org

III. ILLUSTRATION OF THE CIPHER AND THE AVALANCHE

EFFECT

Consider the plaintext given below.

Dear Brother-in-law! Up to the time that you went abroad,
that is a month back, my mother and father promised to give
me to you in marriage. They do not want their daughter to go
away to this country. They say that they cannot live without my
presence along with this in this country. Now they are
searching for an Indian match. You are highly qualified. You
did your M.Tech. Now you are doing your Doctorate. How can
I forget you? I all the while remember your charming
personality and your pleasant talk. It is simply impossible for
me to forget you and marry someone else. Whatever my father
and mother say to me I want to escape from their clutches and
reach you as early as possible. I am finishing my final year
exams. I have already passed GRE and TOEFL. I would apply
for bank loan with the cooperation of your father and get away
from this country very soon and join you without any second
thought. (3.1)

Let us focus our attention on the first 16 characters of the
plaintext. This is given by

Dear Brother-in- (3.2)
On using the EBCDIC code, the plaintext (3.2) can be

written in the form of a matrix P given by





















96 14913796

153133136163

15015319464

153129133196

P
. (3.3)

Let us take the encryption key bunch matrix E in the form





















17 23320337

1 17115767

22389 67 101

39 17157 21

E
. (3.4)

On applying the concept of the multiplicative inverse, we
get





















24189227173

13181107

31233107109

1513961

D . (3.5)

On using the plaintext P, the encryption key bunch matrix E
and the encryption algorithm, given in section 2, we get the
ciphertext C in the form





















80 17034 168

11373 15491

142171232247

47 15219720

C . (3.6)

Now, on using the decryption key bunch matrix D, given by
(3.5), the ciphertext C, given by (3.6), and applying the

decryption algorithm, we get back the plaintext P, given by
(3.3).

Let us now examine the avalanche effect. On replacing the
4th row 2nd column element, 137 by 169, we get a change of
one binary bit in the plaintext. On using this modified plaintext,
the encryption key bunch matrix E and applying the encryption
algorithm, we get a new ciphertext C in the form





















2211163 252

17472 35 75

17 2195 120

16 193187176

C
. (3.7)

On comparing (3.6) and (3.7), after converting them binary
form, we notice that these two ciphertexts differ by 68 bits out
of 128 bits. Let us now consider the case of a one bit change in
the key bunch matrix E. This can be achieved by replacing 101
(the 2nd row 1st column element of E) by 116. Now, on using
the modified E, the plaintext P, given by (3.3), and applying the
encryption algorithm, we get the corresponding ciphertext C in
the form





















18623576 45

186221116235

10010269 77

1 71 86 204

C . (3.8)

On converting the ciphertexts (3.6) and (3.8) into their
binary form, and comparing them, we find that these two
ciphertexts differ by 71 bits out of 128 bits.

From the above analysis, we conclude that the cipher is
expected to be a strong one.

IV. CRYPTANALYSIS

In the literature of the cryptography, the strength of a cipher
can be decided by carrying out cryptanalysis. The different
attacks that are available for breaking a cipher are

1. Ciphertext only attack (Brute force attack),

2. Known plaintext attack,

3. Chosen plaintext attack, and

4. Chosen ciphertext attack.

Generally every cipher is designed, so that it withstands the
first two attacks [4]. However the latter two attacks are
examined intuitively and checked up whether the cipher can be
broken by those attacks.

Let us now consider the ciphertext only attack. In this

cipher, the encryption key bunch matrix is of size n n. The
key matrix used in the development of the permutation and the
substitution is a square matrix of size 4. Hence the size of the
key space is

4.381.28.127.0101287 222

10)2(2   nnn

 If we assume that the time required for the computation of

the cipher with one value of the key in the key space is
710

seconds, then the time required for the execution of the cipher
with all possible values of the key in the key space is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

120 | P a g e

www.ijacsa.thesai.org

606024365

1010 74.381.2 2



 n

=
606024365

10 4.311.2 2



n

 =
4.231.2 2

1012.3  n
years

In this analysis, as we have taken n=4, the time required for

the execution assumes the form
6.331012.3  years. As this is a

very large number, it is simply impossible to break this cipher
by the brute force attack.

Let us now consider the known plaintext attack. In order to
carry out this one, we know as many pairs of plaintexts and
ciphertexts as we require. If we confine our attention to r=1,
that is to the first round of the iteration process, then the basic
equations governing the cipher are given by

P = [
ije ×

ijp] mod 256, i = 1 to n, j=1 to n, (4.1)

P = Permute(P), (4.2)

P = Substitute(P), (4.3)

and

C = P (4.4)
As C is known to us, the P on the right side of (4.4) is

known. Thus, though P on the left side of (4.3) is known to us,
the P on the right side of (4.3) cannot be determined as the
Substitute() and the ISubstitute(), which depend upon the key
K, are unknown to us. Hence this cipher cannot be broken by
the known plaintext attack, even when r=1, as K is not known.
However, if an attempt is made to tackle this problem by the
brute force attack, that is choosing K in all possible ways,
covering the entire key space of the key K, then the time
required for developing the functions Permute() and
Substitute() can be shown to be

 .1012.3
606024365

102 4.23
7128

years


 

as the length of the key K is 128 binary bits. Here, it is
assumed that the time required for the computation of
Permute() and Substitute() (together with IPermute() and

ISubstitute()) takes
710 

seconds. As this time is very large, we
firmly conclude that this cipher cannot be broken by the known
plaintext attack, even when we supplement it with the brute
force attack.

As the equations governing the cipher, are non-linear and
highly involved, due to permutation, substitution and modular
arithmetic operations, we envisage that it is not possible to
choose either a plaintext or a ciphertext for breaking the cipher
by the third or the fourth attack.

In the light of the above facts, we conclude that, this cipher
is a strong one and it cannot be broken by any conventional
attack.

V. COMPUTATIONS AND CONCLUSIONS

In this investigation, we have developed a novel block
cipher by using a key bunch matrix. In this, we have made use
of a permutation process and a substitution process basing upon
a key matrix of size 4x4. The strength of a cipher has increased
enormously as we have introduced iteration process and the
functions Permute() and Substitute().

The programs required for encryption and decryption are
written in Java.

When the size of the plaintext is very large, it is rather
tedious to carry out the encryption process by using a key
bunch matrix E of size 4x4. Thus, in order to carry out the
encryption of the entire plaintext, given in (3.1), we take a key
bunch matrix EK of size 16x16. This is taken in the form, given
by (5.1).



























































1967189631799510119979193251754118922575

1053924991477710721118125593131237131215231

16325552920313595247127167735999993175

9713159193233934315171334133195956185

911011753121551314920111161233225101223

2212071913119992111153243247691433339249

651191109911031512313719715191205191143151

139991932474122549147159103831132451997217

2171791934523193137141632391311151114993133

924387227191139107145117183779529209255

27618524719914915755971692551871723185131

11159392432731209153143115245187477312991

2131271491138381223243411852317247195233

1392137124917511115915789167959112179211253

55745133179292151431611916720710720722713

16923531392552252091638922516113321710916349

EK

(5.1)
The plaintext given in (3.1) is containing 907 characters.

This can be divided into 4 blocks, wherein each block is
containing 256 characters. However, we have appended 117
zeroes characters so that we make the last block a complete
block. Now, on using K and EK, given in (2.7) and (5.1), and
the encryption process, given in section 2, four times, we get
the cipher text in the form, given in (5.2).

In order to send the size key bunch matrix EK, in a secret
manner, let us encrypt this one by using E as the key bunch
matrix. Thus we arrive at the ciphertext corresponding to EK as
shown in (5.3).

It is to be noted here, that the sender has to send the
ciphertext corresponding to entire plaintext, the number of
characters added in the last block, and the ciphertext
corresponding to EK to the receiver. Further the sender has to
provide E and K in a secret manner.

From the above analysis, we notice that this cipher is a
strong one and it can be applied for the transmission of a
plaintext of any length in a secured manner. It may also be
noted here that this cipher is very much useful in encrypting
black and white images and color images.

REFERENCES

[1] Lester Hill, (1929), “Cryptography in an algebraic alphabet”, (V.36 (6),
pp. 306-312.), American Mathematical Monthly.

[2] Fiestal H., Cryptography and Computer Privacy, Scientific American,
May 1973.

[3] National Bureau of Standards NBS FIPS PUB 46 “Data Encryption
Standard (DES)”, US Department of Commerce, January 1977.

[4] William Stallings: Cryptography and Network Security: Principle and
Practices”, Third Edition 2003, Chapter 2, pp. 29.

[5] Tuchman, W., “ Hellman presents no Shortcut Solutions to DES”, IEEE
Spectrum, July, 1979.

[6] Daemen J., Rijman V., “Rijndael, The Advanced Encryption Standard
(AES)”, Dr. Dobb’s Journal, vol. 26, No. 3, March 2001, pp. 137-139.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

121 | P a g e

www.ijacsa.thesai.org

[7] Dr. V.U.K. Sastry, K.Shirisha, “A Novel Block Cipher Involving a Key
Bunch Matrix”, in International Journal of Computer Applications (0975
– 8887) Volume 55– No.16, Oct 2012, Foundation of Computer Science,
NewYork, pp. 1-6.

[8] Dr. V.U.K. Sastry, K.Shirisha, “A Block Cipher Involving a Key Bunch
Matrix and Including Another Key Matrix Supplemented with Xor
Operation ”, in International Journal of Computer Applications (0975 –
8887) Volume 55– No.16, Oct 2012, Foundation of Computer Science,
NewYork, pp.7-10.

Dr. V.U.K. Sastry, K.Shirisha, “A Block Cipher Involving a Key Bunch
Matrix and Including another Key Matrix Supported With Modular
Arithmetic Addition”, in International Journal of Computer Applications
(0975 – 8887) Volume 55– No.16, Oct 2012, Foundation of Computer
Science, NewYork, pp. 11-14.

[9] Dr. V.U.K. Sastry, K.Shirisha, “A novel block cipher involving a key
bunch matrix and a permutation”, International Journal of Computers
and Electronics Research (IJCER), in press.

[10] Dr. V.U.K. Sastry, K.Shirisha, “A block cipher involving a key bunch
matrix, and a key matrix supported with xor operation, and
supplemented with permutation”, unpublished.

[11] Dr. V.U.K. Sastry, K.Shirisha, “A block cipher involving a key bunch
matrix, and a key matrix supported with modular arithmetic addition,
and supplemented with permutation”, unpublished.

AUTHORS PROFILE

Dr. V. U. K. Sastry is presently working as Professor in the Dept. of
Computer Science and Engineering (CSE), Director (SCSI), Dean (R &
D), SreeNidhi Institute of Science and Technology (SNIST), Hyderabad,
India. He was Formerly Professor in IIT, Kharagpur, India and worked
in IIT, Kharagpur during 1963 – 1998. He guided 14 PhDs, and
published more than 86 research papers in various International Journals.
He received the Best Engineering College Faculty Award in Computer
Science and Engineering for the year 2008 from the Indian Society for
Technical Education (AP Chapter), Best Teacher Award by Lions Clubs
International, Hyderabad Elite, in 2012, and Cognizant- Sreenidhi Best
faculty award for the year 2012. His research interests are Network
Security & Cryptography, Image Processing, Data Mining and Genetic
Algorithms.

K. Shirisha is currently working as Associate Professor in the Department of
Computer Science and Engineering (CSE), SreeNidhi Institute of
Science & Technology (SNIST), Hyderabad, India, since February 2007.
She is pursuing her Ph.D. Her research interests are Information Security
and Data Mining. She published three research papers in International
Journals. She stood University topper in the M.Tech.(CSE).

5820922418411230142361261862082211246324468

1042011506635814241185351656665322321

18523811098123278171125589918317520189202

2251208366100781885037210481512186314144

2023414411444455518620882226210144127156165

5520762211576188134188148151169774317360

25317128215176192581363813319837359043203

168622111752180162001204611386018436198

242143845212122552197152021881584153130

24111111271658119015174123113240176227105

6534642440382232391152352042355180148233

14874251241182152912491781941331011416821988

97541082467973113752991932462172160129

104113114222721715862856620845382132189

1271379520117118789625219791889019639121

18316115623715068132202154525813161241223

1292302321823015318016791951334415413813

97143133361992411821814414620514272170120212

0103202231081899621176249881264812224280

2198932001961651192174815010910519317569197

13119119313156199534368252152189710155126

352501111514915312124412423723219513318310612

71169153139421941481501599214921813736250254

491231504655952222195819915318220018452176

2261301551897514528571092521191673413181200

21186861368215568522082144187186225237137

1852332824025517522720224525112519219611968247

1471164425418319083109134854522717393150

1192162827201841181372243140160188772052

152102190601672345617711212416461176242217107

611771286219181183319420018210313125014916

1901402953226131315719617142292067419034

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

122 | P a g e

www.ijacsa.thesai.org

1226286392012495221611813660134175115132

154254139412569246207121318914311901618

168681482391512401562331042362348920160203162

27982481722282151421623872109209114116216

2531051602551501352161847679304343175135150

236132106253433129215129185426424432191195

229511197898174291361111481461051438012273

12126712078785555524910576226140174163

17184111783392543144629920711472197203

1532271291122241621037338132321332251244238

195233207714623041102751568010835335722

159324020848281041671851772323540238238154

1518619253811491922148428134129174469192

14615619136118191057053522281457214151108

187150100250137139662181275398248174252181139

222165253178109462051701572221411071121884996

6630655825423025510817860186135344824847

1392081621920150112141571462714176180216208

696218944210158189205121721712991119238197

18715724522011667205984182102218125103190121

186885619529361242221216184884217418297

3080206491022466317719424924719471117510

142652241601575116282146319125119821034152

19214518220814213520221368139168201158245214

14166262556424221713664832162131252019144

1221892352019622625113221619152643613210117

801391758512793154114861763226511779246

531792527244821476925042905410866101251

134512011524314317220621649025314015150185

1752431741081062152011745720894251210138106184

4313096332523011019725524015216623039131110

1923205741524010634683527248188230213175

 (5.2)

























































2620315610896303464778572222521843834

233528747224151174949514030160134140953

229916371250230214156196219241172207591533

4012554211041921962542012518022523714812109

91698233811852131427934238163124184105

1262141723754781452331322556418723628242106

22915622813423625217080232371349785108124

12278111864514139175421262501651454777188

14814522574217106130122918812312207022375

1951472165316146522404623521519420416769247

2081001662910724220411786856034100194113149

1261682151652306113254114138144102168555115

3661121191208757880942096316270252101

1433157109771256036669952203682359198

136231181131902172001211692221722473475158163

48171314545249245520911633926673113

 (5.3)

