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Abstract— In this paper, we provide a survey on the models and 

query languages for temporally annotated RDF. In most of the 

works, a temporally annotated RDF ontology is essentially a set 

of RDF triples associated with temporal constraints, where, in the 

simplest case, a temporal constraint is a validity temporal 

interval. However, a temporally annotated RDF ontology may 

also be a set of triples connecting resources with a specific 

lifespan, where each of these triples is also associated with a 

validity temporal interval. Further, a temporal RDF ontology 

may be a set of triples connecting resources as they stand at 

specific time points. Several query languages for temporally 

annotated RDF have been proposed, where most of which extend 

SPARQL or translate to SPARQL.  Some of the works provide 

experimental results while the rest are purely theoretical. 
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I. INTRODUCTION 

RDF (“Resource Description Framework”) [1], [2] is a 
growing semantic web standard for the specification of 
ontologies. An RDF ontology contains a set of triples (s,p,o), 
denoting that subject s is associated with object o by property 
p. However, this information is static meaning that either does 
not change over time or the whole RDF ontology corresponds 
to a particular time point. However, the truth of statements 
often changes with time and Semantic Web applications often 
need to represent such changes and reason about them. For 
example, statements regarding airline flights are valid only in 
certain time intervals. Validity time should also be integrated 
in the query language allowing to retrieve “flights from 
London to Paris during Mary’s summer vacation”. Some 
additional example temporal queries are the following: 

1. Who are the foaf:Persons whose lifespan overlaps with 

Einstein’s? 

2. What is the temperature in Chicago at sunrise of July 20
th

, 

2008? 

3. What are the names of the engineers who committed code 

to a particular software in the first half of 2008? 

4. What is the salary of Tom during the interval [2007-01-

01, 2009-12-31]? 

5. Who was the head of the german government before and 

after the unification of 1990? 

6. Who are the service providers that provide web services 

for more than 4 consecutive years? 

Who are the house members who sponsored a bill after              
April 2, 2008? 

In this paper, we provide a survey on the models and query 
languages for temporally annotated RDF. In most of the 
works, a temporally annotated RDF ontology is essentially a 
set of RDF triples associated with temporal constraints, where, 
in the simplest case, a temporal constraint is a validity 
temporal interval. However, a temporally annotated RDF 
ontology may also be a set of triples connecting resources with 
a specific lifespan, where each of these triples is also 
associated with a validity temporal interval. Further, a 
temporal RDF ontology may be a set of triples connecting 
resources as they stand at specific time points. Several query 
languages for temporally annotated RDF have been proposed, 
where most of which extend SPARQL [3] or translate to 
SPARQL, the most widely accepted query language for RDF.  
Some of the works provide experimental results while the rest 
are purely theoretical. 

We divide reviewed works into three main categories: (a) 
works that they have their own model theory (Section 2), (b) 
works that they extend RDF simple entailment [2] (Section 3), 
and (c) works that they extend RDFS entailment [2] (Section 
4). Works that extend RDF simple entailment are further 
divided into works that directly translate into RDF and those 
that do not. Section 5 concludes the paper and provides a 
comparison of the presented approaches 

II. WORKS WITH THEIR OWN MODEL THEORY 

In [4], a temporal RDF (tRDF for short) database is a set 
of triples of the form (s, p:{T}, o), (s, p:<n:T>, o), (s, p:[n:T], 
o), and (p rdfs:subPropertyOf p’), where s is a URI reference 
from a set U, p,p’ are URI references from a set P, o is an 
entity from R= U  L, where L is a set of literals, n is a 
natural number, and T  is a temporal interval. Intuitively, the 
triple (s, p:{T}, v) indicates that the association (s, p, o) holds 
at every time point in T, the triple (s, p:<n:T>, o) indicates that 
the association (s, p, o) holds at least n time points within T, 
and the triple (s, p:[n:T], o) indicates that the association (s, p, 
o) holds at most n time points within T. An interpretation I of 
a tRDF database is a function from the set of time points to U 

  P   R. Satisfaction of a tRDF triple is defined in such a way 
that intuitive meaning is preserved. Obviously, a tRDF 
database may be inconsistent due to the temporal constraints 
imposed to RDF triples.  

A tRDF query over a tRDF database D is a  set of triples of 
the form (s, p:{T}, o), (s, p:<n:T>, o), (s, p:[n:T], o), where 
s,p,o,T are possibly variables, with the constraint that each 
temporal variable appears only once. An answer to a tRDF 
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query q is the set of all possible substitutions to the variables 
in q such that all triples in q after proper substitutions are 
entailed by D.  

To efficiently answer tRDF queries, a tGRIN index 
structure is proposed such that temporally closed resources 
and resources close in the tRDF graph are stored in the same 
index node. Query answering using the tGRIN index is shown 
to outperform query answering using R

+
-trees, SR-trees, and 

the ST-index, the most promising representatives of valid-time 
indexing methods, according to [5]. 

In [6], the authors extend RDF triples with an annotation 
from a set A which is a partially ordered set. We consider the 
case that A is the set of all temporal intervals [t,t’], where t,t’ 
are natural numbers. The inclusion ordering   is the partial 
ordering in this set. An annotated RDF theory (aRDF-theory 
for short) is a finite set of triples (s, p:a, o), where s is a 
resource from a set R, p is a property from a set P, o is a 
resource in R, and a A. In addition, an aRDF theory contains 
statements (p, rdfs:subProperyOf, p’), where p,p’P,  and 
statements indicating which properties are transitive. 

Let O be an aRDF theory, let p be a transitive property in 
O, and let r,r’R. Then, there is a p-path between r,r’ if there 
exists a set of triples t1=(r,p1:a1,r1),…, tk=(rk-1,pk:ak,r’)  such 
that for all i [1,k], (pi rdfs:subPropertyOf 

* 
p). A p-path Q is 

indicated by the set of triples {t1,…,tk} that form the path. 

An interpretation I is a mapping from the set of triples 
(s,p,o), where s,o R  and pP,  to A. An interpretation I 
satisfies (s,p:a,o) iff a  I(s,p,o). I satisfies an aRDF theory O 
iff (i) I  satisfies every (s,p:a,o) O and (ii) for all transitive 
properties p P, for all p-paths Q={t1,…,tk} in O, where 
ti=(ri,pi:ai,ri+1), and for all a A such that a   ai, it is the case 
that a I(r1,p,rk+1), for all i[1,k]. 

A simple aRDF query q has the form (s,p:a,o), where 
s,p,a,o can be variables. AO(q) consists of all ground instances 
of q that are entailed by O. However, AO(q) may contain 
redundant triples. For example, if (a,p:[1,100],o)   AO(q), 
then there is no point including redundant triples such as 
(a,p:[1,10],o) in it. AnswerO(q) eliminates all redundant triples 
from AO(q). 

A conjunctive query Q is a set of simple aRDF queries 
such that for any simple  query q Q, there is a variable in q 
that appears in another simple query q’  Q.  

The authors present efficient algorithms for simple and 
conjunctive query answering, showing that the time 
complexity for answering a conjunctive query is in 
O((|R|

2
*|P|)

|Q|
), where |Q| is the number of simple queries in Q.  

The authors also provide experimental results showing the 
efficiency of their approach. 

III. WORKS THAT EXTEND RDF SIMPLE ENTAILMENT 

A. Approaches that translate to RDF 

In [7], instead of having RDF triples associated with their 
validity temporal interval, named graphs [8] are used both for 
saving space and for querying the temporal RDF database 
using standard SPARQL. In particular, each created named 

graph g is associated with a temporal interval i and all RDF 
triples whose validity interval is i become members of g (in 
this process blank nodes are replaced by URIs). The authors 
introduce through examples a query language, named τ-
SPARQL which extends the SPARQL query language for 
RDF graphs. Each τ-SPARQL query can be translated into a 
SPARQL query. 

A τ-SPARQL query that retrieves all foaf:Persons whose 
lifespan overlaps with Einstein’s is: 

SELECT ?s2, ?e2 ?person WHERE { 

 [?s1, ?e1] ?einstein foaf:name “Albert Einstein” 

 [?s2, ?e2] time:intervalOverlaps [?s1, ?e1] 

 [?s2, ?e2] ?person a foaf:Person.} 

 
This query is translated into a SPARQL query, as follows: 

SELECT ?s2, ?e2 ?person WHERE{ 

 GRAPH ?g1 {?einstein foaf:name “Albert Einstein”.} 

 ?g2 time:intervalOverlaps ?g1. 

 GRAPH ?g2 {?person a foaf:Person.} 

 ?g2 time:hasBegining ?s2. 

 ?g2 time:hasEnd ?e2.} 

 
Temporal relationships between named graphs, such that 

time:intervalOverlaps are derived from a temporal reasoning 
system. Additionally, the authors propose an index structure 
for time intervals, called keyTree index, assuming that triples 
within named graphs have indices by themselves. The 
proposed index improves the performance of time point 
queries over an in-memory ordered list that contains the 
intervals’ start and end times. 

Experimental results are provided. 
In [9], the time-annotated RDF framework is proposed for 

the representation and management of time-series streaming 
data. In particular, a TA-RDF graph is a set of triples <s[tS], 
p[tp], o[to]>, where <s,p,o> is an RDF triple and  tS, tp, and to 
are time points. In other words, a TA-RDF graph relates 
streams at certain points in time. To translate a TA-RDF graph 
into a regular RDF graph, a data stream vocabulary is used, 
where (i) dvs:belongsTo is a propery that indicates that a 
resource is a frame in a stream, (ii) dvs:hasTimestamp is a 
property indicating the timestamp of a frame, and (iii) dvs:Nil 
is a resource corresponding to the Nil timestamp. 

An RDF graph G is the translation of a TA-RDF graph 
G

TA
 iff (B is the set of blank nodes): 

<s[tS], p[tp], o[to]>   GTA 
  rS, rp, ro 

 

[(<rS, dvs:belongsTo, s> G  <rS, dvs:hasTimestamp, tS> G  rs

B)   (tS= dvs:Nil  rS=s)]   

[(<rp, dvs:belongsTo, p> G  <rp, dvs:hasTimestamp, tp> G  rp

B)   (tp= dvs:Nil  rp=p)]   

[(<ro, dvs:belongsTo,o> G  <ro, dvs:hasTimestamp, to> G  ro

B)   (to= dvs:Nil  ro=o)]   

< rS, rp, ro> G. 

 

A query language for the time-annotated RDF, called TA-
SPARQL, is proposed which has a formal translation into 
normal SPARQL. For example, a TA-SPARQL query 
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requesting the temperature in Chicago at sunrise of July 20
th

, 
2008 is: 

SELECT ?temperature WHERE { 

<urn:OHARE> <urn:hasTemperatureSensor> ?x. 

?x[“2008-07-20T05:34:00Z”^^xsd:dateTime] 

<urn:hasReading>  ?temperature.} 

The above TA-SPARQL query is translated into the 
SPARQL query: 

 SELECT ?temperature WHERE { 

 <urn:OHARE> <urn:hasTemperatureSensor> ?x. 

 ?F <urn:hasReading> ?temperature. 

 ?F dvs:belongsTo ?x. 

 ?F dvs:hasTimestamp ?F_T. 

 FILTER(?FT=“2008-07-20T05:34:00Z”^^xsd:dateTime)} 

 

The system has been implemented on top of the Tupelo
1
 

semantic middleware. However, no experimental results are 
provided. 

In [10], the authors consider temporal RDF graphs which 
is a set of triples of the form (s,p:[start,end],o), where (s,p,o) is 
an RDF triple and p:[start,end] is a shorthand for a URI that 
identifies a temporal property which has base property p, 
beginning start and ending end. 

The authors define a simple temporal interpretation by 
extending an RDF simple interpretation as follows: 

1. T is a subset of the set of resources. 

2. NT is a value representing no time. 

3. The set of properties contains tb:property, tb:begin, and 

tb:end. 

4. BP is a subset of resources, called the set of base 

properties. 

5. PT is a mapping from BP   (T {NT})   (T {NT}) 

into the set of properties. 

6. If tp=PT(bp,t1,t2) then (i) (tp,bp)   IEXT(tb:property) , 

(ii) if t1≠NT then (tp, t1)  IEXT(tb:begin), otherwise 

IEXT(tb:begin) contains no pair (tp, t), for any t, and (iii) 

if t2≠NT then (tp, t2)  IEXT(tb:end), otherwise 

IEXT(tb:end) contains no pair (tp,t), for any t. 

As temporal RDF graphs are ordinary RDF graphs they 
can be queried using normal SPARQL. However, it is helpful 
to the writer of temporal queries to provide some extra syntax 
to enable queries to be written more compactly and to hide the 
details of the underline representation. 

For example, a query asking for the names of the engineers 
who committed code to a particular software in the first half of 
2008 is the following: 

SELECT ?name WHERE { 

   ?module rdfs:label “module name”. 

?module f:updatedBy: (?uBegin, ?uEnd) ?person. 

 FILTER (tb:intervalsIntersect(?uBegin,?uEnd, 

  “2008-01-01”^^xsd:date,  

                          “20008-7-01”^^xsd:date)) 

  ?person ex:hasName ?name.} 

                                                           
1 Tupelo. http://tupeloproject.ncsa.uiuc.edu 

This query can be expressed in normal SPARQL, as 
follows: 

SELECT ?name WHERE { 

?module rdfs:label “module name”. 

 ?updatedBy tb:property f:updatedBy. 

 ?updatedBy tb:begin ?uBegin. 

 ?updatedBy tb:end ?uEnd. 

 FILTER (tb:intervalsIntersect(?uBegin,?uEnd, 

   “2008-01-01”^^xsd:date,  

                                         “20008-7-01”^^xsd:date)) 

 ?module f:updatedBy ?person. 

?person ex:hasName ?name.} 

 

Though an implementation of a prototype is mentioned, no 
experimental results are provided. 

B. Other approaches 

In [11], an N-dimensional time domain has the form: T=T1 

 …  TN, where each Ti is a set of intervals.  A multi-
temporal RDF triple is defined as (s,p,o | T), where <s,p,o> is 

an RDF triple and T  T. Note that since T is a set, some 

compression is achieved in the storage of multi-temporal RDF 
triples.   

As a query language, the authors propose T-SPARQL, an 
extension of SPARQL that has many features of TSQL2 [12] 
(a query language designed for temporal relational databases). 
As in TQL2, if T is a multi-dimensional time element, the 
expression VALID(T) and TRANSACTION(T) can be used to 
express conditions on the valid and transaction components of 
T. 

T-SPARQL is demonstrated through examples and a query 
that requests the salary of Tom during the interval [2007-01-
01,2009-12-31] is the following: 

SELECT ?salary INTERSECT(?t, “ [2007-01-01,2009-12-31]”) 

WHERE { 

?emp rdf:type ex:employee; 

     ex:Name “Tom”; 

     ex:Salary ?salary | ?t. 

FILTER (VALID(?t) OVERLAPS  

“ [2007-01-01,2009-12-31]”^^xs:period)} 

 

No implementation of T-SPARQL is provided. 

In [13], an uncertain temporal knowledge base is a pair KB 
= <F, C>, where F is a set of weighted temporal RDF triples 
and C is a set of first-order temporal consistency constraints. 
In particular, a fact in F has the form: p(s,o,i)d, where p(s,o) is 
an RDF triple,  i is a temporal interval, and d [0,1] is a 
confidence degree that p(s,o) is true during interval i. 
Additionally, a temporal consistency constraint in C has the 
form:  

p1(?s,?o1,?i1)   p2(?s,?o2,?i2)   relA(?o1,?o2) →relT(?i1,?i2)  

or of the form: 
p1(?s,?o1,?i1)   p2(?s,?o2,?i2)   relA(?o1,?o2) →false  

 

where ?i1, and ?i2 are temporal interval variables, relA is an 
(optional) arithmetic relation, such as = and  ≠, and relT is a 
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temporal predicate such as overlap and before (see Allen’s 
temporal relations among intervals [14]). 

 For example, the fact that a player can only play for 
one club at a time is expressed by the query: 

playsForClub(?s,?o1,?i1)   playsForClub(?s,?o2,?i2)    

?o1 ≠?o2 → disjoint(?i1,?i2)  

 

A query Q is a conjunction of triples p(s,o), where s and o 
can be variables. To answer a query Q, all matches from the 
KB at collected into a set FQ. Then, all facts possibly 
conflicting with them are also added to FQ. To resolve the 
conflicts, a consistent subset FQ,C of FQ is selected such that 
the sum of the weights of the facts in FQ,C is maximized. Then, 
the matches to Q within FQ,C are returned as answer to the 
query. The query answering problem is shown to be NP-hard. 
A scheduling algorithm for query answering is provided, as 
well as an efficient approximation algorithm with polynomial 
performance. Experimental results show the efficiency of the 
proposed approach. 

In [15], the authors extend RDF with temporal features and 
evolution operators. In addition, in contrast to the rest of the 
reviewed works, they associate concepts with their lifespan. In 
particular, an evolution base Σ is a set of RDF triples and a 
mapping τ from the set of considered RDF triples and 
considered resources to the set of temporal intervals. In 
addition, Σ may contain statements of the form (c, term, c’), 
where term is one of the special evolution properties becomes, 
join, split, merge, and detach.  

The expression (c, becomes, c’) expresses that the concept 
c’ originates from the concept c and should hold τ(c).end 
<t(c’).start.  The expression (c, join, c’) expresses that a part 
of concept c’ born at time t comes from a part of concept c.   
The expression (c, spilt, c’) expresses that a part of concept c 
ending at time t becomes a part of a new concept c’.  The 
expression (c, merge, c’) indicates that a part of concept c 
ending at time t becomes part of an existing concept c’. The 
expression (c, detach, c’) indicates the new concept c’ is 
formed at time t with at least one part from c.  

An evolution base Σ is consistent, if for all (s,p,o)   Σ it 

holds that τ(s,p,o)   τ(s) and τ(s,p,o)   τ(o). Additionally, if 

p{type, subClassOf, subPropertyOf} then it should hold that 
τ(s)    τ(o). 

To support evolution-aware querying, the authors define a 
navigational query language to traverse temporal and 
evolution edges in an evolution graph. This language is 
analogous to nSPARQL [16], a language that extends 
SPARQL with navigational capabilities based on nested 
regular expressions. nSPARQL uses four different axes, 
namely self , next, edge, and node, for navigation on an RDF 
graph and node label testing. The authors extend the nested 
regular expressions constructs of nSPARQL with temporal 
semantics and a set of five evolution axes, namely join,  split, 
merge, detach, and becomes that extend the traversing 
capabilities of nSPARQL to the evolution edges. The extended 
query language is formally defined. 

An example query is “who was the head of the German 
government before and after the unification of 1990”. The 
query is expressed as follows: 

SELECT ?Y, ?W 

(?X, self::Reunified Germany/join-1[1990]/ 

next::head[1990], ?Y) AND 

(?Z, self::Reunified Germany/next::head[1990], ?W) 

The first triple finds all the heads of state of the Reunified 

Germany before the unification by following join
-1

[1990] 
and then following next :: head[1990]. The second triple finds 
the heads of state of the Reunified Germany after the 
unification.  

No implementation results of this theory are provided. 

IV. WORKS THAT EXTEND RDFS ENTAILMENT 

In [17], a temporal graph is a set of temporal triples of the 
form (s,p,o)[t], where (s,p,o) is an RDF triple and t is a time 
point. Given a temporal graph G, G(t) denotes the set of RDF 
triples in G corresponding to time point t. 

The authors define temporal entailment between two 
temporal graphs G, G’ as follows: 

1. For ground temporal RDF graphs G, G’, define G |=τ 

G’ iff G(t) |=RDFS G’(t), for each t. 

2.  For general temporal graphs G, G’, G |=τ G’ iff for 

every ground instance v(G) of G, there exists a ground 

instance v’(G’) of G’ such that v(G) |=RDFS v’(G’). 
It is shown that temporal entailment is NP-complete. To 

test temporal entailment, the authors define the slice closure of 

G, as follows scl(G)= 
t (cl(G(t)))

t
, where cl(H) is the RDFS 

closure [18] of an RDF graph H and H
t
={(s,p,o)[t] | (s,p,o) 

H}. In particular, it is proved that G |=τ G’ iff there is a 
mapping v such that v(G’) is a subgraph of scl(G). 

The authors extend their theory to support also anonymous 
timestamps. 

A query is defined as a pair (H, B A), where H and B 
are temporal RDF graphs without blank nodes and with some 
elements replaced by variables and A is a set of usual 
arithmetic built-in predicates over time point variables and 
time points. All variables appearing in H should also appear in 
B. For deriving maximal validity intervals a special structure is 
used. For example a query that asks for the service providers 
that have web services for more than 4 consecutive years is: 

(?X, interval, ?te-?ts) ← (?Y, provided by, ?X) || ?ts, ?te ||,  

?te - ?ts > 4. 
No implementation of this theory is provided. 

In [19], the authors extend the work in [17] and they define 
a temporal graph as a set of temporal triples of the form 
(s,p,o):i, where (s,p,o) is an RDF triple and i is a temporal 
interval variable or a temporal interval. A temporal constraint 
is an expression of the form i ω i’, where i, i’ are temporal 
intervals or temporal interval variables and ω is one of the 
relationships of Allen’s temporal interval algebra [14]. A 
temporal graph with temporal constrains (called c-temporal 
graph) is a pair C = (G, Σ), where G is a temporal graph and Σ 
is a set of temporal constraints over the intervals of G.   
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The authors define entailment between two c-temporal 
graphs C, C’ as follows: C |=τ(const) C’ iff for each time ground 
instance v(C) of C, there is a time ground instance v’(C’) of C’ 
such that v(C) |=τ v(C’). The authors define the c-slice closure  
of C, denoted by cscl(C), extending the definition of slice 
closure of [17]. It is proved that C |=τ(const) C’ iff there is an 
interval map γ from C’ to C and a mapping v s.t. v(γ(C’)) is a 
subgraph of cscl(C). Entailment between two c-temporal 
graphs is shown to be NP-complete. No query language or 
implementation is provided.  

In [20], [21], [22], the authors consider an extension of 
RDFS with spatial and temporal information. Here, we 
consider only the extension with temporal information. 
Assume a set D of RDF triples associated with their validity 
temporal interval i. Starting from D, the authors apply the 
inference rules A:?i, B:?i’→ C: ?i ∩ ?i’, where A, B → C is an 
RDFS entailment rule [2] and ?i, ?i’ are temporal interval 
variables, until a fixpoint is reached. Then, the temporal 
intervals of the same RDF triple are combined, creating 
maximal temporal intervals. 

Based on these maximal temporal intervals, a formal 
extension of the SPARQL language is proposed, called 
SPARQL-ST, supporting however only the AND and FILTER 
operations. The TEMPORAL FILTER condition is precisely 
defined supporting all interesting conditions between temporal 
intervals including Allen’s temporal interval relations. 

An example SPARQL-ST query that returns all house 
members who sponsored a bill after April 2, 2008, along with 
the temporal interval that the bill was sponsored is: 

SELECT ?p, intersect(#t1, #t2, #t3, #t4) WHERE { 

 ?p gov:hasRole ?r #t1. 

 ?r gov:forOffice ?o #t2. 

 ?o gov:isPartOf gov:congress_house #t3. 

 ?p gov:sponsor ?b #t4. 

 TEMPORAL FILTER ( 

 after(intersect(#t1, #t2, #t3, #t4), interval(04:02:2008, 

  04:02:2008, MM:DD:YYYY)))} 
 

SPARQL-ST has been implemented by extending a 
commercial relational database system and experimental 
results are provided. 

In [23], [24], the authors extend the RDFS and ter-Horst 
entailment rules [25] (which extend RDFS with terms from the 
OWL [26] vocabulary) with temporal information. Four 
example inference rules are presented, including: 

?s ?p ?o ?b ?e 

?p rdfs:domain ?dom  

→ 

?s rdf:type ?dom ?b ?e 

?p rdf:type owl:FunctionalProperty 

?p rdf:type owl:ObjectProperty 

?x ?p ?y ?b1 ?e1 

?x ?p ?z ?b2 ?e2 

→ 

?y owl:sameAs ?z 

provided that [?b1,?e1] and [?b2,?e2] overlap 

?p rdf:type owl:FunctionalProperty 

?p rdf:type owl:DatatypeProperty 

?x ?p ?y ?b1 ?e1 

?x ?p ?z ?b2 ?e2 

→ 

?x rsd:type owl:Nothing 

provided that ?y ≠?z and  [?b1,?e1] and [?b2,?e2] overlap 

 

Note that in the above rules ?b, ?e, ?b1, ?e1, ?b2, and ?e2 
are time point variables. The last rule indicates that 
inconsistency is expressed by assigning the bottom type 
owl:Nothing to individuals. For checking consistency two 
additional rules must be added addressing a combination of 
owl:sameAs and owl:differentFrom, as well as 
owl:disjointWith together with two rdf:type statements. 

The proposed extension has been implemented using the 
forward chaining engine HFC [27], which supports arbitrary 
tuples, user defined tests, and actions. Some experimental 
results are provided. However, no query language is provided. 

In [28], a general framework for representing, reasoning, 
and querying annotated RDFS data is presented. The authors 
show how their unified reasoning framework can be 
instantiated for the temporal, fuzzy, and provenance domain. 
Here, we are concerned with the temporal instantiation. We 
define ⊥={{}} and ㄒ={[-∞,+∞]}. Let L={t | t is a finite set 

of disjoint temporal intervals} {⊥,ㄒ}. On L, the authors 

define the partial order: 

t   t’ iff for all i  t, there is i’  t’ such that i i’. 

Obviously, (L,  , ⊥,ㄒ) is a bounded lattice. Between the 

elements of L, the authors define the operations + and × are 
follows: t1 + t2=inf(t | ti  t, i=1,2} and t1 × t2=sup(t | t  ti, 
i=1,2}. For example, {[2,5],[8,12]} + {[4,6],[9,15]} = 
{[2,6],[8,15]} and {[2,5],[8,12]} × {[4,6],[9,15]} = {[4,5], 
[9,12]}. An annotated RDFS graph G is a set of temporal 
triples (s,p,o) :t, where (s,p,o) is an RDF triple and tL. The 
models of G are formally defined extending ρRDF semantics, 
where ρRDF [29] is a subset of RDFS keeping its essential 
features.  

The authors present a set of sound and complete inference 
rules of the general form: 

(s1, p1,o1) : ?t1,…,  (sn, pn ,on) : ?tn,  

{(s1, p1,o1),… ,(sn, pn, on)} |- ρRDF (s, p, o)  

→  

 (s,p,o) : (?t1 × …× ?tn) 

 
For example: 

(c1,rdfs:subClassOf,c2):?t1, (c2,rdfs:subClassOf,c3):?t2 

→  

(c1, rdfs:subClassOf,c3):?t1 × ?t2 

 
Additionally, the inference rules contain the generalization 

rule: 

(s,p,o) : ?t,  (s,p,o) : ?t’ → (s,p,o) : (?t + ?t’). 

 
The generalization rule is destructive, meaning that this 

rule removes its premises as the conclusion is inferred. 

An extension of SPARQL is presented for querying an 
annotated RDF graph.  A basic annotated pattern is an 
expression (s,p,o):t, where s, p, o, t can be variables. Let P be 
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a basic annotation pattern and G be a temporal graph. The 
authors define the evaluation [P]G as the list of substitutions 
that are solutions of P, i.e., [P]G={θ | G entails θ(P)}. Based 
on [P]G the evaluations [P AND P’]G, [P UNION P’]G, [P 
FILTER R]G, [P OPTIONAL P’[R]]G  are formally defined, 
where R is a filter expression. 

An example query asking for the employees of eBay 
during some time period that optionally owned a car at some 
point during their stay is: 

SELECT ?p, ?t, ?c WHERE { 

 (?p type ebayEmp): ?t 

 OPTIONAL {(?p hasCar ?c): ?t’ 

  FILTER (?t’    ?t)}} 
 

Note that the definition of [P]G is not based on maximal 
temporal intervals and, thus all temporal intervals that satisfy 
the query are returned. Therefore, the authors define an 
ordering between substitutions: θ’   θ iff (i) θ ≠ θ’, (ii) 
domain(θ) = domain(θ’), (iii) θ(x) =  θ’(x), for any non-
temporal variable x, and (iv) θ’(t)  θ(t), for any temporal 

variable t. Then, for any θ [P]G, remove any θ’ [P]G such 
that θ’  θ. 

 No implementation is provided for this theory. 

In [30], a temporal graph G is a set of temporal triples 
(s,p,o)[t,t’], where (s,p,o) is an RDF triple and [t,t’] is its 
corresponding validity temporal interval. The semantics of a 
temporal graph G, assuming an entailment relation X  (such as 
RDF, RDFS, and OWL2 RL/RDF [31] entailment) are 
formally defined using multi-sorted first order logic.  

A basic graph pattern (BGP) is a set of triples (s,p,o), 
where s,p,o can be variables. A temporal group pattern (TGP) 
is an expression defined inductively, as follows:  

B at t3,           B during [t1,t2],  B occurs [t1,t2]  

B maxinterval [t1,t2],  B mintime t3,  B maxtime t3,   

P1 and P2,          P1 union P2,  P1 optional P2,  

P1 filter R,  
 

where B is a BGP, P1 and P2 are TGPs, R is a built-in 
expression, and t1,t2, and t3 are either time points or variables. 
Note that a TGP query is an extension of a SPARQL query. 
For example, a TGP query that retrieves all events z in London 
having at least one time point in common with Oktoberfest is: 

SELECT ?z WHERE { 

{(Munich, hosts, Oktoberfest)} maxint [?x,?y]. 

(London, host,?z)} occurs [?x,?y].} 

 

The evaluation of a TGP query w.r.t. a temporal graph G 
and an entailment relation X is formally defined using multi-
sorted first-order logic. Yet, evaluation of a TGP using this 
definition can be inefficient. Therefore, the authors describe an 
optimization. 

Assume that the entailment relation X is characterized by a 
set of definite rules of the form: A1,..,An →B. 

Then, the rules: 

A1[x1,y1], …, An[xn,yn], max(x1,…,xn) min(y1,..,yn)  

→  

B[max(x1,…,xn), min(y1,..,yn)] 

 

are applied until a fixpoint is reached, where xi and yi are 
time point variables. Then, based on the result, derived RDF 
triples are associated with their maximal validity intervals. 
Now, based on these maximal intervals the evaluation of a 
TGP query is efficiently defined. 

Though the authors state that they have implemented their 
framework using the PostgreSQL database system, no 
implementation results are provided.  

V. CONCLUSION-DISCUSSION 

In this paper, we have reviewed models and query 
languages of temporally annotated RDF. Below, we compare 
these models and query languages on various aspects. First, we 
would like to state that approaches that have their own model 
theory or extend RDF simple entailment miss important 
inferences made from the works that extend RDFS entailment. 
For example, an object o may be an instance of class c during 
a temporal interval i and the class c may be subclass of a class 
c’ during an interval i’. Only works that extend RDFS 
entailment are able to derive that o is instance of class c’ 
during the intersection of the intervals i and i’.  

From the works that extend RDFS entailment, the 
approach in [17] seems less efficient since it computes the 
RDFS closure of RDF triples at each time point. Additionally, 
[28] considers all temporal intervals that satisfy the query and 
then selects the maximal ones. In contrast, [22] and [30] 
achieve query answering using directly maximal temporal 
intervals achieving a higher performance. 

In our opinion, the approach in [28] does not give always 
the desirable results: For example, assume that an annotated 
RDFS graph consists of the triples (s,p,o):[1998, 2009] and  
(s’,p’,o’):[2008, 2012]. Consider now the query:  

 SELECT ?t, ?t’ WHERE { 

 (s,p,o): ?t. 

  (s’,p’,o’): ?t’. 

 FILTER (before(?t,?t’)}} 

 

Then, [28] will return the answers (i) ?t=[1998, 2007], 
?t’=[2008, 2012], (ii) ?t=[1998, 2008], ?t’=[2009, 2012], and 
(iii) ?t=[1998,2009], ?t’=[2010, 2012]. In contrast [22], will 
return no answer to this query since it works with maximal 
temporal intervals and 2009 > 2008.  

In [30], the query:  

SELECT ?t, ?t’ WHERE { 

  (s,p,o) during ?t. 

   (s’,p’,o’) during ?t’, 

  FILTER (before(?t,?t’)}} 
 

will return the answers of [28], as well as the intervals t,t’ 
such that t   [1998,2009], t’   [2008,2012], and t.end 
<t’.start. In contrast, in [30], the query: 

SELECT ?t, ?t’ WHERE { 

 (s,p,o) maxinterval ?t. 
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  (s’,p’,o’) maxinterval ?t’, 

 FILTER (before(?t,?t’)}} 

 

will return no answer. As a criticism, [30] is not able to 
return maximal intervals within a temporal interval of interest. 

Approaches [7], [28], and [11] save some space since they 
either use name graphs associated with temporal intervals or 
associate each RDF triple with its set of validity temporal 
intervals. 

Specialized indices for query answering are used only in 
[4] and [7], while the rest of the approaches use common 
indexes. As a final remark, we would like to state that [4] can 
handle some temporal constraints over RDF triples, [17] can 
handle anonymous timestamps, and [19] can handle 
anonymous temporal intervals satisfying Allen’s temporal 
interval algebra relations. 

Temporal consistency constraints are considered only in 
[13], which however does not answer temporal queries but 
only normal queries. 

As a criticism to the work in [6], each RDF triple is 
associated with a single maximal temporal interval while an 
RDF triple is normally associated with multiple maximal 
temporal intervals. 

Some of the proposed models and query languages have 
been implemented as stated in the main text of the paper and 
for some of them experimental results are provided. 

In the future, extensions of the proposed temporal RDF 
query languages with features of SPARQL 1.1 [32], such as 
subqueries, and negation, will be of great importance. For 
example, it will be interesting to ask for events that have not 
occurred simultaneously before a date and their maximal 
temporal intervals always overlap after that date. Additionally, 
it will be interesting to ask for companies located in Crete that 
have exactly one manager at each point in time within a 
particular temporal interval of interest. 

Future work also concerns a survey on spatial, fuzzy, 
provenance, and contextual RDF. Of course, aspects of 
contextual RDF can be time, space, trust, and authority.  
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