
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

28 | P a g e

www.ijacsa.thesai.org

A Survey on Models and Query Languages for

Temporally Annotated RDF

Anastasia Analyti

Institute of Computer Science, FORTH-ICS,

Heraklion, Greece

Ioannis Pachoulakis

Dept. of Applied Informatics & Multimedia, TEI of Crete,

Heraklion, Greece

Abstract— In this paper, we provide a survey on the models and

query languages for temporally annotated RDF. In most of the

works, a temporally annotated RDF ontology is essentially a set

of RDF triples associated with temporal constraints, where, in the

simplest case, a temporal constraint is a validity temporal

interval. However, a temporally annotated RDF ontology may

also be a set of triples connecting resources with a specific

lifespan, where each of these triples is also associated with a

validity temporal interval. Further, a temporal RDF ontology

may be a set of triples connecting resources as they stand at

specific time points. Several query languages for temporally

annotated RDF have been proposed, where most of which extend

SPARQL or translate to SPARQL. Some of the works provide

experimental results while the rest are purely theoretical.

Keywords- Temporal RDF; provenance; semantics; query

languages.

I. INTRODUCTION

RDF (“Resource Description Framework”) [1], [2] is a
growing semantic web standard for the specification of
ontologies. An RDF ontology contains a set of triples (s,p,o),
denoting that subject s is associated with object o by property
p. However, this information is static meaning that either does
not change over time or the whole RDF ontology corresponds
to a particular time point. However, the truth of statements
often changes with time and Semantic Web applications often
need to represent such changes and reason about them. For
example, statements regarding airline flights are valid only in
certain time intervals. Validity time should also be integrated
in the query language allowing to retrieve “flights from
London to Paris during Mary’s summer vacation”. Some
additional example temporal queries are the following:

1. Who are the foaf:Persons whose lifespan overlaps with

Einstein’s?

2. What is the temperature in Chicago at sunrise of July 20
th

,

2008?

3. What are the names of the engineers who committed code

to a particular software in the first half of 2008?

4. What is the salary of Tom during the interval [2007-01-

01, 2009-12-31]?

5. Who was the head of the german government before and

after the unification of 1990?

6. Who are the service providers that provide web services

for more than 4 consecutive years?

Who are the house members who sponsored a bill after
April 2, 2008?

In this paper, we provide a survey on the models and query
languages for temporally annotated RDF. In most of the
works, a temporally annotated RDF ontology is essentially a
set of RDF triples associated with temporal constraints, where,
in the simplest case, a temporal constraint is a validity
temporal interval. However, a temporally annotated RDF
ontology may also be a set of triples connecting resources with
a specific lifespan, where each of these triples is also
associated with a validity temporal interval. Further, a
temporal RDF ontology may be a set of triples connecting
resources as they stand at specific time points. Several query
languages for temporally annotated RDF have been proposed,
where most of which extend SPARQL [3] or translate to
SPARQL, the most widely accepted query language for RDF.
Some of the works provide experimental results while the rest
are purely theoretical.

We divide reviewed works into three main categories: (a)
works that they have their own model theory (Section 2), (b)
works that they extend RDF simple entailment [2] (Section 3),
and (c) works that they extend RDFS entailment [2] (Section
4). Works that extend RDF simple entailment are further
divided into works that directly translate into RDF and those
that do not. Section 5 concludes the paper and provides a
comparison of the presented approaches

II. WORKS WITH THEIR OWN MODEL THEORY

In [4], a temporal RDF (tRDF for short) database is a set
of triples of the form (s, p:{T}, o), (s, p:<n:T>, o), (s, p:[n:T],
o), and (p rdfs:subPropertyOf p’), where s is a URI reference
from a set U, p,p’ are URI references from a set P, o is an
entity from R= U  L, where L is a set of literals, n is a
natural number, and T is a temporal interval. Intuitively, the
triple (s, p:{T}, v) indicates that the association (s, p, o) holds
at every time point in T, the triple (s, p:<n:T>, o) indicates that
the association (s, p, o) holds at least n time points within T,
and the triple (s, p:[n:T], o) indicates that the association (s, p,
o) holds at most n time points within T. An interpretation I of
a tRDF database is a function from the set of time points to U

 P  R. Satisfaction of a tRDF triple is defined in such a way
that intuitive meaning is preserved. Obviously, a tRDF
database may be inconsistent due to the temporal constraints
imposed to RDF triples.

A tRDF query over a tRDF database D is a set of triples of
the form (s, p:{T}, o), (s, p:<n:T>, o), (s, p:[n:T], o), where
s,p,o,T are possibly variables, with the constraint that each
temporal variable appears only once. An answer to a tRDF

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

29 | P a g e

www.ijacsa.thesai.org

query q is the set of all possible substitutions to the variables
in q such that all triples in q after proper substitutions are
entailed by D.

To efficiently answer tRDF queries, a tGRIN index
structure is proposed such that temporally closed resources
and resources close in the tRDF graph are stored in the same
index node. Query answering using the tGRIN index is shown
to outperform query answering using R

+
-trees, SR-trees, and

the ST-index, the most promising representatives of valid-time
indexing methods, according to [5].

In [6], the authors extend RDF triples with an annotation
from a set A which is a partially ordered set. We consider the
case that A is the set of all temporal intervals [t,t’], where t,t’
are natural numbers. The inclusion ordering  is the partial
ordering in this set. An annotated RDF theory (aRDF-theory
for short) is a finite set of triples (s, p:a, o), where s is a
resource from a set R, p is a property from a set P, o is a
resource in R, and a A. In addition, an aRDF theory contains
statements (p, rdfs:subProperyOf, p’), where p,p’P, and
statements indicating which properties are transitive.

Let O be an aRDF theory, let p be a transitive property in
O, and let r,r’R. Then, there is a p-path between r,r’ if there
exists a set of triples t1=(r,p1:a1,r1),…, tk=(rk-1,pk:ak,r’) such
that for all i [1,k], (pi rdfs:subPropertyOf

*
p). A p-path Q is

indicated by the set of triples {t1,…,tk} that form the path.

An interpretation I is a mapping from the set of triples
(s,p,o), where s,o R and pP, to A. An interpretation I
satisfies (s,p:a,o) iff a  I(s,p,o). I satisfies an aRDF theory O
iff (i) I satisfies every (s,p:a,o) O and (ii) for all transitive
properties p P, for all p-paths Q={t1,…,tk} in O, where
ti=(ri,pi:ai,ri+1), and for all a A such that a  ai, it is the case
that a I(r1,p,rk+1), for all i[1,k].

A simple aRDF query q has the form (s,p:a,o), where
s,p,a,o can be variables. AO(q) consists of all ground instances
of q that are entailed by O. However, AO(q) may contain
redundant triples. For example, if (a,p:[1,100],o)  AO(q),
then there is no point including redundant triples such as
(a,p:[1,10],o) in it. AnswerO(q) eliminates all redundant triples
from AO(q).

A conjunctive query Q is a set of simple aRDF queries
such that for any simple query q Q, there is a variable in q
that appears in another simple query q’ Q.

The authors present efficient algorithms for simple and
conjunctive query answering, showing that the time
complexity for answering a conjunctive query is in
O((|R|

2
*|P|)

|Q|
), where |Q| is the number of simple queries in Q.

The authors also provide experimental results showing the
efficiency of their approach.

III. WORKS THAT EXTEND RDF SIMPLE ENTAILMENT

A. Approaches that translate to RDF

In [7], instead of having RDF triples associated with their
validity temporal interval, named graphs [8] are used both for
saving space and for querying the temporal RDF database
using standard SPARQL. In particular, each created named

graph g is associated with a temporal interval i and all RDF
triples whose validity interval is i become members of g (in
this process blank nodes are replaced by URIs). The authors
introduce through examples a query language, named τ-
SPARQL which extends the SPARQL query language for
RDF graphs. Each τ-SPARQL query can be translated into a
SPARQL query.

A τ-SPARQL query that retrieves all foaf:Persons whose
lifespan overlaps with Einstein’s is:

SELECT ?s2, ?e2 ?person WHERE {

 [?s1, ?e1] ?einstein foaf:name “Albert Einstein”

 [?s2, ?e2] time:intervalOverlaps [?s1, ?e1]

 [?s2, ?e2] ?person a foaf:Person.}

This query is translated into a SPARQL query, as follows:

SELECT ?s2, ?e2 ?person WHERE{

 GRAPH ?g1 {?einstein foaf:name “Albert Einstein”.}

 ?g2 time:intervalOverlaps ?g1.

 GRAPH ?g2 {?person a foaf:Person.}

 ?g2 time:hasBegining ?s2.

 ?g2 time:hasEnd ?e2.}

Temporal relationships between named graphs, such that

time:intervalOverlaps are derived from a temporal reasoning
system. Additionally, the authors propose an index structure
for time intervals, called keyTree index, assuming that triples
within named graphs have indices by themselves. The
proposed index improves the performance of time point
queries over an in-memory ordered list that contains the
intervals’ start and end times.

Experimental results are provided.
In [9], the time-annotated RDF framework is proposed for

the representation and management of time-series streaming
data. In particular, a TA-RDF graph is a set of triples <s[tS],
p[tp], o[to]>, where <s,p,o> is an RDF triple and tS, tp, and to
are time points. In other words, a TA-RDF graph relates
streams at certain points in time. To translate a TA-RDF graph
into a regular RDF graph, a data stream vocabulary is used,
where (i) dvs:belongsTo is a propery that indicates that a
resource is a frame in a stream, (ii) dvs:hasTimestamp is a
property indicating the timestamp of a frame, and (iii) dvs:Nil
is a resource corresponding to the Nil timestamp.

An RDF graph G is the translation of a TA-RDF graph
G

TA
 iff (B is the set of blank nodes):

<s[tS], p[tp], o[to]>  GTA
 rS, rp, ro

[(<rS, dvs:belongsTo, s> G <rS, dvs:hasTimestamp, tS> G rs

B)  (tS= dvs:Nil rS=s)] 

[(<rp, dvs:belongsTo, p> G <rp, dvs:hasTimestamp, tp> G rp

B)  (tp= dvs:Nil rp=p)] 

[(<ro, dvs:belongsTo,o> G <ro, dvs:hasTimestamp, to> G ro

B)  (to= dvs:Nil ro=o)] 

< rS, rp, ro> G.

A query language for the time-annotated RDF, called TA-
SPARQL, is proposed which has a formal translation into
normal SPARQL. For example, a TA-SPARQL query

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

30 | P a g e

www.ijacsa.thesai.org

requesting the temperature in Chicago at sunrise of July 20
th

,
2008 is:

SELECT ?temperature WHERE {

<urn:OHARE> <urn:hasTemperatureSensor> ?x.

?x[“2008-07-20T05:34:00Z”^^xsd:dateTime]

<urn:hasReading> ?temperature.}

The above TA-SPARQL query is translated into the
SPARQL query:

 SELECT ?temperature WHERE {

 <urn:OHARE> <urn:hasTemperatureSensor> ?x.

 ?F <urn:hasReading> ?temperature.

 ?F dvs:belongsTo ?x.

 ?F dvs:hasTimestamp ?F_T.

 FILTER(?FT=“2008-07-20T05:34:00Z”^^xsd:dateTime)}

The system has been implemented on top of the Tupelo
1

semantic middleware. However, no experimental results are
provided.

In [10], the authors consider temporal RDF graphs which
is a set of triples of the form (s,p:[start,end],o), where (s,p,o) is
an RDF triple and p:[start,end] is a shorthand for a URI that
identifies a temporal property which has base property p,
beginning start and ending end.

The authors define a simple temporal interpretation by
extending an RDF simple interpretation as follows:

1. T is a subset of the set of resources.

2. NT is a value representing no time.

3. The set of properties contains tb:property, tb:begin, and

tb:end.

4. BP is a subset of resources, called the set of base

properties.

5. PT is a mapping from BP  (T {NT})  (T {NT})

into the set of properties.

6. If tp=PT(bp,t1,t2) then (i) (tp,bp)  IEXT(tb:property) ,

(ii) if t1≠NT then (tp, t1)  IEXT(tb:begin), otherwise

IEXT(tb:begin) contains no pair (tp, t), for any t, and (iii)

if t2≠NT then (tp, t2)  IEXT(tb:end), otherwise

IEXT(tb:end) contains no pair (tp,t), for any t.

As temporal RDF graphs are ordinary RDF graphs they
can be queried using normal SPARQL. However, it is helpful
to the writer of temporal queries to provide some extra syntax
to enable queries to be written more compactly and to hide the
details of the underline representation.

For example, a query asking for the names of the engineers
who committed code to a particular software in the first half of
2008 is the following:

SELECT ?name WHERE {

 ?module rdfs:label “module name”.

?module f:updatedBy: (?uBegin, ?uEnd) ?person.

 FILTER (tb:intervalsIntersect(?uBegin,?uEnd,

 “2008-01-01”^^xsd:date,

 “20008-7-01”^^xsd:date))

 ?person ex:hasName ?name.}

1 Tupelo. http://tupeloproject.ncsa.uiuc.edu

This query can be expressed in normal SPARQL, as
follows:

SELECT ?name WHERE {

?module rdfs:label “module name”.

 ?updatedBy tb:property f:updatedBy.

 ?updatedBy tb:begin ?uBegin.

 ?updatedBy tb:end ?uEnd.

 FILTER (tb:intervalsIntersect(?uBegin,?uEnd,

 “2008-01-01”^^xsd:date,

 “20008-7-01”^^xsd:date))

 ?module f:updatedBy ?person.

?person ex:hasName ?name.}

Though an implementation of a prototype is mentioned, no
experimental results are provided.

B. Other approaches

In [11], an N-dimensional time domain has the form: T=T1

 …  TN, where each Ti is a set of intervals. A multi-
temporal RDF triple is defined as (s,p,o | T), where <s,p,o> is

an RDF triple and T  T. Note that since T is a set, some

compression is achieved in the storage of multi-temporal RDF
triples.

As a query language, the authors propose T-SPARQL, an
extension of SPARQL that has many features of TSQL2 [12]
(a query language designed for temporal relational databases).
As in TQL2, if T is a multi-dimensional time element, the
expression VALID(T) and TRANSACTION(T) can be used to
express conditions on the valid and transaction components of
T.

T-SPARQL is demonstrated through examples and a query
that requests the salary of Tom during the interval [2007-01-
01,2009-12-31] is the following:

SELECT ?salary INTERSECT(?t, “ [2007-01-01,2009-12-31]”)

WHERE {

?emp rdf:type ex:employee;

 ex:Name “Tom”;

 ex:Salary ?salary | ?t.

FILTER (VALID(?t) OVERLAPS

“ [2007-01-01,2009-12-31]”^^xs:period)}

No implementation of T-SPARQL is provided.

In [13], an uncertain temporal knowledge base is a pair KB
= <F, C>, where F is a set of weighted temporal RDF triples
and C is a set of first-order temporal consistency constraints.
In particular, a fact in F has the form: p(s,o,i)d, where p(s,o) is
an RDF triple, i is a temporal interval, and d [0,1] is a
confidence degree that p(s,o) is true during interval i.
Additionally, a temporal consistency constraint in C has the
form:

p1(?s,?o1,?i1)  p2(?s,?o2,?i2)  relA(?o1,?o2) →relT(?i1,?i2)

or of the form:
p1(?s,?o1,?i1)  p2(?s,?o2,?i2)  relA(?o1,?o2) →false

where ?i1, and ?i2 are temporal interval variables, relA is an
(optional) arithmetic relation, such as = and ≠, and relT is a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

31 | P a g e

www.ijacsa.thesai.org

temporal predicate such as overlap and before (see Allen’s
temporal relations among intervals [14]).

 For example, the fact that a player can only play for
one club at a time is expressed by the query:

playsForClub(?s,?o1,?i1)  playsForClub(?s,?o2,?i2) 

?o1 ≠?o2 → disjoint(?i1,?i2)

A query Q is a conjunction of triples p(s,o), where s and o
can be variables. To answer a query Q, all matches from the
KB at collected into a set FQ. Then, all facts possibly
conflicting with them are also added to FQ. To resolve the
conflicts, a consistent subset FQ,C of FQ is selected such that
the sum of the weights of the facts in FQ,C is maximized. Then,
the matches to Q within FQ,C are returned as answer to the
query. The query answering problem is shown to be NP-hard.
A scheduling algorithm for query answering is provided, as
well as an efficient approximation algorithm with polynomial
performance. Experimental results show the efficiency of the
proposed approach.

In [15], the authors extend RDF with temporal features and
evolution operators. In addition, in contrast to the rest of the
reviewed works, they associate concepts with their lifespan. In
particular, an evolution base Σ is a set of RDF triples and a
mapping τ from the set of considered RDF triples and
considered resources to the set of temporal intervals. In
addition, Σ may contain statements of the form (c, term, c’),
where term is one of the special evolution properties becomes,
join, split, merge, and detach.

The expression (c, becomes, c’) expresses that the concept
c’ originates from the concept c and should hold τ(c).end
<t(c’).start. The expression (c, join, c’) expresses that a part
of concept c’ born at time t comes from a part of concept c.
The expression (c, spilt, c’) expresses that a part of concept c
ending at time t becomes a part of a new concept c’. The
expression (c, merge, c’) indicates that a part of concept c
ending at time t becomes part of an existing concept c’. The
expression (c, detach, c’) indicates the new concept c’ is
formed at time t with at least one part from c.

An evolution base Σ is consistent, if for all (s,p,o)  Σ it

holds that τ(s,p,o)  τ(s) and τ(s,p,o)  τ(o). Additionally, if

p{type, subClassOf, subPropertyOf} then it should hold that
τ(s)  τ(o).

To support evolution-aware querying, the authors define a
navigational query language to traverse temporal and
evolution edges in an evolution graph. This language is
analogous to nSPARQL [16], a language that extends
SPARQL with navigational capabilities based on nested
regular expressions. nSPARQL uses four different axes,
namely self , next, edge, and node, for navigation on an RDF
graph and node label testing. The authors extend the nested
regular expressions constructs of nSPARQL with temporal
semantics and a set of five evolution axes, namely join, split,
merge, detach, and becomes that extend the traversing
capabilities of nSPARQL to the evolution edges. The extended
query language is formally defined.

An example query is “who was the head of the German
government before and after the unification of 1990”. The
query is expressed as follows:

SELECT ?Y, ?W

(?X, self::Reunified Germany/join-1[1990]/

next::head[1990], ?Y) AND

(?Z, self::Reunified Germany/next::head[1990], ?W)

The first triple finds all the heads of state of the Reunified

Germany before the unification by following join
-1

[1990]
and then following next :: head[1990]. The second triple finds
the heads of state of the Reunified Germany after the
unification.

No implementation results of this theory are provided.

IV. WORKS THAT EXTEND RDFS ENTAILMENT

In [17], a temporal graph is a set of temporal triples of the
form (s,p,o)[t], where (s,p,o) is an RDF triple and t is a time
point. Given a temporal graph G, G(t) denotes the set of RDF
triples in G corresponding to time point t.

The authors define temporal entailment between two
temporal graphs G, G’ as follows:

1. For ground temporal RDF graphs G, G’, define G |=τ

G’ iff G(t) |=RDFS G’(t), for each t.

2. For general temporal graphs G, G’, G |=τ G’ iff for

every ground instance v(G) of G, there exists a ground

instance v’(G’) of G’ such that v(G) |=RDFS v’(G’).
It is shown that temporal entailment is NP-complete. To

test temporal entailment, the authors define the slice closure of

G, as follows scl(G)=
t (cl(G(t)))

t
, where cl(H) is the RDFS

closure [18] of an RDF graph H and H
t
={(s,p,o)[t] | (s,p,o) 

H}. In particular, it is proved that G |=τ G’ iff there is a
mapping v such that v(G’) is a subgraph of scl(G).

The authors extend their theory to support also anonymous
timestamps.

A query is defined as a pair (H, B A), where H and B
are temporal RDF graphs without blank nodes and with some
elements replaced by variables and A is a set of usual
arithmetic built-in predicates over time point variables and
time points. All variables appearing in H should also appear in
B. For deriving maximal validity intervals a special structure is
used. For example a query that asks for the service providers
that have web services for more than 4 consecutive years is:

(?X, interval, ?te-?ts) ← (?Y, provided by, ?X) || ?ts, ?te ||,

?te - ?ts > 4.
No implementation of this theory is provided.

In [19], the authors extend the work in [17] and they define
a temporal graph as a set of temporal triples of the form
(s,p,o):i, where (s,p,o) is an RDF triple and i is a temporal
interval variable or a temporal interval. A temporal constraint
is an expression of the form i ω i’, where i, i’ are temporal
intervals or temporal interval variables and ω is one of the
relationships of Allen’s temporal interval algebra [14]. A
temporal graph with temporal constrains (called c-temporal
graph) is a pair C = (G, Σ), where G is a temporal graph and Σ
is a set of temporal constraints over the intervals of G.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

32 | P a g e

www.ijacsa.thesai.org

The authors define entailment between two c-temporal
graphs C, C’ as follows: C |=τ(const) C’ iff for each time ground
instance v(C) of C, there is a time ground instance v’(C’) of C’
such that v(C) |=τ v(C’). The authors define the c-slice closure
of C, denoted by cscl(C), extending the definition of slice
closure of [17]. It is proved that C |=τ(const) C’ iff there is an
interval map γ from C’ to C and a mapping v s.t. v(γ(C’)) is a
subgraph of cscl(C). Entailment between two c-temporal
graphs is shown to be NP-complete. No query language or
implementation is provided.

In [20], [21], [22], the authors consider an extension of
RDFS with spatial and temporal information. Here, we
consider only the extension with temporal information.
Assume a set D of RDF triples associated with their validity
temporal interval i. Starting from D, the authors apply the
inference rules A:?i, B:?i’→ C: ?i ∩ ?i’, where A, B → C is an
RDFS entailment rule [2] and ?i, ?i’ are temporal interval
variables, until a fixpoint is reached. Then, the temporal
intervals of the same RDF triple are combined, creating
maximal temporal intervals.

Based on these maximal temporal intervals, a formal
extension of the SPARQL language is proposed, called
SPARQL-ST, supporting however only the AND and FILTER
operations. The TEMPORAL FILTER condition is precisely
defined supporting all interesting conditions between temporal
intervals including Allen’s temporal interval relations.

An example SPARQL-ST query that returns all house
members who sponsored a bill after April 2, 2008, along with
the temporal interval that the bill was sponsored is:

SELECT ?p, intersect(#t1, #t2, #t3, #t4) WHERE {

 ?p gov:hasRole ?r #t1.

 ?r gov:forOffice ?o #t2.

 ?o gov:isPartOf gov:congress_house #t3.

 ?p gov:sponsor ?b #t4.

 TEMPORAL FILTER (

 after(intersect(#t1, #t2, #t3, #t4), interval(04:02:2008,

 04:02:2008, MM:DD:YYYY)))}

SPARQL-ST has been implemented by extending a
commercial relational database system and experimental
results are provided.

In [23], [24], the authors extend the RDFS and ter-Horst
entailment rules [25] (which extend RDFS with terms from the
OWL [26] vocabulary) with temporal information. Four
example inference rules are presented, including:

?s ?p ?o ?b ?e

?p rdfs:domain ?dom

→

?s rdf:type ?dom ?b ?e

?p rdf:type owl:FunctionalProperty

?p rdf:type owl:ObjectProperty

?x ?p ?y ?b1 ?e1

?x ?p ?z ?b2 ?e2

→

?y owl:sameAs ?z

provided that [?b1,?e1] and [?b2,?e2] overlap

?p rdf:type owl:FunctionalProperty

?p rdf:type owl:DatatypeProperty

?x ?p ?y ?b1 ?e1

?x ?p ?z ?b2 ?e2

→

?x rsd:type owl:Nothing

provided that ?y ≠?z and [?b1,?e1] and [?b2,?e2] overlap

Note that in the above rules ?b, ?e, ?b1, ?e1, ?b2, and ?e2
are time point variables. The last rule indicates that
inconsistency is expressed by assigning the bottom type
owl:Nothing to individuals. For checking consistency two
additional rules must be added addressing a combination of
owl:sameAs and owl:differentFrom, as well as
owl:disjointWith together with two rdf:type statements.

The proposed extension has been implemented using the
forward chaining engine HFC [27], which supports arbitrary
tuples, user defined tests, and actions. Some experimental
results are provided. However, no query language is provided.

In [28], a general framework for representing, reasoning,
and querying annotated RDFS data is presented. The authors
show how their unified reasoning framework can be
instantiated for the temporal, fuzzy, and provenance domain.
Here, we are concerned with the temporal instantiation. We
define ⊥={{}} and ㄒ={[-∞,+∞]}. Let L={t | t is a finite set

of disjoint temporal intervals} {⊥,ㄒ}. On L, the authors

define the partial order:

t  t’ iff for all i  t, there is i’  t’ such that i i’.

Obviously, (L,  , ⊥,ㄒ) is a bounded lattice. Between the

elements of L, the authors define the operations + and × are
follows: t1 + t2=inf(t | ti  t, i=1,2} and t1 × t2=sup(t | t  ti,
i=1,2}. For example, {[2,5],[8,12]} + {[4,6],[9,15]} =
{[2,6],[8,15]} and {[2,5],[8,12]} × {[4,6],[9,15]} = {[4,5],
[9,12]}. An annotated RDFS graph G is a set of temporal
triples (s,p,o) :t, where (s,p,o) is an RDF triple and tL. The
models of G are formally defined extending ρRDF semantics,
where ρRDF [29] is a subset of RDFS keeping its essential
features.

The authors present a set of sound and complete inference
rules of the general form:

(s1, p1,o1) : ?t1,…, (sn, pn ,on) : ?tn,

{(s1, p1,o1),… ,(sn, pn, on)} |- ρRDF (s, p, o)

→

 (s,p,o) : (?t1 × …× ?tn)

For example:

(c1,rdfs:subClassOf,c2):?t1, (c2,rdfs:subClassOf,c3):?t2

→

(c1, rdfs:subClassOf,c3):?t1 × ?t2

Additionally, the inference rules contain the generalization

rule:

(s,p,o) : ?t, (s,p,o) : ?t’ → (s,p,o) : (?t + ?t’).

The generalization rule is destructive, meaning that this

rule removes its premises as the conclusion is inferred.

An extension of SPARQL is presented for querying an
annotated RDF graph. A basic annotated pattern is an
expression (s,p,o):t, where s, p, o, t can be variables. Let P be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

33 | P a g e

www.ijacsa.thesai.org

a basic annotation pattern and G be a temporal graph. The
authors define the evaluation [P]G as the list of substitutions
that are solutions of P, i.e., [P]G={θ | G entails θ(P)}. Based
on [P]G the evaluations [P AND P’]G, [P UNION P’]G, [P
FILTER R]G, [P OPTIONAL P’[R]]G are formally defined,
where R is a filter expression.

An example query asking for the employees of eBay
during some time period that optionally owned a car at some
point during their stay is:

SELECT ?p, ?t, ?c WHERE {

 (?p type ebayEmp): ?t

 OPTIONAL {(?p hasCar ?c): ?t’

 FILTER (?t’  ?t)}}

Note that the definition of [P]G is not based on maximal
temporal intervals and, thus all temporal intervals that satisfy
the query are returned. Therefore, the authors define an
ordering between substitutions: θ’  θ iff (i) θ ≠ θ’, (ii)
domain(θ) = domain(θ’), (iii) θ(x) = θ’(x), for any non-
temporal variable x, and (iv) θ’(t)  θ(t), for any temporal

variable t. Then, for any θ [P]G, remove any θ’ [P]G such
that θ’ θ.

 No implementation is provided for this theory.

In [30], a temporal graph G is a set of temporal triples
(s,p,o)[t,t’], where (s,p,o) is an RDF triple and [t,t’] is its
corresponding validity temporal interval. The semantics of a
temporal graph G, assuming an entailment relation X (such as
RDF, RDFS, and OWL2 RL/RDF [31] entailment) are
formally defined using multi-sorted first order logic.

A basic graph pattern (BGP) is a set of triples (s,p,o),
where s,p,o can be variables. A temporal group pattern (TGP)
is an expression defined inductively, as follows:

B at t3, B during [t1,t2], B occurs [t1,t2]

B maxinterval [t1,t2], B mintime t3, B maxtime t3,

P1 and P2, P1 union P2, P1 optional P2,

P1 filter R,

where B is a BGP, P1 and P2 are TGPs, R is a built-in
expression, and t1,t2, and t3 are either time points or variables.
Note that a TGP query is an extension of a SPARQL query.
For example, a TGP query that retrieves all events z in London
having at least one time point in common with Oktoberfest is:

SELECT ?z WHERE {

{(Munich, hosts, Oktoberfest)} maxint [?x,?y].

(London, host,?z)} occurs [?x,?y].}

The evaluation of a TGP query w.r.t. a temporal graph G
and an entailment relation X is formally defined using multi-
sorted first-order logic. Yet, evaluation of a TGP using this
definition can be inefficient. Therefore, the authors describe an
optimization.

Assume that the entailment relation X is characterized by a
set of definite rules of the form: A1,..,An →B.

Then, the rules:

A1[x1,y1], …, An[xn,yn], max(x1,…,xn) min(y1,..,yn)

→

B[max(x1,…,xn), min(y1,..,yn)]

are applied until a fixpoint is reached, where xi and yi are
time point variables. Then, based on the result, derived RDF
triples are associated with their maximal validity intervals.
Now, based on these maximal intervals the evaluation of a
TGP query is efficiently defined.

Though the authors state that they have implemented their
framework using the PostgreSQL database system, no
implementation results are provided.

V. CONCLUSION-DISCUSSION

In this paper, we have reviewed models and query
languages of temporally annotated RDF. Below, we compare
these models and query languages on various aspects. First, we
would like to state that approaches that have their own model
theory or extend RDF simple entailment miss important
inferences made from the works that extend RDFS entailment.
For example, an object o may be an instance of class c during
a temporal interval i and the class c may be subclass of a class
c’ during an interval i’. Only works that extend RDFS
entailment are able to derive that o is instance of class c’
during the intersection of the intervals i and i’.

From the works that extend RDFS entailment, the
approach in [17] seems less efficient since it computes the
RDFS closure of RDF triples at each time point. Additionally,
[28] considers all temporal intervals that satisfy the query and
then selects the maximal ones. In contrast, [22] and [30]
achieve query answering using directly maximal temporal
intervals achieving a higher performance.

In our opinion, the approach in [28] does not give always
the desirable results: For example, assume that an annotated
RDFS graph consists of the triples (s,p,o):[1998, 2009] and
(s’,p’,o’):[2008, 2012]. Consider now the query:

 SELECT ?t, ?t’ WHERE {

 (s,p,o): ?t.

 (s’,p’,o’): ?t’.

 FILTER (before(?t,?t’)}}

Then, [28] will return the answers (i) ?t=[1998, 2007],
?t’=[2008, 2012], (ii) ?t=[1998, 2008], ?t’=[2009, 2012], and
(iii) ?t=[1998,2009], ?t’=[2010, 2012]. In contrast [22], will
return no answer to this query since it works with maximal
temporal intervals and 2009 > 2008.

In [30], the query:

SELECT ?t, ?t’ WHERE {

 (s,p,o) during ?t.

 (s’,p’,o’) during ?t’,

 FILTER (before(?t,?t’)}}

will return the answers of [28], as well as the intervals t,t’
such that t  [1998,2009], t’  [2008,2012], and t.end
<t’.start. In contrast, in [30], the query:

SELECT ?t, ?t’ WHERE {

 (s,p,o) maxinterval ?t.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

34 | P a g e

www.ijacsa.thesai.org

 (s’,p’,o’) maxinterval ?t’,

 FILTER (before(?t,?t’)}}

will return no answer. As a criticism, [30] is not able to
return maximal intervals within a temporal interval of interest.

Approaches [7], [28], and [11] save some space since they
either use name graphs associated with temporal intervals or
associate each RDF triple with its set of validity temporal
intervals.

Specialized indices for query answering are used only in
[4] and [7], while the rest of the approaches use common
indexes. As a final remark, we would like to state that [4] can
handle some temporal constraints over RDF triples, [17] can
handle anonymous timestamps, and [19] can handle
anonymous temporal intervals satisfying Allen’s temporal
interval algebra relations.

Temporal consistency constraints are considered only in
[13], which however does not answer temporal queries but
only normal queries.

As a criticism to the work in [6], each RDF triple is
associated with a single maximal temporal interval while an
RDF triple is normally associated with multiple maximal
temporal intervals.

Some of the proposed models and query languages have
been implemented as stated in the main text of the paper and
for some of them experimental results are provided.

In the future, extensions of the proposed temporal RDF
query languages with features of SPARQL 1.1 [32], such as
subqueries, and negation, will be of great importance. For
example, it will be interesting to ask for events that have not
occurred simultaneously before a date and their maximal
temporal intervals always overlap after that date. Additionally,
it will be interesting to ask for companies located in Crete that
have exactly one manager at each point in time within a
particular temporal interval of interest.

Future work also concerns a survey on spatial, fuzzy,
provenance, and contextual RDF. Of course, aspects of
contextual RDF can be time, space, trust, and authority.

REFERENCES

[1] G. Klyne and J. J. Carroll, "Resource Description Framework (RDF):
Concepts and Abstract Syntax”, W3C Recommendation, 10 February
2004, available at http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

[2] Patrick Hayes, "RDF Semantics", W3C Recommendation, 10 February
2004, available at http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

[3] E. Prudhommeaux and A. Seaborne, “SPARQL query language for
RDF”, W3C Recommendation 15 January 2008, available at
http://www.w3.org/TR/rdf-sparql-query/.

[4] A. Pugliese, O. Udrea, and V.S. Subrahmanian. “Scaling RDF with
Time”, International World Wide Web Conference (WWW), Beijing,
China, 2008, pp 605-614.

[5] B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-
evolving data”, ACM Computing Surveys, 31(2), 1999, pp158–221.

[6] O. Udrea, D. R. Recupero, and V. S. Subrahmanian, “Annotated RDF”,
ACM Transactions on Computational Logic, 11(2), 2010.

[7] J. Tappolet and A. Bernstein, “Applied Temporal RDF: Efficient
Temporal Querying of RDF Data with SPARQL”, 6th European
Semantic Web Conference (ESWC-2009), 2009, pp. 308-322.

[8] J. J. Carroll, C. Bizer, P. J. Hayes, and P. Stickler, ”Named graphs”,
Journal of Web Semantics, 3(4), 2005, pp. 247-267

[9] A. Rodriguez, R. E. McGrath, Y. Liu, and J. D. Myers, "Semantic
Management of Streaming Data”, 2nd International Workshop on
Semantic Sensor Networks at the International Semantic Web
Conference, Washington, 2009.

[10] B. McBride and M. Butler, “Representing and Querying Historical
Information in RDF with Application to E-Discovery”, HP Laboratories
Technical Report, HPL-2009-261, 2009.

[11] F. Grandi, “T-SPARQL: a TSQL2-like Temporal Query Language for
RDF”, 14th East-European Conference on Advances in Databases and
Information Systems (ADBIS-2010) (Local Proceedings), 2010, pp. 21-
30.

[12] R.T. Snodgrass (ed.), I. Ahn, G. Ariav, D. Batory, J. Clifford, C.E.
Dyreson, R. Elmasri, F. Grandi, C.S. Jensen, W. Kafer, N. Kline, K.
Kulkarni, T.Y. Cliff Leung, N. Lorentzos, R. Ramakrishnan, J.F.
Roddick, A. Segev, M.D. Soo, and S.M. Sripada, “The TSQL2 Temporal
Query Language”, Kluwer Academic Publishers, 1995.

[13] M. Dylla, M. Sozio, and M. Theobald, “Resolving Temporal Conflicts in
Inconsistent RDF Knowledge Bases”, Datenbanksysteme fur Business,
Technologie und Web (BTW-2011), 2011, pp. 474-493.

[14] J. Allen, “Maintaining Knowledge about Temporal Intervals”,
Communications of the ACM, 26(11), 1983, pp. 832-843.

[15] S. Bykau, J. Mylopoulos, F. Rizzolo, and Y. Velegrakis, “On Modeling
and Querying Concept Evolution”, Journal on Data Semantics, 1, 2012,
pp 31-55.

[16] J. Perez, M. Arenas, and C. Gutierrez, “nSPARQL: A navigational
language for RDF”, Journal of Web Semantics, 8(4), 2010, pp. 255-270.

[17] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman, "Introducing Time into
RDF", IEEE Transactions on Knowledge and Data Engineering, 19(2),
2007, 207-218.

[18] C. Gutierrez, C. A. Hurtado, and A.O. Mendelzon, “Foundations of
Semantic Web Databases”, 23rd Symposium of Principles of Databases
Systems (PODS-2004), 2004, pp. 95-196.

[19] C. A. Hurtado and A. Vaisman, “Reasoning with Temporal Constraints
in RDF”, 4th International Workshop on Principles and Practice of
Semantic Web Reasoning (PPSWR-2006), 2006, pp. 164-178.

[20] M. Perry, A. P. Sheth, F. Hakimpour, and P. Jain, "Supporting Complex
Thematic, Spatial and Temporal Queries over Semantic Web Data", 2nd
International Conference on GeoSpatial Semantics (GeoS-2007), 2007,
pp. 228-246.

[21] M. Perry and A. P. Sheth, “A Framework to Support Spatial, Temporal,
and Thematic Analytics over Semantic Web Data, Knoesis Center
Technical Report, KNOESIS-TR-2008-01, 2008.

[22] M. Perry, P. Jain, and A. P. Sheth, “SPARQL-ST: Extending SPARQL
to Support Spatiotemporal Queries”, N. Ashish and A.P. Sheth (Eds.)
Geospatial Semantics and the Semantic Web - Foundations, Algorithms,
and Applications, 2011, pp. 61-86.

[23] H.Krieger, “A Temporal Extension of the Hayes and ter Horst
Entailment Rules for RDFS and OWL”, AAAI Spring Symposium:
Logical Formalizations of Commonsense Reasoning, 2011.

[24] H.Krieger, “A Temporal Extension of the Hayes/ter Horst Entailment
Rules and a Detailed Comparison with W3C’s N-ary Relations”,
Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH
Technical Report, RR-11-02, 2011.

[25] H. J. ter Horst, “Completeness, decidability and complexity of
entailment for RDF Schema and a semantic extension involving the
OWL vocabulary, Journal of Web Semantics, 3(2-3), 2005, pp. 79-115.

[26] G. Antoniou and F. van Harmelen, A semantic web primer, MIT Press,
2004.

[27] H.U. Krieger and G.J.M. Kruijff, “Combining uncertainty and
description logic rule-based reasoning in situation-aware robots”
Proceedings of the AAAI 2011 Spring Symposium on Logical
Formalizations of Commonsense Reasoning, 2011

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

35 | P a g e

www.ijacsa.thesai.org

[28] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia, "A General
Framework for Representing, Reasoning and Querying with Annotated
Semantic Web Data", Journal of Web Semantics , 11, 2012, pp. 72–95.

[29] S. Munoz, J. Perez, and C. Gutierrez, “Minimal Deductive Systems for
RDF”, 4th European Semantic Web Conference (ESWC-2007), 2007,
pp. 53-67.

[30] B. Motik, "Representing and Querying Validity Time in RDF and OWL:
A Logic-Based Approach", 9th International Semantic Web Conference
(ISWC-2010), 2010, pp. 550-565.

[31] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz,
“OWL 2 Web Ontology Language Profiles”, W3C Recommendation 27
October 2009, available at http://www.w3.org/TR/owl2-profiles/.

[32] Steve Harris and Andy Seaborne, “SPARQL 1.1 Query Language”,
W3C Working Draft 24 July 2012, available at
http://www.w3.org/TR/sparql11-query/

AUTHORS PROFILE

Anastasia Analyti earned a B.Sc. degree in Mathematics from University of

Athens, Greece and a M.Sc. and Ph.D. degree in Computer Science from

Michigan State University, USA. She worked as a visiting professor at the

Department of Computer Science, University of Crete, and at the Department
of Electronic and Computer Engineering, Technical University of Crete. Since

1995, she is a principal researcher at the Information Systems Laboratory of

the Institute of Computer Science, Foundation for Research and Technology -
Hellas (FORTH-ICS). Her current interests include reasoning on the Semantic

Web, modular web rule bases, non-monotonic-reasoning, faceted metadata

and semantics, conceptual modelling, contextual organization of information,
information integration and retrieval systems for the web, interoperability of

heterogeneous and distributed information bases, and biomedical information

systems. She has participated in several research projects and has published
over 55 papers in refereed scientific journals and conferences.

Ioannis Pachoulakis received a B.Sc. in Physics (1988) at the University of

Crete, Greece, and a Ph.D. in Astrophysics (1996) and an M.Sc. in
Engineering (1998), both from the University of Pennsylvania in the U.S.A.

Since 2001, he serves as an Assistant Professor at the Department of Applied
Informatics and Multimedia at TEI of Crete with mainstream interests in

realistic multimedia applications, virtual reality and multimedia applications

for science.

