
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

115 | P a g e
www.ijacsa.thesai.org

Design and Application of Queue-Buffer

Communication Model in Pneumatic Conveying

Liping Zhang

College of Electronic and Electrical Engineering

Shanghai University of Engineering Science
Songjiang District, Shanghai 201620, China

Haomin Hu

College of Electronic and Electrical Engineering

Shanghai University of Engineering Science
Songjiang District, Shanghai 201620, China

Abstract—In order to communicate with a PLC

(Programmable Logic Controller) flexibly and freely, a data

communication model based on the PLC's free port is designed.

In the structure of the model, a distributed data communication

environment is constructed by using Ethernet and serial

adapters. In the communication algorithm, a method of queue-

buffer for multi-threaded is used to improve the real-time of the

control. This communication model has good scalability and

portability because the realization of it is not restricted by the

number of PLC slave stations and the type of operating system of

the host computer. A corresponding communication algorithm is

applied to data collection and devices monitoring for a pipe

pneumatic conveying system. The practice shows that not only

the stability and reliability of the model can meet the needs of

automatic control but also the communication performance and
efficiency of the model is outstanding.

Keywords—Queue-Buffer; Programmable Logic Controller;

Freeport Communication; Critical resource; Mutex

I. INTRODUCTION

PLC as the industrial automatic control equipment
encompassing the automation technology, computer
technology, control technology and communications
technology, has been widely used in various fields of industrial
automation [1]. In the control system, how to achieve stable,
efficient and flexible communication between the host
computer and the PLC has become an important research topic.
At the same time, PLC manufacturers also offer a variety of
communication methods for users to choose. Taking Siemens
S7-200 series as an example, a control system consisting of this
series PLC can generally use configuration software
monitoring, third-party monitoring-software monitoring, touch
screen monitoring and other monitoring methods [2].
Meanwhile, in order to improve the flexibility of automated
control systems, many kinds of PLC provide a communication
patterns named "free port", such as Siemens s7-200 series PLC,
Mitsubishi FX2 series PLC, OMRON CJM1 series PLC and so
on.

Freeport communication is a method of using serial
communication hardware and relevant instructions for
customizing communication protocols which are provided by
the PLC to realize data communication by PLC programming.
The literatures [3] and [4] have described the implementations
of the Siemens PLC communication method on free port.
Currently the discussion about the free port communication
method of the PLC mainly focused on the "point-to-point"

technology, namely realizing the data acquisition and control of
PLC through the serial communication of host computer.
Literature [5] has described a method of using MSComm
programming control for host computer to communicate with
S7-200 series PLC. But in the field of industrial control, there
will be many PLCs as slave stations, and not only the serial
number of host computer is limited, but also the
communication distance is restricted. This paper describes an
approach which is based on Ethernet and serial adapters to
achieve distributed data communication model through the
PLC free port. This model has the advantage of being cross-
platform and can be implemented in different operating
systems. At the same time, in order to achieve the acquisition
of data and the control of PLC efficiently and stably, the
communication algorithm based on queue-buffer for multi-
threaded is designed. Under the premise of ensuring real-time,
this algorithm also improves the scalability of the number of
communication nodes and the concurrency adaptability of
archive database as far as possible.

In the following section, structure of the system and related
communication model and algorithm are discussed.

II. SYSTEM STRUCTURE

In the design of control system for a variety of powder
dense phase pneumatic conveying engineering, a lot of devices
need to be monitored, such as exhausting valve, feeding valve,
pre-closing valve, outlet valve, upper intake valve, down intake
valve, pneumatic hammer of pump and pulse dust collector,
pneumatic hammer, fan of hopper. It's easy to use PLCs as
control sources to debug and maintain solenoid valves and
indicator lights by electric relays. The control system needs to
detect and monitor the working status of pump pressure
transmitters, material high level switch, pneumatic valve
position switch, air pressure gauge and thermal resistance, etc.
Many brands of PLC can control these devices, and they also
provide the free port for communication, although different
PLCs vary in communication protocol, but many PLC provides
a free port of communication. The number of devices which
PLC can control is limited and PLCs should be added as
monitoring stations when the device exceeds a certain number.
At the same time, the number of serial interfaces of host
computer is limited too and communication will be restricted
by the number of interfaces when PLCs' number beyond it. In
order to monitor the devices with good scalability, we designed
a communication system whose structure is shown in Figure 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

116 | P a g e
www.ijacsa.thesai.org

Device 1

PLC

Ethernet /

Serial Adapter

RS-232/485

RJ-45

Device 2 Device m……

Ethernet

Control Computer

（host computer）

Device

m+1

PLC

Ethernet /

Serial Adapter

RS-232/485

RJ-45

Device

m+2

Device

n……

……

Fig. 1. system structure

A distributed data communication structure is used in
Figure 1. Each PLC detects and controls a set of devices and
the data collected by it is transferred to the Ethernet and serial
adapters through serial port. The adapter converts the data into
TCP datagram and delivers them to Ethernet. The
communication between these nodes is TCP connection-
oriented reliable data transmission. Although this architecture
provides the system with a distributed processing environment,
communication model and algorithm will largely affect the
real-time of data acquisition. Therefore, the design of
communications algorithm is also important.

III. COMMUNICATION MODEL DESIGN

A. Design Principles

For the industrial automatic control system, the real-time is
very important. In the control system shown in Figure 1, the
host computer sends instructions to PLCs via Ethernet and
serial adapters, and PLCs control devices of system. If data
collection is performed, PLCs transfer the data to host
computer via the Ethernet and serial adapter. When the number
of PLC and devices is large, it is difficult to guarantee real-time
if polling communication is still used. Taking data collection as
an example, the obstruction of any communication channel will
interfere with sampling period and affect real-time. Although
the real-time of data acquisition can be improved by using
multiple threads concurrently, the scalability of system is
unable to be ensured, if there is no reasonable synchronization
scheduling mechanism. Queue-buffer communication model
describes a way to achieve host computer communicating with
PLCs in multi-threaded by synchronization and mutual
exclusion of critical resources, and improve the real-time of
system, the reliability of data acquisition and archiving as far as
possible.

 According to the Bernstein condition for concurrent
execution [6], the following formula must be satisfied for
process P1 and p2 can execute concurrently and has a
reproducible operating environment.

            211221 pWpWpWpRpWpR 

Where R represents a set of resource which some process
will read, and W represents a set of resource which some
process will write. The following conclusion can be drawn. We

assume that T is a set of threads for communication in the host
computer, if the following formula is established, the
communication threads can execute concurrently.

jijiji ttTtTttt  ,,,, ,             jiijji tWtWtWtRtWtR 

In order to improve the concurrent performance of system,
we used two kinds of independent thread (ie, communication
thread and archive thread) to achieve the communication with
PLCs and archive of collected data. Meanwhile, in order to
reduce the critical region and competition of threads for critical
resources, we used private queues and public queue for data
buffer and buffering threads to schedule the data. Queue-Buffer
communication model is shown in Figure 2:

Communication

Thread 1

...

Ethernet

wt wt wt

Buffering

Thread 1

rd rd rd

Public Queue

Private Queue

rear

Database

Server

front

Archiving

Threads

Communication

Thread 2

Communication

Thread n

Buffering

Thread 2

Buffering

Thread n

Fig. 2. Queue-Buffer Communication Model

B. Feasibility Analysis

In the communication model shown in Figure 2, each
communication thread is assigned with a buffer queue for
storing the data collected from the PLC. Because each thread
has a buffer queue and the queue is not shared, so we call the
queue a "private queue". In the private queue is not the full
case, communication threads will not be blocked for delay of
data saving. Concurrent operation can be guaranteed.
Communication thread writes data to the private queue, and
buffering thread reads data from the private queue. What they
affect is the movement of the rd pointer and wt pointer, so
synchronization will occur only when the private queue is
empty or full. When the private queue is empty, the buffering
thread will be blocked, but the communication thread will not
be affected, and real-time can still be guaranteed. Only when
the private queue is full, the communication will be blocked,
and what causes this phenomenon is that the data archive is not
fast enough. In addition to archiving the cycle too quickly,
what impacts the speed of archive are the following two
reasons. (1) The buffer size of private queue is too small, and
the buffer overflows before the thread which is responsible for
data archiving gets the time slice. (2) The concurrent
processing capacity of database is not enough and a large
number of connections is occupied, or archiving thread
switches between connecting and disconnecting too frequently
that degrades the performance. In the first case, we can resolve
the problem by increasing the buffer size appropriately. But for
the second case, the database concurrency is determined by the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

117 | P a g e
www.ijacsa.thesai.org

database performance, and therefore the number of connections
can not be increased arbitrarily. To solve this problem, another
queue buffer, namely the public queue, is added between the
archiving thread and the buffering thread. The number of
database connections is controlled by the archiving threads
which maintain database connection stably to reduce the switch
of connection state.

In the above communication model, the data of private
queue is not archived in the database directly, but is stored into
a public queue by buffering threads. So that not only data can
be copied from private queues to public queue quickly that
reduce the possibility of private queue to overflow, and the
number of threads can be isolated and the database
communication correlation between the degree of concurrency,
but also the correlation between communication threads
number and concurrency of database is isolated. Thus the
competition for the database connection will be changed into
the competition of buffering threads for rear pointer of public
queue buffer, and the number of threads which access front
pointer of public queue buffer can be determined according to
the performance of the database. This scheme effectively
improves the universality of database for archiving, and when a
lot of concurrent operations are required, so a distributed
database can be easily used.

C. Algorithm Description

An important step forward in this area of concurrent
programming occurred when Edsger Dijkstra introduced the
concept of the semaphore. A semaphore is a special variable
that takes only whole positive numbers and upon which
programs can only act atomically [7]. The following algorithm
is described by primitive P and V. Because concurrency and
synchronization between threads is happening in the queue for
private queues and public queue, algorithm based on the type
of queue buffer will be described separately. Read operation
and write operation of private queues is described below:

int wt, rd, pvt_queue_len; // Initial values of wt and rd are 0,
and value of pvt_queue_len equals to the length of private
queue

 sem_t pvt_queue_full, pvt_queue_empty; // Initial values
for the two semaphores are 0 and pvt_queue_len respectively

 struct data_item pvt_queue[pvt_queue_len]; // pvt_queue
is private queue

 write_pvt_queue() // Write collected data to private queue

 {

 P(pvt_queue_empty); // If private queue buffer is not full,
then write the data, or block

 Write data to pvt_queue(wt);

 wt = (wt+1)% pvt_queue_len;// Move the write pointer
of private queue backward

 V(pvt_queue_full);

 }

 read_pvt_queue() // Read data from private queue

 {

 P(pvt_queue_full); // If buffer is not full, then read data,
or block

 dat = pvt_queue[rd]; //Save data to variable dat

 rd = (rd+1) % pvt_queue_len;// Move the read pointer of
private queue backward

 V(pvt_queue_empty);

 }

In the algorithm above, sem_t is a data type of semaphore
in linux and struct data_item is a custom data type for the data
item stored in queue buffer. On the other hand, In the
read_pvt_queue() function which is to read data from private
queue, the data is copied to a temporary storage, variable dat, in
order to prevent the data from being overwritten by
communication thread before it is saved into public queue
buffer. Since each communication thread and buffering thread
require the data members and functions above, the readability
of the program can be improved by encapsulating them into a
class.

Read operation and write operation of public queues is
described below:

int front, rear, pub_queue_len; //Initial values of front and
rear are 0, and pub_queue_len means the length of public
queue

 sem_t pub_queue_full, pub_queue_empty; // Initial values
for the two semaphores are 0 and pub_queue_len respectively

 struct data_item pub_queue[pub_queue_len]; //
pub_queue is public queue

 pthread_mutex_t mtx_front, mtx_rear; // Mutex operation
for the front and rear of public queue, Initial values of them are
1

write_pub_queue() // Write data to public queue

 {

 P(pub_queue_empty); // If public queue buffer is not full,
program continue, or block

 P(mtx_rear);// Mutex operation for rear of public queue

 Buffering thread write data into pub_queue[rear];

 rear=(rear+1) % pub_queue_len;// Move the rear pointer
of public queue backward

 V(mtx_rear);

 V(pub_queue_full);

 }

 read_pub_queue() // Read data from public queue,
executed by archiving thread

 {

 P(pub_queue_full); // If public queue buffer is not empty,
program continue, or block

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

118 | P a g e
www.ijacsa.thesai.org

 P(mtx_front); // Mutex operation for front of public
queue

 Copy data of queue[front] into local variable;

 front=(front+1)%Q2_size; // Move the front pointer of
public queue backward

 V(mtx_head);

 V(pub_queue_empty);

 Data archiving;

 }

};

In the algorithm above, pthread_mutex_t is a data type of
mutex in linux, and mtx_front and mtx_rear are used to achieve
mutex operation for the front and rear pointer of public queue
buffer. The data members and functions can be encapsulated
into a class, while just one object of this class is need.

In linux, the P and V operations for semaphore can be
achieve by sem_wait and sem_post function, while for mutex
pthread_mutex_lock and pthread_mutex_unlock functions
should be used [8]. The executing function can be specified
when a thread is created by pthread_create function. Taking
buffering thread as an example, read_pvt_queue and
write_pub_queue functions should be called cyclically.

IV. APPLICATION EXAMPLES

To transport bulk powder and granular materials by
pneumatic conveying pipeline is a two-phase flow technology,
and there is not yet fully quantified theory to define it precisely
at home and abroad, but semi-qualitative and semi-quantitative
method is used. So to learn from past experiences and history
data to guide pneumatic conveying becomes quite important.
Meanwhile, the requirement of industry users for the pneumatic
conveying varies, some materials should be kept hygiene and
not broken during transportation, some should be reduced wear
as far as possible, and some should be transported by inert gas
and kept from explosion and static. Therefore, it is a key for
using suitable pneumatic conveying technology and equipment
and the method to control and operate depending on the
process characteristics.

Queue-buffer communication model has been applied to
pipe pneumatic conveying data collection and equipment
monitoring. In the pneumatic conveying graph shown in Figure
3, program gets equipment operating status and records real-
time valve of pressure and temperature, etc, and stores these
data in database which will provide favorable conditions for the
subsequent analysis and mining.

Fan

Downstriker pump

Material high

level of pump

Pump

hammer

Exhaust

valve

Pressure

Transmitters

Hopper

hammer

Hopper

Dust solenoid

valve

Dust

collector

Feed valve

Electrical

contacts
Temperature

sensor
Omit the

pipes and

valves

Fig. 3. Application in Pneumatic Conveying

V. CONCLUSION

Queue-Buffer communication model as a kind of automatic
control architecture and software algorithm based on PLC's
free port is to achieve flexibility and freedom of
communication with PLC. This model switches the
communication port of computer and PLC by Ethernet and
serial adapter's conversion, and provides the possibility of
increasing the number of PLCs in automatic control network
will not be limited by the configuration software and
compatibility of the communication hardware. This model has
the following characteristics: (1) The model has good
scalability and communication nodes are convenient to
increase. (2) The communication distance of model is
unrestricted. (3) The model is independent of operating system
platform and has good portability. The application in
Pneumatic conveying shows that the model is feasible and
effective. The idea of it also provides a reference for data
communication in internet of things.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

119 | P a g e
www.ijacsa.thesai.org

ACKNOWLEDGMENT

The projects have been supported by the Innovation
Program of Shanghai Municipal Education Commission
"Vehicle Collision Avoidance System based on Vehicle
Wireless Communication" (No.12YZ151), and "Discipline
Comprehension Construction on Control Science and
Engineering" (No.13XKCZ07), and 'First Class Discipline
Cultivation - Mechanical Engineering" (No.YLJX12-7).

Liping Zhang acknowledges the guidance & support of
Cheng-Chew Lim of the University of Adelaide during her
academic visit in 2013/2014.

REFERENCES

[1] Gong Yunxing, Zhao Houuu, Qi Benzhi, PLC technology and
application – Based on Siemens s7-200 series. BeiJing: Tsinghua

University Press, 2009, pp.68–73.

[2] Liu Ning, Design and Implementation of the Control and Monitoring

subsystems in Small Scale Water Treatment Engineering. Jilin
University [D] pp.12, April 2012.

[3] Xiang Xiaohan, Industrial Communication Tutorial for Siemens PLC
Specialist. BeiJing: Chemical Industry Press, March 2013.

[4] Li Jiangquan, Yan Haijuan, Liu Jiaodi, Deng Hongtao, Application

Examples of Siemens PLC communication and Control Programming.
BeiJing: China Electric Power Press, January 2012.

[5] Xu Qiyi, Wu Yuqiang, Jiang Xiuping, Li Kun, Communication between

S7-200 PLC and Computer under C++ Builder Environment. Process
Automation Instrumentation, vol. 1, pp.57-60, 2007.

[6] Tang Xiaodan, Liang Hongbin, Zhe Fengping, Tang ZiYing, Computer

Operating System. ShangXi：Xi'an Electronic and Science University
Press, August 2011.

[7] Neil Matthew, Richard Stones. Beginning Linux Programming 4th

Edition. Wrox, 2007, pp.578-580.

[8] Yang Zongde, Lu Guanghong, Liu Yong, Linux Advanced
Programming, 3rd Edition. BeiJing: Posts & Telecommunications Press.

November 2012, pp.305-307.

