
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

180 | P a g e

www.ijacsa.thesai.org

Genetic Algorithm Based Approach for Obtaining

Alignment of Multiple Sequences

Ruchi Gupta
1

Ph.D Research Scholar MCA Deptt

AKGEC Ghaziabad

Dr. Pankaj Agarwal
2

Professor & Head, Department of

Computer Science & Engineering

IMS Engineering College Ghaziabad

Dr. A. K. Soni
3

lProfessor & Head, Department of

Computer Science & Engineering

Sharda University, Greater Noida

Abstract—This paper presents genetic algorithm based solution

for determing alignment of multiple molecular sequences. Two

datasets from DNA families Canis_familiaris and galaxy dataset

have been considered for experimental work & analysis. Genetic

operators like cross over rate, mutation rate can be defined by

the user. Experiments & observations were recorded w.r.t

variable parameters like fixed population size vs variable number

of generations & vice versa, variable crossover & mutation rates.

Comparative evaluation in terms of measure of fitness accuracy

is also carried out w.r.t existing MSA tools like Maft, Kalign.

Experimental results show that the proposed solution does offer

better fitness accuracy rates.

Keywords-DNA Sequences; alignment; Genetic Algorithm;

Crossover; Mutation; Selection; Multiple Sequence Alignment etc.

I. INTRODUCTION

Simultaneous alignment of several sequences is among the
most important problems in computational molecular biology.
Multiple sequence alignment (MSA) can be seen as a
generalization of Pairwise Sequence Alignment where instead
of aligning two sequences, n sequences are aligned
simultaneously, where n is > 2. Multiple sequence alignment
can discover biologically significant sequence patterns that
may be widely dispersed or hidden in the molecular sequence
databases. MSA gives insight into the basis for sequence of
similarities between homologous sequences. [1]

An example of an alignment of four hypothetical DNA
sequences is shown in Fig. 1.

Figure1: An Example of an Alignment

The basic idea is that the sequences are aligned on top of
each other, so that a coordinate system is set up, where each
row is the sequence for one protein, and each column is the
'same' position in each sequence. Each column corresponds to a
specific residue in the 'prototypical' protein.

Multiple Sequence Alignment (MSA) is considered to be an
important tool for computational biologists. It finds its
application in phylogenetic analysis, identification of conserved
motifs and domains and structure prediction [3]. MSA is a

computationally difficult problem, also known to be a NP-hard
problem [2]. Considering both the importance and complexity
of solving the MSA problem, many different heuristic methods
have been proposed by the researchers to provide approximate
solutions to this problem.

Genetic Algorithms (GAs) as a computational means to
solve the MSA problem has shown lot of potential. It can
search through the solution space effectively and generate good
alignment results. The main advantage of genetic algorithms
over other optimization methods is that there is no need to
provide a particular algorithm to solve a given problem. It only
needs a fitness function to evaluate the quality of different
solutions. Also since it is an implicitly parallel technique, it can
be implemented very effectively on powerful parallel
computers to solve exceptionally demanding large-scale
problems.

The method works by breaking a series of possible MSAs
into fragments and repeatedly rearranging those fragments with
the introduction of gaps at varying positions. This paper also
explores the possibility of applying GA based solution for
MSA problem. One such proposed & developed solution is
also presented.

II. RELATED STUDY

Genetic algorithm is one of the useful tools determining
alignment of multiple sequences. Iterative methods may be
implemented through evolutionary approach that use
computational heuristics based on natural biological
phenomena such as selection, crossover and mutation to evolve
a population of candidate solutions based on an objective
function because they work similarly to progressive methods
but repeatedly realign the initial sequences as well as adding
new sequences to the growing MSA [3].

There are some proposed iterative methods to improve the
problem of MSA. For example, evolutionary approach SAGA
[5] based on genetic algorithm have been success fully applied
to the MSA problem. It is used to optimize two different
objective functions and shows that they can search large
solution space efficiently. But due to repeated use of fitness
function it may increase its time complexity.

Zhang C et al., [7] proposed an algorithm based on genetic
algorithm and dynamic programming. It was used with two
different distance matrices and characterized by great

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

181 | P a g e

www.ijacsa.thesai.org

complexity in processing time. It has some limitations for
performing crossover and mutation operations.

One of the most appropriate GA approaches to solve the
MSA problem was presented by Nguyen et. al [8], however
there are still some limitations w.r.t scoring scheme.

Another useful algorithm for multiple DNA sequence
alignment using genetic algorithms and divide-and-conquer
techniques [9] was proposed in which optimal cut points of
multiple DNA sequences were selected. According to the
author experimental results showed quite significant results.
Approach involves cutting of the sequences for decreasing the
space complexity for sequence alignment. However alignment
was possible only for multiple deoxyribonucleic acid
sequences, not for protein and other nucleic acid sequences.

Other new genetic algorithms [10] were used for solving
the MSA in which various dataset were tested and the
experimental results were compared with other methods. But
after comparison it was observed that this approach could
obtain good performance in the data sets with high similarity
and long sequences.

After that effective GARS approach [11] based on Genetic
Algorithm with Reverse Selection was proposed. But it suffers
from premature convergence in which solution reaches locally
at an optimal stage. Furthermore a new approach AlineaGA
[12] was proposed which used a

Genetic Algorithm with local search optimization
embedded on its mutation operators for performing multiple
sequence alignment. But its mutation probability leads to better
solutions in fewer generations and that the mutation operators
had a dramatic effect in this particular domain. Recently a new
Cyclic Genetic Approach (CGA) [13] developed with the
complete knowledge of the problem and its parameters. In
CGA, the values of various parameters are decided based on
the problem and fitness value obtained in each generation. But
the column score value varies for each execution may not give
relatively better alignment.

In this paper, we proposed an evolutionary approach using
genetic algorithms to obtain alignments of multiple sequences.
Experimental results show that the proposed solution does offer
better fitness accuracy rates w.r.t some existing tools.

Methodology

The remainder of this section is organized as follows. . In
section 3 we present genetic algorithm based approach
(GAMS) for solving the problem of aligning multiple
sequences. Section 4 shows the experimental results of various
dataset which are used to test the performance of our method.
Then section 5 is finally used for discussion and conclusion.

III. GENETIC ALGORITHM BASED APPROACH

In this section we present our algorithm for solving the
MSA problem. Genetic algorithms based approach (GAMS)
are applied with new selection and crossover scheme which
helps us to generate best population on local schema so that
better alignment could be discovered. This process flow is
depicted in figure 2.

GA_MS ()

// initialize a usually random population of individuals

 initpopulation P (t);

// evaluate fitness of all initial individuals in population

 Evaluate P (t);

// test for termination criterion (fitness core)

 While (not find best solution)

{

FOR i = 1 TO n DO

{

 // Select two chromosomes X and Y with highest fitness
value from current evaluation

 P' := select parents P (t);

// recombine the "genes" of selected parents

 Recombine P' (t);

// perturb the mated population stochastically

 Mutate P' (t);

 // evaluate its new fitness

 Evaluate P' (t);

 // select the survivors from actual fitness

 P := survive P,P' (t);

 Od

 }

 end GA.

}

Figure 2: GA Process flow

A. Chromosome Representation

The chromosome should in some way that contains
information about solution which it represents. The most used
way of encoding is a binary string. The chromosome then could
look like this: Each chromosome has one binary string. Each
bit in this string can represent some characteristic of the
solution or the whole string can represent a number. Of course,
there are many other ways of encoding. This depends mainly
on the solved problem. For example, one can encode directly
integer or real numbers; sometimes it is useful to encode some
permutations and so on. Each sequence has its own length. The
number of gaps in the sequence is to be inserted in each
sequence. It is calculated in a way that the length of all
sequence remains the same. Therefore we have to generate the
maximum length of sequence by multiplying the maximum
length of particular element of sequences with rsp1.2. Let‟s say
we have a set of sequence S = {S1, S2, S3 ….Sn}. So the
maximum length of the column has to be found out by
multiplying the sequence with rsp by maximum length column.
The value of scaling factor rsp defines that the alignment to be
20% longer then the sequence which is based on the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

182 | P a g e

www.ijacsa.thesai.org

observations that solution to common MSA problem really
contains more than 20% gaps. The flow of chromosome
representation is shown in figure 3:-

Create_Random_Matrix(n,L)

{

//generate the initial population G

//let n be size of Population

FOR G = 1 TO n DO

{

Select Length of Input Sequence=L

For i=1 to L DO

 {

//Create Position of Random Spaces

//Generate minimum value is 1

//Generate Position of Space

// define the value of scaling factor=1.2

 Position = (RandomSpaces(min, L + 1));

}

}

}

Figure 3: chromosome representation

B. Evaluation of Fitness Function

To evaluate their fitness, the chromosomes must be
converted to the alignment form to be applied sum-of-pairs
function [3]. We scored each column by looking at matches,
mismatches, and gaps in the two sequences. We assume that a
match = 1, a mismatch = 0, and a gap = -1. The fitness or
scoring function of each individual is calculated by the
formula:-

),(_
1

1

1

j

p

jj

i

p

i

AArixScoringMatScoreFitness 








The fitness Score for each alignment is calculated by
summing the individual score for each column in the matrix.
Scoring matrix is needed to determine the cost of aligning a
residue with another. Also, a gap penalty value must be settled
for determining the cost of aligning an amino acid with a gap.
This penalty is only employed when aligning a residue with a
gap. The fitness value calculation is to be represented by figure
4:-

FitnessValue(G, Max_length)

{

//generate G is the Gap penalty

//Calculate Sequence Count

//Calculate max_length of Sequences

for(a=0 to (max_length+a))

{

//check position of sequence in matrix not null or ' - '
fitnessvalue+=0

//check position of sequence in matrix null or '-„'

fitnessvalue += G

}

}

Figure 4: The flow for finding best fitness score

C. Selection Procedure

After calculating the fitness score of all the population
applying larger tournament method where n individuals are
randomly chosen, the fitter of the two is selecting with the
highest and second highest fitness value .In this case the fitter
the individual is chosen by the following procedure:-

• Apply larger tournament strategy for the current
population based on their fitness function

• Select two best chromosomes randomly based on their
column score and select two individual with their highest
fitness value.

D. Crossover

In the single point crossover process, Crossover selects
sequence from parent chromosomes and creates a new
offspring. The simplest way how to do this is to choose
randomly some crossover point and everything before this
point copy from a first parent and then everything after a
crossover point copy from the second parent .we select
crossover point at the rate of 0.5 and count the entire gap in
each population then multiply it with crossover rate and take
ceiling of crossover rate. The crossover point is selected by the
formula:-

 5.0int  gapsofnototalpoCrossover 

After selecting point, copy the chromosome of first parent
exact at the crossover point value then copy all chromosome of
second parent and vice versa so [13]. There are two offspring
has to be generated after applying the crossover function.
Calculate the fitness score of current population and select the
best individual for performing mutation operation. The flow of
one point crossover is shown in figure 5.

CrossOver (b,p)

{

//let cr be the cross rate

//let crosspoint be the cp

//cp=sequencecount+cr

//pick an array b[] in the range crossover from random

//Declare p as point =b[]

for i=1 to Do cp

{

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

183 | P a g e

www.ijacsa.thesai.org

if b[i]=p[p+cp]Go to first step

else

b[p+cp]=p[p+cp-i]

}

//let position of matrix pos

pos=b[i]

if b[i]>max_length

max_length +=max_length

pos=pos-(max_length*(sequencecount-1))

 }

Figure 5: flow of one point crossover

E. Mutation

After a crossover is performed, mutation takes place. This
is to prevent falling all solutions in population into a local
optimum of solved problem. The system randomly chooses a
gene of a chromosome form the mating pool randomly and
applying binary mutation. Mutation changes randomly the new
offspring. For binary encoding we can switch a few randomly
chosen bits from 1 to 0 or from 0 to 1 [9]. where all the gaps
are represented by 0‟s and all the base symbols are represented
by 1‟s and mutation takes place separately in each sequence up
to the mutation point rate of 0.2 [9] is initialized and
corresponding mutation point is selected. The mutation point is
to be selected by the formula:-

 stringbitoflengthtotalpoMutation   2.0int

First the mutation operator converts the total sequence in to
bit string then calculate the mutation point after calculating the
mutation point every picks a random amino acid from a
randomly chosen row (sequence) in the alignment and checks
whether one of its neighbors has a gap. If this is the case, the
algorithms swap the symbols. The flow of one point crossover
is shown in figure 6.

Mutation (mp,i)

{

//Declare mutation point mp

//declare sequence row count count

mp=count* mutation rate

//declare string symbol

 for i=1 to mp do

{

symbol=removeSymbols.SubString(i,1)

 if(matrix row='-')

matrix row =symbol

else

 matrix row = '-'

}

}

Figure 6: flow of space mutation

IV. IMPLEMENTATION AND RESULTS

The algorithm is implemented using Microsoft visual studio
and the machine for this research is a personnel computer with
Intel Pentium III processor .The main memory is 4 gigabyte
and Microsoft XP was used as a platform for the
implementation. The DNA query input sequence is to be taken
from cans family. Query input format of the DNA sequence is
listed in figure 7:-

>SPAC1002.14|1824570|1826248|itt1|I

GTAAATTCATACCGGAAATTTTACCAAATGGCGAT
TTCTTAATTGCTGAGGTGGCCAGCAGAAATCGTCTTT
TCATTATTCTGGAATCAAAACACATTCTTTGAATTGTT
CACTTTTCTGTTGCCTTGAAATCTTGGTCTTCTTAGTT
GACTGTTTCATCAAGGTTGCTCCAAATTCTTTGTGATT
TATTGGTAAACTCGGGCATTTTATTGAGT

>SPAC10F6.10|1225464|1227365|SPAC10F6.10|I

TTTTTATATACCAGTTTTATTTACAACAAAAAGTTT
TTACTACCACCTACAAAATACAAAAACTTGGATTTGT
ATCCAGTTCTTTGTCAAATTTTTAAATAAATTATTCTT
TTATTGATTTATTTAAAGTTTAAG

Figure 7: Query Input Formats

During the course of experiments, we have tried various
chromosome lengths in order to understand how they have an
effect on the performance of the GA.

Datasets

We have used two datasets which are DNA sequences from
two DNA families, Canis_familiaris dataset (psm3,
SPAC105.03c, taf11, SPAC1142.01) and galaxy dataset
(AY395516.1,AY390420.1,AY390421.1,AY390422).These
datasets are used as input to our multiple sequence alignment.
The parameters setting for experiment are summarized in table
1.

Parameter Content

Population size 5,10,15,20

Generation 50,100,150,200

Selection Strategy Random Selection

Crossover operator One Point

Crossover Rate(Rc) 0.8,0.6,0.3

Mutation operator Space Mutation

Mutation Rate(Rm) 0.5,0.3,0.1

Scoring Matrix Scoring 1

Gap penalty -1

Accumulate size 20%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

184 | P a g e

www.ijacsa.thesai.org

Table 1: GA Parameters

In order to examine our algorithm validity, we test number
of series with DNA sequence. Firstly the algorithm is executed
100 run on GA while number of generation become fix and
size of population is to be continued changed. It is observed
that running time is increased accordingly and indicate by a
notable rise in fitness score about 10% after increasing each
size of population. Again while size of population become
fixed and number of generation continued to changed then it
has to be notified that running time is increased accordingly
and indicate by a notable rise in fitness score about 10% . Table
2, 3 and figure 8, 9 lists the results after varying the number of
generation and size population.

Table 2: Operators assemble on 5, 10, 15 and 20 size of population with fix
number of generation with and calculated fitness score, running time

 Figure8: Fitness curve GA with Verifying size of population

Table 3: Operators assemble on 50,100,150 and 200 numbers of generations
with fix size of population and calculated fitness score, running time

 Figure9: Fitness curve GA with Verifying number of generation

In the proposed solution, we have also used two specific
crossover and mutation operators. In order to determine the
best crossover and mutation probabilities; we have carried out
three different experiments, using ten randomly selected
canis_familiaris dataset that were obtained from [15]. In our
experiments for each of ten datasets, the algorithm is executed
200 run on GA and the statistical outcomes of the optimal
fitness in each run is calculated as the results. We measure the
best fitness score and running time for each generation. Our
algorithm has to be run with the 30% crossover & 10%-
mutation option, 60% crossover & 30% mutation option and
80% crossover & 50% mutation option .it is observed that our
algorithm obtained the best solutions for 80% crossover & 50%
mutation option .The solutions obtained by the 60% crossover
and 30% mutation for the same datasets are close to the best
scores, however the option 30% crossover & 10% mutation has
not achieved any good quality solutions. Therefore, we can
conclude that GA has achieved overall better performance for
these test datasets when the rate of crossover are selected as
80% and mutation are selected as 50%. As for results for these
datasets are to be presented in table 4 and corresponding plots
are to be presented in graph 10.

Table 4: fitness scores with selected Crossover and mutation rate options

Figure10: Experimental results on GA with selected Crossover and mutation
rate options

The last set of experiments compares our algorithm
(GAMS) with two different tools such as Maft (high speed
multiple sequence alignment program) and Kalign (fast and
accurate multiple sequence alignment algorithm). The
maximum 200 generation run on GA and the statistical
outcomes of the optimal fitness in each run is calculated as the
results. The sequence id and specification of each dataset is
given in table 5. We measure that our GA obtained the best
fitness score and running time for each generation as compare
to other. The GA typically found a good alignment within 200
generations. Table 6 and graph 10 lists the results after
comparisng our algorithm with Maft and kalign.

Population size

-1050

-1000

-950

-900

-850

-800

-750

5 10 15 20

fi
tn

e
s
s
 v

a
lu

e

f itness value

-1200

-1000

-800

-600

-400

-200

0

50 100 150 200

 No of Genration

Fi
tn

es
s

va
lu

e

Series1

-960

-940

-920

-900

-880

-860

-840

-820

-800

5 10 15

Population Size

Fi
tn

es
s

va
lu

e cros .8 & mut .5

cros .6 & mut .3

cros .3 & mut .1

Size of Pop No of Gen Fitness

 Score

Running

 Time

5 100 -831 2:06

10 100 -931 4:78

15 100 -940 8:20

20 100 -990 12:08

Size of

Pop

No of Gen Fitness

 Score

Running

 Time

5 50 -831 1:03

5 100 -889 2:05

5 150 -909 3:07

5 200 -1002 4:06

Cros

rate=30%

Mut

rate=10%

Cros

rate=60%

Mut

rate=30%

Cros

rate=80%

Mut

rate=50%

Pop

Size

Running

 Time

-950 -940 -920 5 1:03

-935 -923 -900 10 2:05

-900 -868 -860 15 3:07

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

185 | P a g e

www.ijacsa.thesai.org

Table 5: Canis_familiaris dataset

Table 6: Overall Performance of all methods of Sequence ID datasets

Figure10: Overall Performance of all methods of Sequence ID datasets

V. CONCLUSION

Multiple sequence alignmen is an extension of pairwise
alignment to incorporate more than two sequences at a time.
Our multiple alignment methods try to align all of the
sequences in a given query set. Efficient fitness value function,
crossover and mutation strategies are the outcome of work.
Eventually it is trying that our methods will be significantly
contributed in prior efficient solution to multiple sequence
alignment problems.

REFERNECES

[1] C. Gondro and B.P. Kinghorn, “A simple genetic algorithm for multiple
Sequence alignment”, Genetics and Molecular Research 6 (4): 964-982
(2007)

[2] Kosmas Karadimitriou and Donald H. Kraft, “Genetic Algorithm and the
Multiple Sequence Alignment in Biology ", Proceedings of the Second
Annual Molecular Biology and Biotechnology Conference, February
1996, Baton Rouge, LA.

[3] C. Notredame, « Recent progresses in MSA a survey. ,
pharmacogenomic, volume 3, pages 1–14, 2002.

[4] Fernando José Mateus da Silva, Juan Manuel Sánchez Pérez, Juan
Antonio Gómez , “Optimizing Multiple Sequence Alignment by
Improving Mutation Operators of a Genetic Algorithm”, 978-0-7695-
3872-3/09 © 2009 IEEE

[5] C. Notredame and D.G. Higgins. “SAGA: sequence alignment by
genetic algorithm”, Nucleic Acids Research, volume 24(8): 1515–1524,
1996.

[6] L. Davis, “Handbook of Genetic Algorithms.” Van Nostrand Reinhold,
New York, 1991.

[7] Zhang C, Wong, “AKC: Toward efficient multiple molecular sequence
alignment: a system of genetic algorithm and dynamic programming”,
IEEE Transactions on Systems, Man and Cybernetics, Part B 1997,
27:918 -932.

[8] Nguyen HD, Yamamori K, Yoshihara I, Yasunaga M, “Improved GA-
based method for multiple protein sequence alignment”, The 2003
Congress on Evolutionary Computation (CEC '03) 2003, 3:1826 - 1832.

[9] Shyi-Ming Chen, Chung-Hui Lin, and Shi-Jay Chen, “Multiple DNA
Sequence Alignment Based on Genetic Algorithms and Divide-and-
Conquer Techniques”, International Journal of Applied Science and
Engineering (2005). 3, 2: 89-100

[10] Jorng-Tzong Horng, Li-Cheng Wu, Ching-Mei Lin, Bing-He Yang, “A
Genetic Algorithm For Multiple Sequence Alignment”, Soft Computing-
A Fusion of Foundations, Methodologies and Applications, Vol. 9, Issue
6, pp 407 – 420. (2005)

[11] Yang Chen, Jinglu Hu, Member, IEEE, Kotaro Hirasawa, Member,
IEEE, Songnian Yu. “Multiple Sequence Alignment Based on Genetic
Algorithms with Reserve Selection” , ICNSC, pp 1511-1516 (2008).

[12] Fernando José Mateus Silva, Member, IEEE, Juan Manuel Sánchez-
Pérez, Juan Antonio Gómez-Pulido and Miguel A. Vega-Rodríguez ,
“An Evolutionary Approach for Performing Multiple Sequence
Alignment”, 978-1-4244-8126-2/10/$26.00 ©2010 IEEE

[13] Amouda Nizam,Jeyakodi Ravi1, and Kuppuswami Subburaya2, “Cyclic
Genetic Algorithm for Multiple Sequence Alignment”, International
Journal of Research and Reviews in Electrical and Computer
Engineering (IJRRECE) Vol. 1, No. 2, June 2011

[14] Guang-Zheng Zhang De-Shuang Huang,”Aligning Multiple Protein
Sequence by AnImproved Genetic Algorithm”, IEEE 0-7803-8359-
1/04/$20.00 0 2004

[15] Canis_familiaris.BAOADD2.66.pep.abinitio.fa.gz.

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1 2 3 4

Comparison of GAMS,Maft & Kalign

Fi
tn

es
s

Va
lu

e

GAMS

Maft

Kalign

Seq

ID

Sequence

Specification

No of

Sequence

A1

>SPAC1142.01

>SPAC1002.04c

>SPAC105.03c

>SPAC10F6.09c

4

A2

>SPAC1006.08

>SPAC1006.05c

>SPAC1002.20

>SPAC10F6.08c

4

A3

>SPAC1002.02

>SPAC11E3.06

>SPAC1002.08c

>SPAC10F6.03c

4

A4

>SPAC1002.13c

>SPAC11D3.01c|

>SPAC10F6.14c

>SPAC1071.07c

4

Seq ID GAMS Maft Kalign

A1 -4679 -6446 -6795

A2 -2367 -3469 -3868

A3 -4317 -5814 -6557

A4 -3408 -5450 -6411

