
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

187 | P a g e

www.ijacsa.thesai.org

A Block Cipher Involving a Key Bunch Matrix and

an Additional Key Matrix, Supplemented with XOR

Operation and Supported by Key-Based Permutation

and Substitution

Dr. V.U.K.Sastry

Professor (CSE Dept), Dean (R&D)
SreeNidhi Institute of Science & Technology, SNIST

Hyderabad, India

K. Shirisha

Computer Science & Engineering

SreeNidhi Institute of Science & Technology, SNIST

Hyderabad, India

Abstract— In this paper, we have developed a block

cipher by extending the analysis of a Novel Block Cipher

Involving a Key bunch Matrix and a Key-based

Permutation and Substitution. Here we have include and

additional key matrix, which is supplemented with xor

operation. The cryptanalysis carried out in this

investigation clearly indicates that this cipher cannot be

broken by any attack.

Keywords- Key; key bunch matrix; encryption; decryption;

permutation; substitution; avalanche effect; cryptanalysis; xor

operation

I. INTRODUCTION

In a recent investigation [1], we have developed a block
cipher involving a key bunch matrix and including a pair of
functions, called Permute() and Substitute(). In this analysis,
we have seen that the permutation and the substitution, which
depend effectively on a key, strengthen the cipher in a
remarkable manner. This is all on account of the fact that the
permutation and the substitution, induced into the plaintext at
each and every stage in the iteration process, causes confusion
and diffusion.

In the present investigation, our objective is to modify the
afore-mentioned block cipher by introducing an additional key
matrix supplemented with xor operation. The basic equation
governing the encryption of this cipher can be written in the
form

 C = [ijc] = ([ijij pe ] mod 256)  F, i=1 to n, j = 1

to n. (1.1)

The corresponding equation describing decryption can be
written in the form

 P = [ijp] = [ijd × (C  F) ij] mod 256, i=1 to n, j = 1 to

n. (1.2)

Here, our interest is to examine, how the additional key
matrix, F, would strengthen the cipher when supported by
permuted and substitution.

Let us now present the plan of the paper. In section 2, we
introduce the development of the cipher. Here, we depict the
flowcharts and write the algorithms required in this
investigation. Then, we mention the basic ideas of the key
based permutation and substitution. In section 3, we mention
an illustration of the cipher, and discuss the avalanche effect.
We study the cryptanalysis, in section 4. Finally, we deal with
the computations carried out in this analysis, and draw
conclusions, in section 5.

II. DEVELOPMENT OF THE CIPHER

Consider a plaintext, which can be written in the form of a
square matrix P, given by

 P = [ijp], i=1 to n, j=1 to n. (2.1)

Let us take a key bunch matrix E, given by

E = [ije], i=1 to n, j=1 to n. (2.2)

On using the concept of the multiplicative inverse [2], we

get ijd corresponding to each ije . Thus we have the

decryption key bunch matrix D, given by

D= [ijd], i=1 to n, j=1 to n. (2.3)

Here, it is to be noted that, all the ije and ijd

are odd

numbers which lie in the interval [1-255].

The flowcharts concerned to the encryption and the
decryption are drawn in Figs. 1 and 2.

The corresponding algorithms for the encryption and the
decryption are as follows.

Algorithm for Encryption

1. Read P,E,K,F,n,r

2. For k = 1 to r do

{

3. For i=1 to n do

{

4. For j=1 to n do

{

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

188 | P a g e

www.ijacsa.thesai.org

5. ijp = (ije × ijp) mod 256

}

}

6. P=[ijp] F

7. P=Permute(P)

8. P=Substitute(P)

}

8. C=P

9. Write(C)

Algorithm for Decryption

1. Read C,E,K,F,n,r

2. D=Mult(E)

3. For k = 1 to r do

{

4. C=ISubstitute(C)

5. C=IPermute(C)

6. For i =1 to n do

{

7. For j=1 to n do

{

8. ijc =[ijd ×(ijc  ijf)] mod 256

}

}

9. C=[ijc]

}

10. P=C

11. Write (P)

 The flowcharts concerned to the encryption and the decryption are drawn in Figs. 1 and 2.
In this analysis, r denotes the number of rounds in the

iteration process, and it is taken as 16.

The functions Permute() and Substitute(), which are
utilized in encryption, depend upon a key. Let us choose the
key, K, in the form





















94150202174

123510164

127110107253

963314156

K
 (2.4)

Keeping the serial numbers and the order of the elements
in the key, in view, we construct a table of the form given in
Table-1.

Read C,E,K,F,n,r

D = Mult(E)

For k=1 to r

For j=1 to n

C = [ijc]

Write (P)

P =C

For i=1 to n

ijc =[ijd × (C F) ij] mod 256

C=ISubstitute(C)

C=IPermue(C)

Fig.2 Flowchart for Decryption

 Read P,E,K,F,n,r

For k=1 to r

For i=1 to n

For j=1 to n

 ijp = (ijij pe ) mod 256

P = [
ijp]  F

P=Permute(P)

C=P

Write (C)

P=Substitute(P)

Fig.1 Flowchart for Encryption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

189 | P a g e

www.ijacsa.thesai.org

TABLE-1. RELATION BETWEEN SERIAL NUMBERS AND NUMBERS IN ASCENDING ORDER.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

156 14 33 96 253 107 110 127 164 10 5 123 174 202 150 94

12 3 4 6 16 7 8 10 13 2 1 9 14 15 11 5

The process of permutation can be explained as follows.

Let xi, i=1 to 16, be a set of 16 numbers. As the table is
suggesting (looking at the first row and the third row), we

interchange 1x with 12x , 2x with 3x , 4x with 6x , 5x with

16x , 7x with 8x , 9x with 13x , and 14x with 15x . It may be

noted here that we need not interchange any other numbers as
they are already subjected to change in a way. Keeping this
basic idea in view, let us now consider the plaintext matrix P =

[ijp], i=1 to n, j=1 to n, (after xoring with F) in any round of

the iteration process. Considering the first two rows of this

matrix and representing the elements ijp in their binary

form, and writing the binary bits in the vertical manner, we get
a matrix of size 16xn. On dividing this matrix into sub-
matrices, where each one of size 16x16, and performing the
interchange of rows (firstly) and columns (subsequently), as is

done in the case of numbers ix , i=1 to 16, we get the

corresponding permuted matrix, in the case of each sub-
matrix. On applying the same procedure for the other sub-
matrices also, we ultimately get n/16 sub-matrices. On
representing the binary bits in terms of decimal numbers
(converting 8 binary bits in a row as a decimal number), we
get a 2xn matrix. On adopting the same procedure on the
subsequent pairs of this matrix, we complete the permutation
process. However, it is to be remembered that n must be
divisible by 16. In case, if n<16, that is say, n=4, then a
plaintext matrix of size 4x4 can be written as a matrix of size
8x16, by writing each decimal number as binary bits in a
column. Then the procedure of swapping, applied for
numbers, can be applied here, for rows firstly and for columns
nextly.

However, in the case of rows, we restrict our interchanging
process only to 8 rows. Then, on representing the binary bits
in terms of decimal numbers (considering the bits in a row-
wise manner) we get the permuted matrix. This completes t he
process of permutation.

The process of substitution can be mentioned as follows.
In the EBCDIC code, the characters can be represented in
terms of a table of size 16x16, containing numbers 0 to 255, in
a sequential manner. On swapping rows, firstly, and columns,

nextly, as it is already done in the case of the numbers
1x to

16x , we get a new table (see Table-2).

On using the Table-2, we perform substitution, by noting
the correspondence between the number in the plaintext, the
number in the EBCDIC table and hence the number in the

substitution table. For clarity if this substitution process, we
refer to [1].

The functions IPermute() and ISubstitute(), used in the
decryption process, denote the reverse processes of the
Permute() and the Substitute(). The function Mult() is used to
find the decryption key bunch matrix D for the given E.

III. ILLUSTRATION OF THE CIPHER AND THE AVALANCHE

EFFECT

Consider the plaintext given below.

Dear Madam! I have received your letter. Please do not
run away from our country in that manner. I am coming within
this month. I will not continue my Ph.D. programme. I may
leave this research activity but I cannot leave you. It is indeed
a surprise. Though there was no response from the selection
committee for a span of one year, very recently I got selected
in our country for IAS. I think I am lucky. Tell you father and
mother about this news and tell them in a nice manner that you
are running p8third month. I hope that all these issues will end
up very soon and we will become one undoubtedly. Tell my
father and mother that I am coming there. Yours loving
husband

(3.1)

Let us focus our attention on the first 16 characters of this
plaintext. Thus we have

Dear Madam! I ha (3.2)

On using the EBCDIC code, we get





















12913664 201

64 79 148129

13212921264

153129133196

P . (3.3)

Let us take the key bunch matrix E in the form





















5 251223109

14551 19 11

5 93 91 67

21167 23 199

E
. (3.4)

 On using the concept of the multiplicative inverse, we have

the decryption key bunch matrix D in the form





















2055131101

11325127163

205245211107

91107167247

D
. (3.5)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

190 | P a g e

www.ijacsa.thesai.org

TABLE-2 KEY BASED SUBSTITUTION

The additional key matrix F is taken in the form





















6725229

114576104

991002256

45122243222

F
. (3.6)

Now, on making use of the plaintext P, the encryption key
bunch matrix E and the additional key matrix F, and applying
the encryption algorithm, given in section 2, we get the
ciphertext matrix C in the form





















21519597 104

163129121214

11095 22647

2411652 88

C
. (3.7)

On using this C, the F, and the decryption key bunch
matrix D, given by (3.5), and the decryption algorithm, given
in section 2, we get back the plaintext P, which is in the form
(3.3).

Now let us study the avalanche effect. On replacing the 4th
row 4th column element, 129 in the plaintext (3.3) by 193, we
have a one binary bit change in the plaintext. On using this
modified plaintext, the E, the F, and the encryption algorithm,
we get the new ciphertext in the form, given by (3.8).

On comparing (3.8) and (3.7), after converting them into
their binary form, we notice that there is a change of 72 bits
out of 128 bits. This shows that the cipher is a strong one.





















196254148149

16810219589

14013443 189

34 2431981

C
. (3.8)

Now, let us have one binary bit change in the key bunch
matrix E. To this end, we replace the 3rd row 2nd column
element 19 in E by 18. On using this modified E, the original
P, given by (3.3), and the F, given by (3.6), and applying the
encryption algorithm, we get the corresponding ciphertext C,
in the form





















24148 188209

195127190236

24313429 173

158102160154

C
. (3.9)

Now, let us convert (3.7) and (3.9) into their binary form
and compare them. From this, we find that these two
ciphertexts differ by 74 bits out of 128 bits. This also shows
that the cipher is having appreciable strength.

Now, on making use of the plaintext P, the encryption key
bunch matrix E and the additional key matrix F, and applying
the encryption algorithm, given in section 2, we get the
ciphertext matrix C in the form

On using this C, the F, and the decryption key bunch
matrix D, given by (3.5), and the decryption algorithm, given
in section 2, we get back the plaintext P, which is in the form
(3.3).

Now let us study the avalanche effect. On replacing the 4th
row 4th column element, 129 in the plaintext (3.3) by 193, we
have a one binary bit change in the plaintext. On using this
modified plaintext, the E, the F, and the encryption algorithm,
we get the new ciphertext in the form

Now, let us convert (3.7) and (3.9) into their binary form
and compare them. From this, we find that these two
ciphertexts differ by 74 bits out of 128 bits. This also shows
that the cipher is having appreciable strength.

IV. CRYPTANALYSIS

The study of cryptanalysis plays a prominent role in the
development of every cipher. The different types of attacks
that are available in the literature of cryptography are

1. Ciphertext only attack (Brute force attack),

2. Known plaintext attack,

3. Chosen plaintext attack, and

4. Chosen ciphertext attack.
 Generally, every algorithm is designed [2] such that

it withstands the first two attacks. The cipher is also examined
in a thorough manner, by using all possible intuitive ideas, in
the case of the latter two attacks.

187 178 177 181 191 179 183 182 188 185 186 176 184 190 189 180

 43 34 33 37 47 35 39 38 44 41 42 32 40 46 45 36

 27 18 17 21 31 19 23 22 28 25 26 16 24 30 29 20

 91 82 81 85 95 83 87 86 92 89 90 80 88 94 93 84

 51 242 241 245 255 243 247 246 252 249 250 240 248 254 253 244

 59 50 49 53 63 51 55 54 60 57 58 48 56 62 61 52

123 114 113 117 127 115 119 118 124 121 122 112 120 126 125 116

107 98 97 101 111 99 103 102 108 105 106 96 104 110 109 100

203 194 193 197 207 195 199 198 204 201 202 192 200 206 205 196

155 146 145 149 159 147 151 150 156 153 154 144 152 158 157 148

171 162 161 165 175 163 167 166 172 169 170 160 168 174 173 164

 11 2 1 5 15 3 7 6 12 9 10 0 8 14 13 4

139 130 129 133 143 131 135 134 140 137 138 128 136 142 141 132

235 226 225 229 239 227 231 230 236 233 234 224 232 238 237 228

219 210 209 213 223 211 215 214 220 217 218 208 216 222 221 212

 75 66 65 69 79 67 71 70 76 73 74 64 72 78 77 68

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

191 | P a g e

www.ijacsa.thesai.org

 In this analysis, we have the key bunch matrix E,
whose size is nxn. Besides this, we have the additional key
matrix F, whose size is also nxn. In addition to these two, we
have the key matrix K which is used in the development of
permutation and substitution processes. In view of all these
three, the size of the key space is

      4.385.48.125.138.125.110

128151288712887

2
22

22222

10102

22222









nnn

nnnnn

On assuming that, we require
710

seconds for

computation with one set of-n keys in the key space, then the
time required for all such possible set s in the key space is

 .1012.3
606024365

1010 4.235.4
74.385.4

2

2

yearsn
n









In our present analysis, as n=4, the time for computation
with all possible sets of keys in the key space is

 .1012.3 4.95 years

As this time is very large, it is simply impossible to break
this cipher by the brute force attack.

Let us now examine the known plaintext attack. In order to
carry out this approach, we have plaintext and ciphertext pairs,
as many as we want, at our disposal. If we focus our attention
on only one round of the iteration process, that is if r=1, then
the basic equations governing the encryption process are given
by

P = ([ije × ijp] mod 256)  F, i = 1 to n, j=1 to n, (4.1)

 P = Permute(P), (4.2)

P = Substitute(P), (4.3)

and

C = P (4.4)

In this attack, the ciphertext C in (4.4), is known to us. On
using this one, we can know the P, occurring in the left side of
(4.3). As key is unknown, we do not know ISubstitute().
Hence P occurring on the right hand side of (4.3) cannot be
determined. Hence this cipher cannot be broken by the known
plaintext attack. Luckily, if key K is known (a very stray
case), then we can obtain P, occurring on the left hand side of

(4.1). Then, though ijp is known to us, we cannot determine

the ije , by any means, as the equation (4.1) is containing

several unknowns related to F, and is including mod and xor
operations. Thus this cipher cannot be broken by the known
plaintext attack, even when r=1, and the key matrix K, used in
the permutation process is known to the attacker.

In view of the equations, involved in the encryption process,

we do not find any possibility to choose either a plaintext or a

ciphertext for breaking this cipher.

In the light of the above facts, we conclude that this cipher

is a very strong one.

V. COMPUTATIONS AND CONCLUSIONS

In this investigation, we have developed a block cipher
involving a key bunch matrix and an additional key matrix,
and involving key-based permutation and substitution. The
strength of the cipher is highly remarkable due to permutation
and substitution, and it is further supplemented with the
additional key matrix.

The programs for encryption and decryption are written in
Java.

 In order to carry out the encryption of the entire
plaintext, given by (3.1), we use a large size encryption key
bunch matrix EK of size 16x16. Along with this, we have
taken an additional key matrix FK, which is also of the same
size 16x16. The EK and FK are given below in (5.1) and (5.2).

)1.5(

51 24516515112518111320316931 91 53 20117159 91

16993 65 11 16113312917 24377 157127181239133223

1351091531055 15523510520385 20521 15 21 85 213

22124111555 45 2371251133 73 24512769 12722149

13920317121516785 10727 23 16911724753 95 241183

95 95 13 22315719583 16323117 33 11717725318337

14922515324716718122918151 11920110595 231223251

24139 15521914517 19119 19517367 201115199243231

13 19320524911963 55 55 1172315 19315979 111215

24316375 12725316921723321779 83 19917519521937

93 22711331 11717324143 13 1672232233 47 17 103

18531 17321 21722115117712925 19719123 63 45 195

11317124324915711315 12359 16516318320365 83 209

11193 21 15 23117741 12512520313135 16121341 3

16712579 15116722189 83 14519510761 12722729 213

2431315 17765 12112369 47 251225141101129171125

























































EK

and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

192 | P a g e

www.ijacsa.thesai.org

)2.5(

14675 30 23915822269 13314518610270 2344 96 121

12667 18819623122 17411525413211341 208244210220

50 40 15664 21162 16614 19216345 12132 51 14817

34 12715724971 17 21924611624264 37 157103135116

78 20614915 24325124820099 25 31 95 23449 70 25

24821116114114037 21721492 18320314120 2152 198

0 4 17673 0 34 11020222415214612021091 193141

70 22722219436 20718315139 13294 53 246132133131

16715312 12177 22811581 11610 25079 15179 21418

18 94 63 70 10216623297 69 22823217211280 46 108

46 53 70 46 24683 87 14121010155 174240123211150

20 10535 50 16117614410899 11622417 131227139145

16110118315715078 49 16825514239 11 14222118938

22179 59 79 1182477 17023010012934 16421 118196

24423924413054 19615 21 11111612366 10214 20310

70 11117814810410316817516959 49 14716514546 91

























































FK

The entire plaintext, given by (3.1), is divided into 3

blocks, wherein each block is of size 16x16. In the 3rd block,
we have appended 95 zeroes as characters, so that we make it
a complete block. On using EK, FK, in the place of E and F, in
the encryption algorithm, we carry out the encryption process
3 times, so that the complete plaintext is converted into the
corresponding ciphertext. This ciphertext is given by (5.3).

The EK and FK are encrypted by using the E, the F, and

applying the encryption algorithm. The resulting
ciphertexts of the keys EK and FK are as follows, in (5.4) and
(5.5).

These are transmitted to the receiver by the sender. In
addition to these, the key bunch matrix E, the additional key
matrix F, the key K used in the processes permutation and
substitution are sent by the sender to the receiver, in a secure
manner. The number of additional characters appended in the
last block is also informed to the receiver.

2031915616625222831502311482091619022410444

241121973911811810213910751346175303728

13925411285117020128150250232231849355134

12610811819823316417617310515921212013857201223

901602211792244233402097658233991494453

78206145181210651388110417215247201111260

188320018104167164236126107571161365183116

741133717125323940115621602471253414581

081492441813810228869111547513156241

7919923198138134177301829343157958821366

861498824723323518825218020353225182116221212

789182731409116241189205229982372361706

200992482520420226531341573617754112524

5945735118812513560198193101409169109

16621718227147216208752126755891885999227

169166231111552712925231147941572333514838

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

193 | P a g e

www.ijacsa.thesai.org

1812011382003318086203144111661632824424726

17975311103973160118821591581747159116167

90523518517020392709363222179892012351

23841203971341092111881402219212470232136225

11024753100217171911668415131892059298

1917723910922922516114222022918016297107217253

5697196229112208802163219645164143175121

545236462392212516599149182524614120389

154963811512122121332022081772026217173242

2331851241635838176103173784032243132243

187974510925182271671641902462141579640

81085810224024824510893148951202406513994

1812401744915324314122835172512431756099151

765512108118842041723532181499801555

152854319124420186342171571592414314499231

237591891259497192262233641842262115694

 12966123196176373962190244245311135920385

3747103161128229200505013117319035442144

952381321421517642172225233113758017578

17316550583816046182233626315610716711917

23124210712562011061721194622031330255

82644419513014317994226225312722590196153

141160233775419417034622068116922236310

135123215106195445114223180236248652332267

3621515413253192152233679920672514618571

12522420624620924049135226147245881276109

5.3)(911196962205281001932324913417921321679

4922020422825417842206254144471052097919249

2478461200592436389190116141178225231170114

81321861401331342412319922737249837138251

221134833414422618912776230623393812339

161181211522317621677223173203149918118112

The cryptanalysis carried out in this investigation strongly

indicate that this cipher is a potential one and it can be applied

for the transmission of text of any size and gray level/color

images.

 13953200237240187109234225613321117099385

812910622722116719845142613124724222123049

75204114114231317563518746192238208235111

11312938239176951418298140131109442557161

68214015719353813372314855213471202

1721615581571732411851567011393102184631

23871052448213096139239137155163158143150174

23212582407324424911100126172513170148

(5.4)1795874226245184881421321320122411115417789

812554061143222105232168188164203662461485

210152971372138715418071491061041977114942

2552045982385011224118652894802524130

10717214621065190205151136821594441147220222

185614929219128251631361052002121667

108241137952023020218521901523822114610970

5935155143113822910123132531301187952

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

194 | P a g e

www.ijacsa.thesai.org

 and

 14675302391582226913314518610270234496121

126671881962312217411525413211341208244210220

504015664211621661419216345121325114817

3412715724971172192461162426437157103135116

782061491524325124820099253195234497025

2482111611411403721721492183203141202152198

041767303411020222415214612021091193141

7022722219436207183151391329453246132133131

(5.5)16715312121772281158111610250791517921418

1894637010216623297692282321721128046108

46537046246838714121010155174240123211150

2010535501611761441089911622417131227139145

1611011831571507849168255142391114222118938

22179597911824771702301001293416421118196

244239244130541961521111116123661021420310

7011117814810410316817516959491471651454691

REFERENCES

[1] Dr.V.U.K.Sastry, K.Shirisha, “A Novel Block Cipher Involving a Key
Bunch Matrix and a Key-based Permutation and Substitution”, in
International Journal of Advanced Computer Science and
Applications(IJACSA), Vol. 3, No. 12, Jan 2012, pp.16-122.

[2] William Stallings: Cryptography and Network Security: Principle and
Practices”, Third Edition 2003, Chapter 2, pp. 29.

AUTHORS PROFILE

Dr. V. U. K. Sastry is presently working as Professor in the Dept. of
Computer Science and Engineering (CSE), Director (SCSI), Dean (R & D),
SreeNidhi Institute of Science and Technology (SNIST), Hyderabad, India.
He was Formerly Professor in IIT, Kharagpur, India and worked in IIT,

Kharagpur during 1963 – 1998. He guided 14 PhDs, and published more than
87 research papers in various International Journals. He received the Best
Engineering College Faculty Award in Computer Science and Engineering for
the year 2008 from the Indian Society for Technical Education (AP Chapter),
Best Teacher Award by Lions Clubs International, Hyderabad Elite, in 2012,
and Cognizant- Sreenidhi Best faculty award for the year 2012. His research
interests are Network Security & Cryptography, Image Processing, Data
Mining and Genetic Algorithms.

K. Shirisha is currently working as Associate Professor in the
Department of Computer Science and Engineering (CSE), SreeNidhi Institute
of Science & Technology (SNIST), Hyderabad, India, since February 2007.
She is pursuing her Ph.D. Her research interests are Information Security and
Data Mining. She published 9 research papers in International Journals. She
stood University topper in the M.Tech.(CSE).

