
(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 12, 2012

222 | P a g e

www.ijacsa.thesai.org

Test Case PrioritizationUsing Fuzzy Logic for GUI

based Software

Neha Chaudhary,

IT Department,
JSS Academy of Technical

Education, Noida, India

Om Prakash Sangwan,

School of ICT, Gautam Buddha

University,
Greater Noida, India

Yogesh Singh,

Vice-Chancellor,
MS University, Baroda,

Gujarat, India

Abstract-Testing of GUI (Graphical User Interface) applications

has many challenges due to its event driven nature and infinite

input domain. It is very difficult for any programmer to test for

each and every possible input. When test cases are generated

using automated testing tool it uses each and every possible

combination to generate test cases hence generates numerous

number of test case for any GUI based application. Within a

defined time frame it is not possible to test every test case, that is

why test cases prioritization is required. Test-case prioritization

has been widely proposed and used in recent years as it can

improve the rate of fault detection during the testing phase. Very

few methods are defined for GUI Test case prioritization that

usually consider single criteria for assigning priority for the test

case which is not sufficient for the consideration of that test case

as more fault revealing. In this paper we have proposed a method

for assigning weight value on the basis of multiple factors as one

of the criteria for test case prioritization for GUI based software.

These factors are: The type of event, Event Interaction, and

Parameter-value interaction coverage-based criteria. In the

proposed approach priority is assigned based upon these factors

using fuzzy logic model. Experimental results indicate that the

proposed model is suitable for prioritizing the test cases of GUI

based software.

Keywords-Graphical user Interface; Prioritization; Test Suite;

Fuzzy Model.

I. INTRODUCTION

Testing is widely recognized as a key quality assurance
(QA) activity in the software development process. Research
in testing has received considerable attention in the last two
decades [2,8,20,14]. Testing of graphical user interfaces
(GUIs) was a neglected research area till last decade [4].
Graphical User Interface (GUI) constitutes as much as 45-60%
of the total software code in any software, so testing of GUI is
a very important concern [3,16]. Most of the test case
generation techniques require human involvement and are
resource intensive. Many automated approaches were
proposed for test case generation but in practice capture replay
tools are used [17]. So generation of test cases is a costly
effort. Rapid prototyping model is followed for GUI
development which involves continuous modifications in
software versions [1]. Due to event driven nature of GUI it
takes sequence of events as input and after change of state
generates new sequence of input as output [6, 12, 19]. For
different set of state and combination of inputs GUI generate
different output [5, 20]. It would be difficult to manage all the

combinations for testing as number of combination grows
exponentially with the number of events. Running all GUI test
cases and then fixing all bugs may be time consuming and
delaying the project completion. This would require that the
test developed for one version should be reusable across
various versions [1, 4]. It is important to prioritize the test
cases that uncover the most faults as fast as possible in the
testing process. So prioritization of test suite is a challenging
area [7, 9,13,18]. In this paper multiple factors are considered
for the assignment of weight value for test suite.

This paper is organized as follows: Section II describes the
research background for the proposed work. Section III
describes the factors affecting the fault detection capability of
test suite. Section IV introduces the concept of the proposed
fuzzy model. Section V discusses about the experimental
design. The results are displayed in section VI and conclusion
and future work is presented in section VII.

II. RESEARCH BACKGROUND

The significant work is done by Renee C. Bryce and Atif
M. Memon for test suite prioritization by interaction coverage.
Test suite for GUI based program is prioritized by t-way
interaction coverage and rate of fault detection is compared
with the fault detection by other prioritization criteria [9].
Experimental results shows that test suits with the highest
event interaction coverage benefit the most and test suits that
has less interaction coverage does not benefit in using this
prioritization technique.

In this approach only event interaction coverage criterion is
taken as a measure for prioritizing test cases, there could
possibly be significant effect of type of event in a test case,
which will affect the rate of fault detection.

Atif M. Memon & Renee C Bryce provided a single
abstract model for GUI and web application testing. In this
approach test cases are prioritized by set of count based
criteria, set of usage-based frequency and set of interaction
based criteria [10]. The results show that test case
prioritization by 2-way (interaction based criteria) and PV-
LtoS (Parameter count based criteria) provided best
improvement in the rate of fault detection for GUI based
software. The main drawback of this technique is that the
combination of different prioritization criteria is used and it is
said that this is more effective than a single criterion.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 12, 2012

223 | P a g e

www.ijacsa.thesai.org

However in order to cover web applications and GUI
applications various factors need to be added and they add
complexity to the process which can be avoided if specific
criteria for web based application and GUI based application
would be used.

In the work done by Chin-Yu Huang et al. on GUI Test
case prioritization, weighted event flow graph was used for
solving the non-weighted GUI test cases and ranked GUI test
cases based on weight scores. In order to assign weights,
events are classified based on their importance in the GUI
application [11, 15]. In this technique weight summation of
termination event and unrestricted focus event is equal to that
of restricted focus event which requires further research in this
area. In this approach the effect on fault detection based on
event interaction with other event need to be explored further.
Weight value of each interaction would also have impact on
fault detection ability of test cases which was not considered in
this approach.

III. FACTORS FOR TEST CASE PRIORITIZATION

Weight value will be assigned by considering following
factors:

 Type of event

 Event Interaction

 Count based criteria
In following section we will elaborate different criteria

considered for assigning weight values:

 Type of event
Type of event, a test suite is covering has significant

impact on the fault revealing capability of test case.

According to the literature survey events are classified as
following five types, restricted-focus event, unrestricted-focus
event, termination event, menu-open event, and system-
interaction event. Event weight has been assigned on the basis
of importance of specific type of events [15]. This
categorization of events is given in table 1.

 Event Interaction

In event driven software event interaction makes the program

to follow a different execution path that may reveal faults in

the system. In our proposed method Priority is assigned to

those test cases which have large number of parameter value

interaction [9].

 Count-based criteria
Since the GUI is the collection of events, number of

actions performed with events, set of parameters and number
of windows. It is very important that test suit that provides
maximum count coverage should be given higher importance
then the test suit that provide low coverage. So another factor
that will be considered is the count of number of windows,
actions or parameter values that a test case may cover.

IV. PROPOSED FUZZY MODEL

Fuzzy logic is a convenient way to map an input space to
output space. In this paper we have proposed a fuzzy model
with three inputs, namely Type of event, Event Interaction,
Count based criteria. Figure1 shows the fuzzy model. The
proposed model consists of three inputs and provides a crisp
value of priority using Rule Base.

Fuzzy Inference System (FIS) is the process of formulating
the mapping from a given input to an output using fuzzy logic.
This will use Mamdani’s fuzzy inference method which is
most commonly seen fuzzy methodology as shown in Figure
2.

Figure 1: Fuzzy Model for Prioritization

After the fuzzification process, there is a fuzzy set for each
output variable that needs defuzzification. The input for the
defuzzification process is a fuzzy set (the aggregate output

fuzzy set) and the output is singleton number.
Further centroid method will be used for defuzzification.
Centroid method will return the centre of area under the curve.

TABLE 1: EVENT WEIGHT ASSIGNMENTS

Event type Weight Value

Restricted-focus event 5

System-interaction event 4

Termination event 3

Menu-open event 2

Unrestricted-focus event 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 12, 2012

224 | P a g e

www.ijacsa.thesai.org

Figure 2: Fuzzy Inference System: Priority Model

V. EXPERIMENTAL DESIGN

In order to fuzzify the inputs, we have selected following
membership functions for the Type of event, Event Interaction
and Count based criteria and they are shown in figure 3-5.
GUI events are classified into five categories and they have
different fault revealing capabilities. Weight value of test case
will be calculated by taking summation of weight according to

categorization. That weight will be divided into five states
(linguistic variables) i.e. very low, low, medium, high and very
high as shown in figure 3. The input variable Event Interaction
has been divided into five levels i.e. very low, low, medium,
high and very high as shown in figure 4.

Figure 3: Fuzzification of Input Variable Event Type

Figure 4: Fuzzification of Input Variable Event Interaction

Similarly the input variable count has been divided into
five states i.e. very low, low, medium, high and very high as
shown in figure 5.

The output variable priority is classified as very low, low,
medium, high and very high. Similarly priority has five
membership functions as shown in figure 6:

A. Rule Base and Evaluation Process

When input data is fuzzified, processing is carried out in
fuzzy domain. The model integrates the effects of multiple
factors type of event, Event Interaction and Count based
criteria into a single measurable parameter that will define the

priority of test case, based on the following knowledge/rule
base. The rule base can further be advanced by creating more
ranges (fuzzy sets) for the input variables. All inputs and
outputs are fuzzified as shown in figure 3 to 6. All possible
combinations of inputs were considered that will create 5

3
 i.e.

125 sets. The priority for all 125 combinations is classified as
very low, low, medium, high & very high by expert judgment.
This indicates to formulation of 125 rules for the fuzzy model
and some of the rules are presented below:

1. If value assigned for Type of event is low, Event
Interaction is low and Count based is low then priority will be
low.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 12, 2012

225 | P a g e

www.ijacsa.thesai.org

2. If value assigned for Type of event is medium, Event

Interaction is medium and Count based is medium then

priority will be medium.

3. If value assigned for Type of event is low, Event Interaction

is high and Count based is high then priority will be medium.

.

.

.

 If value assigned for Type of event high, Event Interaction

is medium and Count based is high then priority will be

high.

…..

125. If value assigned for Type of event very low, Event

Interaction is high and Count based is very low then priority

will be low.
All 125 rules are inserted and rule base is created. A rule is

fired based on the particular set of inputs. In this model
Mamdani style inference has been used.

 The output of test case priority has been observed using
rule viewer for particular set of inputs using MATLAB fuzzy
Tool Box as shown in figure 7.

Figure 5: Fuzzification of Input Variable Count

Figure 6: Fuzzification of Input Variable Priority

Figure 7: Rule Viewer for the Priority Model

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 12, 2012

226 | P a g e

www.ijacsa.thesai.org

VI. EXPERIMENTAL RESULTS

For example we have following crisp value inputs to the
model: type of event =0.5, Event Interaction =0.3 and Count
based criteria=0.5.

These inputs are provided for the fuzzification module and
after fuzzification of given value we find the type of event
=0.5 belongs to the fuzzy set low with membership grade 0.9
and belongs to fuzzy set medium with membership grade 0.9
and with high it has membership grade 0.72.

For event Interaction =0.3 belongs to the fuzzy set low
with membership grade 0.9 and belongs to fuzzy set medium

with membership grade 0.72 and with high it has membership
grade 0.72. Count based criteria=0.5 belongs to the fuzzy set
low with membership grade 0.9 and belongs to fuzzy set
medium with membership grade 0.9 and with high it has
membership grade 0.72. With these input values we find that
rules given in table 2 will be considered:

First rule assigns the priority low to an extent of 0.9 and
second rule gives priority medium to an extent of 0.72 and the
third rule gives priority high to an extent 0.72 this is shown in
the figure 8.

TABLE 2: TEST SUITE PRIORITY CALCULATION FOR A GIVEN INPUT SET

The type of

event (.5)

 Event

Interaction(.3)

 Count based

criteria(.5)

Priority Membership Grade for

Test Case Priority

Low Low Low Low Min(0.9,0.9,0.9)=0.9

Medium Medium Medium Medium Min(0.9,0.72,0.9)=0.72

High Medium High High Min(0.72,0.72,0.72) =0.72

A. Defuzzification

After getting the fuzzified output as specified in previous
section, we defuzzify them to get the crisp value of the output
variable priority [21]. Transformation of the output from fuzzy
domain to crisp domain is called defuzzification. In this model
we defuzzify using centre of gravity (COG) method of the
aggregate output 1, 2 and 20. X axis centroid points for all

three variables are 2.9, 4.9 & 6.9 the final value for GOG is
4.84.

The effect of these rules is also observed by simulating the
model using fuzzy logic tool box of MATLAB. The priority
for the given input values comes out to be 0.493 which is the
same as calculated from COG method.

Figure 8: Output computation for Test Case Priority

VII. CONCLUSION

The problems of test-case prioritization have been explored
in this paper to improve the rate of fault detection
effectiveness for GUI based software. We have proposed a
fuzzy based technique to assign priority of test case. Priority
of test case will be assigned as very low, low, medium, high
and very high. In this technique three factors namely Type of
event, Event Interaction, Count based criteria are considered to
assign weight values for test cases. Impact of these factors are
categorize in five categories as very low, low, medium, high
and very high. Experimental results shows that the proposed

fuzzy model is proved to be an effective approach for test case
prioritization for GUI based software.

REFERENCES

[1] A. M. Atif, “Automatically repairing event sequence based GUI test suites
for regression testing”, ACM Transaction on Software Engineering and
Method. Volume 18, Issue 2, Nov. 2008.

[2] M. J. Harrold. “Testing: a roadmap”. In ICSE '00: Proceedings of the
Conference on The Future of Software Engineering, ACM Press, New
York, NY, USA, pages 61.72, 2000.

[3] B. A. Myers. User interface software tools. ACM Transactions on
Computer-Human Interaction,1995.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 12, 2012

227 | P a g e

www.ijacsa.thesai.org

[4] A. M. Memon. A Comprehensive framework for testing graphical user
Interfaces. Ph.D. thesis, Department of Computer Science, University of
Pittsburgh, July 2001.

[5] L. White and H. Almezen, “Generating test cases for GUI responsibilities
using complete interaction sequences”. In Proceedings of the International
Symposium on Software Reliability Engineering, pages 110-121, Oct.
2000.

[6] R. K. Shehady and D. P. Siewiorek, “A method to automate user interface
testing using variable finite state machines.” In Proceedings of The
Twenty-Seventh Annual International Symposium on Fault-Tolerant
Computing (FTCS'97), Washington - Brussels - Tokyo, pages 80.88, June
1997.

[7] Elbaum S., Malishevsky A. G., Rothermel G.,”Test case prioritization: a
family of empirical studies”, IEEE Transactions on Software Engineering
vol. 28 (2), pp. 159–182, 2002.

[8] A. M. Atif ,Mary Lou Soffa, Martha E. Pollack,” Coverage criteria for
GUI testing” Proceedings of the 8th European Software Engineering
conference held jointly with 9th ACM SIGSOFT international symposium
on Foundations of Software Engineering, pp. 256-267, 2001.

[9] Renee C. Bryce, Atif M Memon, “Test suite prioritization by interaction
coverage” Domain-Specific Approaches to Software Test Automation
Workshop September, 2007.

[10] Renee C. Bryce, Sreedevi Sampath, Atif M Memon, “Developing a single
model and test prioritization station for event- driven software” IEEE
Transaction on Software Engineering, Jan 2010

[11] Chin-Yu Huang, Jun-Ru Chang, Yung-Hsin Chang, “Design and analysis
of GUI test-case prioritization using weight-based methods” The journal
of Systems and Software 83, pp 646-659, 2010

[12] A. M. Atif ,Mary Lou Soffa, Martha E. Pollack,” coverage criteria for
GUI testing” Proceedings of the 8th European Software Engineering

conference held jointly with 9th ACM SIGSOFT international symposium
on Foundations of Software Engineering, pp. 256-267, 2001.

[13] Scott McMaster, Atif M. Memon,“Call-Stack coverage for GUI test suite
reduction” IEEE Transaction on Software Engineering, Volume 34,
Jan/Feb, 2008

[14] Jaymie Strecker , Atif M Memon ,“Relationships between test suites,
faults, and fault detection in GUI testing” In ICST '08 Proceedings of the
First international conference on Software Testing, Verification, and
Validation, (Washington, DC, USA), 2008.

[15] Paul Gerrard, “Testing GUI applications”, EuroSTAR, Edinburgh UK,
1997.

[16] A. Memon, A. Nagarajan, and Q. Xie, “Automating regression testing for
evolving GUI software,” J. Software Maintenance and Evolution:
Research and Practice, Volume 17, no. 1,pp. 27-64, 2005.

[17] Atif M. Memon , Qing Xie “Studying the fault-detection effectiveness of
GUI test cases for rapidly evolving software” IEEE Transaction on
Software Engineering, Volume 31, no. 10, pp. 884-896, Oct. 2005

[18] S. McMaster and A. Memon, “Call Stack Coverage for GUI test-suite
reduction”, Proc., 17th International Symposium on Software Reliability
Engineering, Nov. 2006.

[19] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI
test case generation using automated planning”, IEEE Transactions on
Software Engineering, pp 144–155, Feb. 2001.

[20] Daniel R. Hackner , Atif M. Memon ,“Test case generator for
GUITAR” , International Conference on Software Engineering,
(Washington, DC, USA), 2008.

[21] Yogesh Singh, Pradeep Kumar Bhatia, Omprakash Sangwan,”Predicting
software maintenance using fuzzy model”, published in SIGSOFT
Software Engineering Notes, vol 34, July 2009.

