
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 12, 2012 

180 | P a g e  

www.ijacsa.thesai.org 

Genetic Algorithm Based Approach for Obtaining 

Alignment of Multiple Sequences 

Ruchi Gupta
1
 

Ph.D Research Scholar MCA Deptt 

AKGEC Ghaziabad 

 

Dr. Pankaj Agarwal
2
 

Professor & Head, Department of  

Computer Science & Engineering  

IMS Engineering College Ghaziabad 

 

Dr. A. K. Soni
3
 

lProfessor & Head, Department of 

Computer Science & Engineering  

Sharda University, Greater Noida 

Abstract—This paper presents genetic algorithm based solution 

for determing alignment of multiple molecular sequences. Two 

datasets from DNA families Canis_familiaris and galaxy dataset 

have been considered for experimental work & analysis. Genetic 

operators like cross over rate, mutation rate can be defined by 

the user. Experiments & observations were recorded w.r.t 

variable parameters like fixed population size vs variable number 

of generations & vice versa, variable crossover & mutation rates. 

Comparative evaluation in terms of measure of fitness accuracy 

is also carried out w.r.t existing MSA tools like Maft, Kalign. 

Experimental results show that the proposed solution does offer 

better fitness accuracy rates.  
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I.  INTRODUCTION  

Simultaneous alignment of several sequences is among the 
most important problems in computational molecular biology. 
Multiple sequence alignment (MSA) can be seen as a 
generalization of Pairwise Sequence Alignment where instead 
of aligning two sequences, n sequences are aligned 
simultaneously, where n is > 2. Multiple sequence alignment 
can discover biologically significant sequence patterns that 
may be widely dispersed or hidden in the molecular sequence 
databases. MSA gives insight into the basis for sequence of 
similarities between homologous sequences. [1]  

An example of an alignment of four hypothetical DNA 
sequences is shown in Fig. 1.     

 

Figure1:  An Example of an Alignment 

The basic idea is that the sequences are aligned on top of 
each other, so that a coordinate system is set up, where each 
row is the sequence for one protein, and each column is the 
'same' position in each sequence. Each column corresponds to a 
specific residue in the 'prototypical' protein. 

Multiple Sequence Alignment (MSA) is considered to be an 
important tool for computational biologists. It finds its 
application in phylogenetic analysis, identification of conserved 
motifs and domains and structure prediction [3]. MSA is a 

computationally difficult problem, also known to be a NP-hard 
problem [2]. Considering both the importance and complexity 
of solving the MSA problem, many different heuristic methods 
have been proposed by the researchers to provide approximate 
solutions to this problem. 

Genetic Algorithms (GAs) as a computational means to 
solve the MSA problem has shown lot of potential. It can 
search through the solution space effectively and generate good 
alignment results.  The main advantage of genetic algorithms 
over other optimization methods is that there is no need to 
provide a particular algorithm to solve a given problem. It only 
needs a fitness function to evaluate the quality of different 
solutions. Also since it is an implicitly parallel technique, it can 
be implemented very effectively on powerful parallel 
computers to solve exceptionally demanding large-scale 
problems. 

The method works by breaking a series of possible MSAs 
into fragments and repeatedly rearranging those fragments with 
the introduction of gaps at varying positions. This paper also 
explores the possibility of applying GA based solution for 
MSA problem. One such proposed & developed solution is 
also presented. 

II.  RELATED STUDY 

Genetic algorithm is one of the useful tools determining 
alignment of multiple sequences. Iterative methods may be 
implemented through evolutionary approach that use 
computational heuristics based on natural biological 
phenomena such as selection, crossover and mutation to evolve 
a population of candidate solutions based on an objective 
function because they work similarly to progressive methods 
but repeatedly realign the initial sequences as well as adding 
new sequences to the growing MSA [3].  

There are some proposed iterative methods to improve the 
problem of MSA. For example, evolutionary approach SAGA 
[5] based on genetic algorithm have been success fully applied 
to the MSA problem. It is used to optimize two different 
objective functions and shows that they can search large 
solution space efficiently. But due to repeated use of fitness 
function it may increase its time complexity.  

Zhang C et al., [7] proposed an algorithm based on genetic 
algorithm and dynamic programming. It was used with two 
different distance matrices and characterized by great 
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complexity in processing time. It has some limitations for 
performing crossover and mutation operations.  

One of the most appropriate GA approaches to solve the 
MSA problem was presented by Nguyen et. al [8], however 
there are still some limitations w.r.t scoring scheme. 

Another useful algorithm for multiple DNA sequence 
alignment using genetic algorithms and divide-and-conquer 
techniques [9] was proposed in which optimal cut points of 
multiple DNA sequences were selected. According to the 
author experimental results showed quite significant results. 
Approach involves cutting of the sequences for decreasing the 
space complexity for sequence alignment. However alignment 
was possible only for multiple deoxyribonucleic acid 
sequences, not for protein and other nucleic acid sequences.  

Other new genetic algorithms [10] were used for solving 
the MSA in which various dataset were tested and the 
experimental results were compared with other methods. But 
after comparison it was observed that this approach could 
obtain good performance in the data sets with high similarity 
and long sequences.  

After that effective GARS approach [11] based on Genetic 
Algorithm with Reverse Selection was proposed. But it suffers 
from premature convergence in which solution reaches locally 
at an optimal stage. Furthermore a new approach AlineaGA 
[12] was proposed which used a  

Genetic Algorithm with local search optimization 
embedded on its mutation operators for performing multiple 
sequence alignment. But its mutation probability leads to better 
solutions in fewer generations and that the mutation operators 
had a dramatic effect in this particular domain. Recently a new 
Cyclic Genetic Approach (CGA) [13] developed with the 
complete knowledge of the problem and its parameters. In 
CGA, the values of various parameters are decided based on 
the problem and fitness value obtained in each generation. But 
the column score value varies for each execution may not give 
relatively better alignment. 

In this paper, we proposed an evolutionary approach using 
genetic algorithms to obtain alignments of multiple sequences. 
Experimental results show that the proposed solution does offer 
better fitness accuracy rates w.r.t some existing tools. 

Methodology 

The remainder of this section is   organized as follows. . In 
section 3 we present genetic algorithm based approach 
(GAMS) for solving the problem of aligning multiple 
sequences. Section 4 shows the experimental results of various 
dataset which are used to test the performance of our method. 
Then section 5 is finally used for discussion and conclusion. 

III.  GENETIC ALGORITHM BASED APPROACH  

In this section we present our algorithm for solving the 
MSA problem. Genetic algorithms based approach (GAMS) 
are applied with new selection and crossover scheme which 
helps us to generate best population on local schema so that 
better alignment could be discovered. This process flow is 
depicted in figure 2. 

GA_MS () 

// initialize a usually random population of individuals 

   initpopulation P (t); 

// evaluate fitness of all initial individuals in population 

   Evaluate P (t); 

// test for termination criterion (fitness core) 

 While (not find best solution) 

{ 

FOR i = 1 TO n DO 

{ 

 // Select two chromosomes X and Y with highest fitness 
value from current evaluation 

  P' := select parents P (t); 

// recombine the "genes" of selected parents 

   Recombine P' (t); 

// perturb the mated population stochastically 

        Mutate P' (t); 

 // evaluate its new fitness 

        Evaluate P' (t); 

 // select the survivors from actual fitness 

        P := survive P,P' (t); 

   Od 

         } 

     end GA. 

} 

Figure 2: GA Process flow 

A. Chromosome Representation 

The chromosome should in some way that contains 
information about solution which it represents. The most used 
way of encoding is a binary string. The chromosome then could 
look like this: Each chromosome has one binary string. Each 
bit in this string can represent some characteristic of the 
solution or the whole string can represent a number. Of course, 
there are many other ways of encoding. This depends mainly 
on the solved problem. For example, one can encode directly 
integer or real numbers; sometimes it is useful to encode some 
permutations and so on. Each sequence has its own length. The 
number of gaps in the sequence is to be inserted in each 
sequence. It is calculated in a way   that the length of all 
sequence remains the same. Therefore we have to generate the 
maximum length of sequence by multiplying the maximum 
length of particular element of sequences with rsp1.2. Let‟s say 
we have a set of sequence S = {S1, S2, S3 ….Sn}. So the 
maximum length of the column has to be found out by 
multiplying the sequence with rsp by maximum length column. 
The value of scaling factor rsp defines that the alignment to be 
20% longer then the sequence which is based on the 
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observations that solution to common MSA problem really 
contains more than 20% gaps. The flow of chromosome 
representation is shown in figure 3:-  

Create_Random_Matrix(n,L) 

{ 

//generate the initial population G 

//let n be size of Population 

FOR  G = 1 TO n DO 

{ 

Select Length of Input Sequence=L 

For  i=1 to L DO 

                    { 

//Create Position of Random Spaces 

//Generate minimum value is 1 

//Generate Position of Space 

// define the value of scaling factor=1.2 

 Position = (RandomSpaces(min, L + 1)); 

} 

} 

} 

Figure 3: chromosome representation 

B. Evaluation of Fitness Function  

To evaluate their fitness, the chromosomes must be 
converted to the alignment form to be applied sum-of-pairs 
function [3]. We scored each column by looking at matches, 
mismatches, and gaps in the two sequences. We assume that a 
match = 1, a mismatch = 0, and a gap = -1. The fitness or 
scoring function of each individual is calculated by the 
formula:- 
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The fitness Score for each alignment is calculated by 
summing the individual score for each column in the matrix. 
Scoring matrix is needed to determine the cost of aligning a 
residue with another. Also, a gap penalty value must be settled 
for determining the cost of aligning an amino acid with a gap. 
This penalty is only employed when aligning a residue with a 
gap. The fitness value calculation is to be represented by figure 
4:- 

FitnessValue(G, Max_length) 

{ 

//generate G is the Gap penalty 

//Calculate Sequence Count 

//Calculate max_length of Sequences 

for(a=0 to (max_length+a)) 

{ 

//check position of sequence in matrix not null or  ' - ' 
fitnessvalue+=0  

//check position of sequence in matrix  null or '-„' 

fitnessvalue += G 

} 

} 

Figure 4: The flow for finding best fitness score 

C.  Selection Procedure 

After calculating the fitness score of all the population 
applying larger tournament method where n individuals are 
randomly chosen, the fitter of the two is selecting with the 
highest and second highest fitness value .In this case the fitter 
the individual is chosen by the following procedure:- 

• Apply larger tournament strategy for the current 
population based on their fitness function 

• Select two best chromosomes randomly based on their 
column score and select two individual with their highest 
fitness value. 

D.  Crossover 

In the single point crossover process, Crossover selects 
sequence from parent chromosomes and creates a new 
offspring. The simplest way how to do this is to choose 
randomly some crossover point and everything before this 
point copy from a first parent and then everything after a 
crossover point copy from the second parent .we select 
crossover point at the rate of 0.5 and count the entire gap in 
each population then multiply it with crossover rate and take 
ceiling of crossover rate. The crossover point is selected by the 
formula:- 

 5.0int  gapsofnototalpoCrossover   

After selecting point, copy the chromosome of first parent 
exact at the crossover point value then copy all chromosome of 
second parent and vice versa so [13]. There are two offspring 
has to be generated after applying the crossover function. 
Calculate the fitness score of current population and select the 
best individual for performing mutation operation. The flow of 
one point crossover is shown in figure 5. 

CrossOver (b,p) 

{ 

//let cr be the cross rate 

//let crosspoint be the cp 

//cp=sequencecount+cr 

//pick an array b[] in the range crossover from random 

//Declare p as point =b[] 

for i=1 to  Do cp 

{ 
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if b[i]=p[p+cp]Go to first step 

else 

b[p+cp]=p[p+cp-i] 

} 

//let position of matrix pos 

pos=b[i] 

if b[i]>max_length 

max_length +=max_length 

pos=pos-(max_length*(sequencecount-1)) 

 } 

Figure 5: flow of one point crossover 

E. Mutation 

After a crossover is performed, mutation takes place. This 
is to prevent falling all solutions in population into a local 
optimum of solved problem. The system randomly chooses a 
gene of a chromosome form the mating pool randomly and 
applying binary mutation. Mutation changes randomly the new 
offspring. For binary encoding we can switch a few randomly 
chosen bits from 1 to 0 or from 0 to 1 [9]. where all the gaps 
are represented by 0‟s and all the base symbols are represented 
by 1‟s and mutation takes place separately in each sequence up 
to the mutation point rate of 0.2 [9] is initialized and 
corresponding mutation point is selected. The mutation point is 
to be selected by the formula:- 

 stringbitoflengthtotalpoMutation   2.0int  

First the mutation operator converts the total sequence in to 
bit string then calculate the mutation point after calculating the 
mutation point every picks a random amino acid from a 
randomly chosen row (sequence) in the alignment and checks 
whether one of its neighbors has a gap. If this is the case, the 
algorithms swap the symbols. The flow of one point crossover 
is shown in figure 6. 

Mutation (mp,i) 

{ 

//Declare mutation point mp 

//declare sequence row count count                                                                                                                    

mp=count* mutation rate 

//declare string symbol 

 for i=1 to mp do 

{ 

symbol=removeSymbols.SubString(i,1) 

 if(matrix row='-') 

matrix row =symbol 

else 

 matrix row = '-' 

} 

} 

Figure 6: flow of space mutation  

IV.  IMPLEMENTATION AND RESULTS 

The algorithm is implemented using Microsoft visual studio 
and the machine for this research is a personnel computer with 
Intel Pentium III processor .The main memory is 4 gigabyte 
and Microsoft XP was used as a platform for the 
implementation. The DNA query input sequence is to be taken 
from cans family. Query input format of the DNA sequence is 
listed in figure 7:- 

>SPAC1002.14|1824570|1826248|itt1|I 

GTAAATTCATACCGGAAATTTTACCAAATGGCGAT
TTCTTAATTGCTGAGGTGGCCAGCAGAAATCGTCTTT
TCATTATTCTGGAATCAAAACACATTCTTTGAATTGTT
CACTTTTCTGTTGCCTTGAAATCTTGGTCTTCTTAGTT
GACTGTTTCATCAAGGTTGCTCCAAATTCTTTGTGATT
TATTGGTAAACTCGGGCATTTTATTGAGT 

>SPAC10F6.10|1225464|1227365|SPAC10F6.10|I 

TTTTTATATACCAGTTTTATTTACAACAAAAAGTTT
TTACTACCACCTACAAAATACAAAAACTTGGATTTGT
ATCCAGTTCTTTGTCAAATTTTTAAATAAATTATTCTT
TTATTGATTTATTTAAAGTTTAAG 

Figure 7: Query Input Formats 

During the course of experiments, we have tried various 
chromosome lengths in order to understand how they have an 
effect on the performance of the GA.  

Datasets 

We have used two datasets which are DNA sequences from 
two DNA families, Canis_familiaris dataset (psm3, 
SPAC105.03c, taf11, SPAC1142.01) and galaxy dataset 
(AY395516.1,AY390420.1,AY390421.1,AY390422).These 
datasets are used as input to our multiple sequence alignment. 
The parameters setting for experiment are summarized in table 
1. 

Parameter Content 

Population size 5,10,15,20 

Generation 50,100,150,200 

Selection Strategy Random Selection 

Crossover operator One Point 

Crossover Rate(Rc) 0.8,0.6,0.3 

Mutation operator Space Mutation 

Mutation Rate(Rm) 0.5,0.3,0.1 

Scoring Matrix Scoring 1 

Gap penalty -1 

Accumulate size  20% 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 12, 2012 

184 | P a g e  

www.ijacsa.thesai.org 

Table 1: GA Parameters 

In order to examine our algorithm validity, we test number 
of series with DNA sequence. Firstly the algorithm is executed 
100 run on GA while number of generation become fix and 
size of population is to be continued changed. It is observed 
that running time is increased accordingly and indicate by a 
notable rise in fitness score about 10% after increasing each 
size of population. Again while size of population become 
fixed and number of generation  continued to changed then it 
has to be notified that running time is increased accordingly 
and indicate by a notable rise in fitness score about 10% . Table 
2, 3 and figure 8, 9 lists the results after varying the number of 
generation and size population. 

Table 2: Operators assemble on 5, 10, 15 and 20 size of population with fix 
number of generation with and calculated fitness score, running time 

 

 Figure8: Fitness curve GA with Verifying size of population 

Table 3: Operators assemble on 50,100,150 and 200 numbers of generations 
with fix size of population and calculated fitness score, running time 

 

 Figure9: Fitness curve GA with Verifying number of generation 

In the proposed solution, we have also used two specific 
crossover and mutation operators. In order to determine the 
best crossover and mutation probabilities; we have carried out 
three different experiments, using ten randomly selected 
canis_familiaris dataset that were obtained from [15]. In our 
experiments for each of ten datasets, the algorithm is executed 
200 run on GA and the statistical outcomes of the optimal 
fitness in each run is calculated as the results. We measure the 
best fitness score and running time for each generation. Our 
algorithm has to be run with the 30% crossover & 10%-
mutation option, 60% crossover & 30% mutation option and 
80% crossover & 50% mutation option .it is observed that our 
algorithm obtained the best solutions for 80% crossover & 50% 
mutation option .The solutions obtained by the 60% crossover 
and 30% mutation for the same datasets are close to the best 
scores, however the option 30% crossover & 10% mutation has 
not achieved any good quality solutions. Therefore, we can 
conclude that GA has achieved overall better performance for 
these test datasets when the rate of crossover are selected as  
80% and  mutation are selected as 50%. As for results for these 
datasets are to be presented in table 4 and corresponding plots 
are to be presented in graph 10. 

Table 4: fitness scores with selected Crossover and mutation rate options 

 

Figure10: Experimental results on GA with selected Crossover and mutation 
rate options 

The last set of experiments compares our algorithm 
(GAMS) with two different tools such as Maft (high speed 
multiple sequence alignment program) and Kalign (fast and 
accurate multiple sequence alignment algorithm). The 
maximum 200 generation run on GA and the statistical 
outcomes of the optimal fitness in each run is calculated as the 
results. The sequence id and specification of each dataset is 
given in table 5. We measure that our GA obtained the best 
fitness score and running time for each generation as compare 
to other. The GA typically found a good alignment within 200 
generations. Table 6 and graph 10 lists the results after 
comparisng our algorithm with Maft and kalign. 

Population size

-1050

-1000

-950

-900

-850

-800

-750

5 10 15 20

fi
tn

e
s
s
 v

a
lu

e

f itness value

-1200

-1000

-800

-600

-400

-200

0

50 100 150 200

 No of Genration

Fi
tn

es
s 

va
lu

e

Series1

-960

-940

-920

-900

-880

-860

-840

-820

-800

5 10 15

Population Size

Fi
tn

es
s 

va
lu

e cros .8 & mut .5

cros .6 & mut .3

cros .3 & mut .1

Size of Pop No of Gen Fitness 

 Score 

 

Running 

 Time 

5 100 -831 2:06 

10 100 -931 4:78 

15 100 -940 8:20 

20 100  -990 12:08 

Size of 

Pop 

No of Gen Fitness 

 Score 

 

Running 

 Time 

5 50 -831 1:03 

5 100 -889 2:05 

5 150 -909 3:07 

5 200  -1002 4:06 

Cros 

rate=30% 

Mut 

rate=10% 

Cros 

rate=60% 

Mut 

rate=30% 

Cros 

rate=80% 

Mut 

rate=50% 

Pop 

Size 

Running 

 Time 

-950 -940 -920 5 1:03 

-935 -923 -900 10 2:05 

-900 -868 -860 15 3:07 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 12, 2012 

185 | P a g e  

www.ijacsa.thesai.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5:   Canis_familiaris dataset 

Table 6: Overall Performance of all methods of Sequence ID datasets 

Figure10: Overall Performance of all methods of Sequence ID datasets 

V.  CONCLUSION  

Multiple sequence alignmen is an extension of pairwise 
alignment to incorporate more than two sequences at a time. 
Our multiple alignment methods try to align all of the 
sequences in a given query set. Efficient fitness value function, 
crossover and mutation strategies are the outcome of work. 
Eventually it is trying that our methods will be significantly 
contributed in prior efficient solution to multiple sequence 
alignment problems. 
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