
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

42 | P a g e
www.ijacsa.thesai.org

High Performance Color Image Processing in

Multicore CPU using MFC Multithreading

Anandhanarayanan Kamalakannan

Central Electronics Engineering Research Institute

Chennai Centre, CSIR Madras Complex, Taramani

Chennai – 600113, Tamil Nadu, India

Govindaraj Rajamanickam

Central Electronics Engineering Research Institute

Chennai Centre, CSIR Madras Complex, Taramani

Chennai – 600113, Tamil Nadu, India

Abstract—Image processing is an engineering field where

stored image data is readily available for parallel processing.

Basically data processing algorithms developed in sequential

approach are not capable of harnessing the computing power of

individual cores present in a single-chip multicore processor. To

utilize the multicore processor efficiently on windows platform

for color image processing applications, a lock-free

multithreading approach was developed using Visual C++ with

Microsoft Foundation Class (MFC) support. This approach

distributes the image data processing task on multicore Central

Processing Unit (CPU) without using parallel programming

framework like Open Multi-Processing (OpenMP) and reduces

the algorithm execution time. In image processing, each pixel is

processed using same set of high-level instruction which is time

consuming. Therefore to increase the processing speed of the

algorithm in a multicore CPU, the entire image data is

partitioned into equal blocks and copy of the algorithm is applied

on each block using separate worker thread. In this paper,

multithreaded color image processing algorithms namely

contrast enhancement using fuzzy technique and edge detection

were implemented. Both the algorithms were tested on an Intel

Core i5 Quad-core processor for ten different images of varying

pixel size and their performance results are presented. A

maximum of 71% computing performance improvement and

speedup of about 3.4 times over sequential approach was
obtained for large-size images using four thread model.

Keywords—Color image; fuzzy contrast intensification; edge

detection; lock-free multithreading; MFC thread; block-data;

multicore programming

I. INTRODUCTION

Machine vision systems used in various industrial
applications are capable of capturing high resolution images
and demands time efficient parallel data processing algorithms
in real-time environment. To reduce the processing time of the
algorithm on these images, parallel computing in multicore
architecture is a well known approach [1]. Different parallel
programming libraries such as OpenMP and Message Passing
Interface (MPI) are widely applied in the development of
parallel image processing algorithms. The authors N.E.A.
Khalid et al [2] have implemented parallel multicore sobel
edge detection algorithm using MPI and observed that parallel
processing performs better than sequential processing in terms
of execution speed. Chen Lin et al [3] have proposed a parallel
method to perform medical image registration using OpenMP
and concluded that multithreading approach saves nearly half
of the computing time. Alda Kika and Silvana Greca

illustrated the development of multithreaded algorithms for
contrast, brightness and steganography applications using Java
package and tested their performance on different single-core
and multicore processors [4]. The authors concluded that the
performance of the complex image processing algorithm on
multicore CPU can be improved using multithreaded
programming.

In our work, we studied the development of multithreaded
C++ algorithms for processing low and high resolution color
images on a multicore CPU without using parallel
programming library and any other additional hardware. To
ensure fine grain (data level) parallelism [5] and computation
load balance of the algorithm in a multicore CPU, a lock free
multithreaded block-data parallel approach is proposed. In this
approach, the image data is shared equally among worker
threads and each one manipulates its portion of data.

 In VC++ programming, MFC library provides powerful
threading Application Programming Interfaces (APIs) [6] for
developing concurrent or multithreaded windows based
software programs. Multithreaded color image processing
algorithms namely contrast enhancement using fuzzy
technique and edge detection were developed in Intel Pentium
dual-core personal computer and tested on Intel Core i5 CPU.
The algorithms were applied on ten selected color image
samples of varying size and their execution results are
presented. The performance results show that both the
algorithms in four thread model attained a speedup of about
3.4 times compared with the sequential approach and saves
nearly 71% of algorithm execution time.

The paper is arranged as follows: In section II, MFC
multithreading and its application in high performance image
processing is described. Section III explains the materials,
methods and the color image processing techniques followed
in this paper. The performance results of the thread model
based parallel algorithms are discussed in section IV. The
conclusion is given section V.

II. MULTITHREADED IMAGE PROCESSING USING MFC

MFC is a Microsoft’s C++ class library for windows
programming. It distinguishes two types of threads namely
user interface thread and worker thread [7]. The main use of
worker thread is to perform background computation work and
it is created by defining the task it should perform. This is
done by the declaration of thread function according to the
MFC definition. The call function AfxBeginThread() launches

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

43 | P a g e
www.ijacsa.thesai.org

the worker thread [8] and it accepts parameters, which
includes thread function name, input to the thread, thread
priority and few other required parameters.

In block-data parallel processing, image region is
identified as several blocks of data. The source image data is
partitioned vertically or horizontally into multiple large blocks
with equal size [9,10]. In our thread model based parallel
approach, each thread exclusively performs image processing
task on individual image data block as shown in the
concurrency model Fig.1. To maintain load balance within
threads, it is good to consider the number of image blocks
equal to number of worker threads [11]. Since the image data
is stored and accessed through global variables no message
passing or explicit data access control is required between
threads. This makes thread definition simple without data
locking mechanism [12].

Fig. 1. Concurrency model of block-data parallel algorithm using 4 threads

In this lock free multithreaded approach, threads are free to
read and process their portion of image data in a parallel
manner, which efficiently reduces the data access time as well
as the overall computation time of image processing
algorithm. Thus the performance of multithreaded algorithm
on a single- chip multicore processor can be fine tuned using
shared image data variables [13]. In the case of color image
processing algorithm, three input and three output global
variables were assigned to each color component (viz. red,
green and blue) to enable image reading and processed data
writing concurrently using multiple worker threads.

According to the worker thread priority, the operating
system schedules each thread to an individual processing unit
in a multicore CPU. Due to this scheduling mechanism, all
threads do not finish at the same time, so in order to handle
this thread completion task, event object is derived from
CEvent MFC class. When the thread completes its processing
task, the event object is triggered. Using WaitForSingleObject
API, event object trigger is noted and worker thread
completion is indicated to the primary main thread [6,14,15].
As soon as all the threads complete their processing task, the
results are cached and made available in the shared global
variable. The synchronization between the main thread and

different worker threads was established using event object as
shown in Fig.2.

In MFC multithreading, two threads cannot manipulate the
same object because MFC objects are thread-safe only at the
class level [16]. Hence each thread requires separate objects of
the same data structure to operate in a thread-safe manner. To
ensure thread safety in the algorithm, each copy of thread
parameter data structure is passed as input argument to the
corresponding worker thread function. Each thread function
uses call by reference method to access the global variables.
When the thread calls a image processing function, the private
variables declared within the function takes care of storing,
processing the intermediate data and also ensures the
algorithm execution in parallel manner.

Fig. 2. Code structure for two thread approach

III. MATERIALS AND METHODS

A. Sample Images

A total of ten color images with different pixel size were
used to evaluate the algorithm performance. All these images
were randomly chosen from free online collection of natural
scenes and photos. The pixel size of the images varies from
940x474 to 2880x1800. They are labeled as Image1,
Image2….Image10.

Worker Thread1
Private variable initialized

Process Image-Block1

Worker Thread2
Private variable initialized

Process Image-Block2

Worker Thread3
Private variable initialized

Process Image-Block3

Worker Thread4
Private variable initialized

Process Image-Block4

Shared Global

Variables

Input Byte Data

Output Byte Data

Red_Input

Green_Input

Blue_Input

Red_Output

Green_Output

Blue_Output

Primary

Thread

Initiate

multiple

threads &

Split total

image in

to four

equal

blocks

//data structure for thread-parameter

typedef struct ThreadParameter

{ int height1, height2, width;

ImageProcessing Object;

} Parameter;

//Global declaration of event object

CEvent threadone, threadtwo;

//Worker thread creation

MainThread()

{

//assign worker thread parameter for image-block1

 Parameter
*
First=new Parameter;

//assign worker thread parameter for image-block2

 Parameter
*
Second=new Parameter;

AfxBeginThread(ThreadProcA,First,THREAD_PRIORITY_HIGHEST);

AfxBeginThread(ThreadProcB,Second,THREAD_PRIORITY_HIGHEST);

 ::WaitForSingleObject(threadone,INFINITE);

 ::WaitForSingleObject(threadtwo,INFINITE);

}

//Function Definition_FirstThread

UINT ThreadProcA(LPVOID param)

{ Parameter * ptr=(Parameter *)param;

 ptr->Object.ProcessImage(image-block1);

 threadone.SetEvent();

 return 0;

}

//Function Definition_SecondThread

UINT ThreadProcB(LPVOID waram)

{ Parameter * ptr= (Parameter *)waram;

 ptr->Object.ProcessImage(image-block2);

 threadtwo.SetEvent();

 return 0;

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

44 | P a g e
www.ijacsa.thesai.org

B. Hardware and Software

The entire coding for developing the multithreaded
application software was carried out in Intel Pentium dual-core
processor @ 2.8GHz on Windows XP operating system pre-
loaded with Microsoft Visual Studio version 6. Using MFC
library, multithreaded image processing software for contrast
enhancement using fuzzy technique and edge detection has
been developed in VC++. Separate menu buttons are provided
in the software to load image and execute the algorithms. The
developed algorithms were tested using the color image
samples on an Intel Core i5-760 @ 2.80 GHz Quad-core CPU
on 32 bit Windows 7 operating system with 4GB RAM.

C. Color Image Processing Algorithms

a) Contrast enhancement using fuzzy technique

Image enhancement is a preprocessing technique usually
employed to improve the brightness and contrast of the
images. In color image enhancement, red, green and blue
channels were processed separately and added together to
produce composite color value. But this approach does not
maintain the color balance in the image. To avoid this change
in color information, YIQ color space was chosen, where Y
represents the luminance information; I and Q together
represent the chrominance information. This color space
exploits certain characteristics of human-eye color response
and improves the appearance of the color image in terms of
human brightness perception. In this technique, the contrast
enhancement using fuzzy intensification operator was applied
only on luminance component; hence color information of the
original image is preserved [17].

Steps involved in image contrast enhancement:

1) Convert RGB image in to YIQ color space [18].

2) Perform fuzzification [19] on luminance component

‘ ’ using the following expression.

Where and denote the exponential & the

denominational fuzzifier, respectively and

is called

the fuzzy property plane of the image. Value of the
can be set as 1 or 2. Value of is determined using the
cross-over value with respect to fuzziness value 0.5.
 represents the maximum luminance value.

3) Apply fuzzy intensification operator

 on lumi-

nance component for contrast enhancement [20].

4) Enhanced luminance component ‘ ’ is obtained

using defuzzification defined as follows.

5) Convert YIQ color space to RGB image.

6) Contrast enhanced color image is obtained at the

end.

b) Edge detection

Edges in color images can be obtained by applying gray
scale edge detection method to each of the RGB bands
separately and then results were summed to produce
composite value [21]. Further thresholding was performed to
get fine binary edges and a set of four Robinson compass
masks used in this method are given below.

 (a) (b) (c) (d)

D. Multithreaded Block-data Parallel Approach Steps

1) Image block-data decomposition; the main thread

splits the image data in to several blocks of equal size to

maintain load balance [22].

2) Multiple worker threads are created in the main

thread and size parameter of each block is passed as input to

the worker thread.

3) Created worker threads are initiated with high

priority level to avoid delay due to operating system

scheduling.

4) Each worker thread applies its copy of sequential

image processing algorithm on a particular image data

portion.

5) Each worker thread uses their private copy of data

structure for execution.

6) Processed image data are stored in output variable.

7) As shown in Fig.3, main thread exits only when all

worker threads complete their assigned task.

Fig. 3. Thread sequence diagram

IV. RESULTS AND DISCUSSION

To measure the execution time of the parallel algorithms
while processing the given image data in different threads, the

Thread 2

Thread 1

Main Thread
(Compute size parameter

for each block)

Create thread

Create thread

Create thread

Wait for thread 1 Exit

Wait for thread N Exit

Wait for thread 2 Exit

Exit

Thread N

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

45 | P a g e
www.ijacsa.thesai.org

VC++ clock function was used. Using the execution time, the
speedup and performance improvement (P.I) parameters of the
algorithms were calculated. The speedup parameter measures
how much a parallel algorithm is faster than a corresponding
sequential approach [2]. The P.I predicts the relative
improvement due to parallel implementation over the
sequential approach. The equations for computing the two
parameter values are given below.

A. Results of Multithreaded Contrast Enhancement Algorithm

The developed contrast enhancement algorithm was
applied on all the ten sample images and the test results were
evaluated. The algorithm execution time for each image in
sequential and multithreaded approach (for 2, 4 and 8 threads)
was recorded in a data file. To determine the average
execution time in both the approaches, the algorithm was
executed five times successively on each image and the mean
time was calculated. The speedup and performance
improvement between sequential and four thread approaches
was computed using Eq.4 and Eq.5 for images of different
pixel size. The algorithm results viz., average execution time,
speedup and performance improvement are shown in Table I.

TABLE I. ‘Performance Results of Color Contrast Enhancement
Algorithm

To find the maximum possible number of threads needed
to speed up the algorithm execution in the Intel Core i5
processor, eight thread approach was also attempted and the
execution time results are included in Table I. It is found from
the Table I, the execution time of four and eight threads are
nearly same which infers that for a quad-core processor,
minimum of four MFC thread is enough to achieve optimum
execution time.

As seen from the tabulated results, the average execution
time of the algorithm decreases with the number of threads,
whereas the speedup and performance improvement goes up
with increase in image size. In the four thread implementation,
the speedup parameter varies from 2.53 to 3.43 times and the
performance improvement variation is found to be between
60.47% and 70.89%.

The input image and processed color image outputs of
contrast enhancement algorithm are shown in Fig.4a, Fig.4b &
Fig.4c. The processed results of sequential and multithreaded
approach are looking similar.

Fig. 4. a. Input photograph image

Fig. 4. b. Contrast enhancement in sequential approach

Fig. 4. c. Contrast enhancement in four threads

Table II illustrates the execution time of individual threads
measured for contrast enhancement algorithm executed five
times successively on a single image. It shows that each thread
takes nearly same amount of CPU time to compute the data
processing task and the load balance within multiple threads is
well maintained. Therefore change in execution time is mainly
dependent on varying image size.

TABLE II. Individual Thread Execution Time for Four Thread Contrast
Enhancement Algorithm (Image Size: 1920x1200)

Running
Iteration No.

Execution time in milliseconds (ms)
Thread1 Thread2 Thread3 Thread4 Algorithm

1 218 234 234 234 234

2 218 218 234 234 234

3 219 234 234 234 234

4 218 218 218 234 234

5 218 218 218 218 218

Image name
& pixel size

Average execution time in
milliseconds (ms)

Four thread
approach

Sequential
Approach

Two
Thread

Four
Thread

Eight
Thread

SpeedUp P.I (%)

Image1(940 x474) 172 93 68 62 2.53 60.47

Image2(1024 x 728) 265 145 94 93 2.82 64.53

Image3(1280 x 1024) 437 234 140 140 3.12 67.96

Image4(1600 x 1200) 624 328 196 198 3.18 68.59

Image5(1920 x 1080) 675 353 209 212 3.23 69.04

Image6(1920 x 1200) 749 390 231 237 3.24 69.16

Image7(2048 x 1536) 1019 530 312 312 3.27 69.38

Image8(2288 x 1712) 1248 645 375 379 3.33 69.95

Image9(2560 x 1920) 1571 796 458 458 3.43 70.85

Image10(2880 x 1800) 1659 843 483 499 3.43 70.89

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

46 | P a g e
www.ijacsa.thesai.org

B. Results of Multithreaded Edge Detection Algorithm

A similar approach as followed for the contrast
enhancement algorithm was applied for the edge detection
algorithm on all the ten color images and the results are
presented in Table III. In four thread approach, the speedup
varies from 2.82 to 3.44 times and the performance
improvement achieved is between 64.50% and 70.94%.

TABLE III. Performance Results of Color Edge Detection Algorithm

The input image and processed color image outputs of
edge detection algorithm are shown in Fig.5a, Fig.5b & Fig.5c.
The processed image outputs of the algorithm are found to be
similar.

Fig. 5. a. Input MatLab demo image

Fig. 5. b. Edge detection in sequential approach

Fig. 5. c. Edge detection in four threads

Thus the two multithreaded color image processing
algorithms with different complexity levels were tested in Intel
Core i5 processor and found that four thread approach utilized
the quad-core CPU efficiently on Windows 7 platform.

V. CONCLUSION

This work was carried out to explore the parallel
processing ability of the multicore CPU in processing high
resolution images using MFC multithreading. In this paper, a
lock-free multithreaded block-data parallel approach based
color image processing algorithms for fuzzy contrast
enhancement and edge detection were developed using VC++
on windows platform without using any parallel programming
library. The purpose of this implementation is to improve the
performance and reduce the execution time of the image
processing algorithms on multicore processor by partitioning
the given image into equal blocks and processing each block
of data in a parallel manner. In four thread approach, the
algorithm speed is found to be about 3.4 times faster than the
sequential approach. With regard to performance
improvement, the thread model saves nearly 71% computation
time compared to sequential implementation. No performance
improvement and speedup is noted in processing nearly same
size images of marginal difference in pixel size. The
performance results indicate that multithreaded image
processing algorithms efficiently utilize the computing
capability of multicore CPU like Intel Corei5 processor.
Hence the developed multicore programming approach using
MFC thread can be applied to improve the performance of
various color image processing algorithms.

REFERENCES

[1] P.N.Happ, R.S.Ferreia, C.Bentes, G.A.O.P.Costa and R.Q.Feitosa,

“Multiresolution Segmentation: A parallel approach for high resolution
image segmentation in multicore architectures”, International

Conference on Geographic Object-Based Image Analysis, ISPRS
Vol.XXXVIII-4/C7, June-July 2010.

[2] N.E.A.Khalid, S.A.Ahmad, N.M.Noor, A.F.A.Fadzil and M.N.Taib,

“Parallel approach of sobel edge detector on multicore platform”,
International Journal of Computers and Communications, Vol.5 Issue.4,

2011, pp.236-244.

[3] Chen Lin, Li Jian, Zhou Jun and Jiang Murong, “Multithreading method
to perform the parallel image registration”, IEEE Xplore, International

Conference on Computational Intelligence and Software Engineering,
DOI:10.1109/CISE.2009.5366052, Dec. 2009.

Image name
& pixel size

Average execution time in
milliseconds (ms)

Four thread
approach

Sequential
Approach

Two
Thread

Four
Thread

Eight
Thread

SpeedUp P.I(%)

Image1(940 x474) 307 167 109 104 2.82 64.50

Image2(1024 x 728) 520 265 171 172 3.04 67.12

Image3(1280 x 1024) 837 431 265 255 3.16 68.34

Image4(1600 x 1200) 1229 634 369 369 3.33 69.98

Image5(1920 x 1080) 1304 676 390 405 3.34 70.09

Image6(1920 x 1200) 1466 765 437 442 3.35 70.19

Image7(2048 x 1536) 1992 1024 588 588 3.39 70.48

Image8(2288 x 1712) 2475 1269 728 733 3.40 70.59

Image9(2560 x 1920) 3100 1571 905 899 3.43 70.81

Image10(2880 x 1800) 3276 1648 952 952 3.44 70.94

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

47 | P a g e
www.ijacsa.thesai.org

[4] Alda Kika and Silvana Greca, “Multithreading image processing in

single-core and multi-core CPU using Java”, International Journal of
Advanced Computer Science and Applications, Vol.4, No.9, 2013,

pp.165-169.

[5] Luis Moura E Silva and Rajkumar Buyya, “Chapter1: Parallel

programming models and paradigms”, High Performance Cluster
Computing: Programming and Applications, Vol.2, Prentice Hall PTR,

1999, pp.4-28.

[6] S.Akhter and J.Roberts, “Chapter 5: Threading APIs”, Multicore
Programming: Increasing performance through Software Multi-

threading, Intel Press, 2006, pp.75-133.

[7] J. Prosise, “Chapter 17: Threads and thread synchronization”, In
Programming Windows with MFC, 2nd Edition, Microsoft Press, 1999,

pp.985-1000.

[8] Stanford Taylor Jones and Chi Ngoc Thai, “Multithreaded Design of
Spectral Imaging Software”, ASAE Meeting Presentation, Paper

No.053010, July 2005.

[9] Winser E.Alexander, Douglas S.Reeves and Clay S.Gloster, “Parallel
image processing with the block data parallel architecture”, IEEE

Xplore, Proceedings of the IEEE, DOI:10.1109/5.503297, Vol.84, No.7,
July 1996, pp.947-968.

[10] A.Fakhri A.Nasir, M.Nordin A.Rahman and A.Rasid Mamat, “A study

of image processing in agriculture application under high performance
computing environment”, International Journal of Computer Science and

Telecommunications, Volume 3, Issue 8, 2012, pp.16-24.

[11] Sanjay Saxena, Neeraj Sharma and Shiru Sharma, “ Image processing
tasks using parallel computing in multicore architecture and its
applications in medical imaging”, International Journal of Advanced

Research in Computer and Communication Engineering, Volume 2,
Issue 4, 2013, pp.1896-1900.

[12] Jonathan R.Engdahl and Dukki Chung, “Lock-free data structure for

multi-core processors”, International Conference on Control,
Automation and Systems, October 2010, pp.984-989.

[13] Devrim Akgun, “Performance evaluations for parallel image filter on

multi-core computer using Java threads”, International Journal of

Computer Applications, Vol.74, No.11, July 2013, pp.13-19.

[14] S.S.Ilic, A.C.Zoric, P. Spalevic and Lj. Lazic, “Multithreaded

application for real-time visualization of ECG signal waveforms and
their spectrums”, Intl. Journal of Computer, Communication & Control,

8(4), 2013, pp.548-559.

[15] Faran Mahmood, “Parallel Implementation of Imaging Filters on Multi-
Core Processors for Win32 platform”, Proceedings of the 4th

International Conference on Open-Source Systems and Technologies,
December 2010.

[16] Multithreading: Programming Tips – “Accessing objects from multiple

threads”, Available from http://msdn.microsoft. com/en-
us/library/h14y172e.aspx.

[17] Zhuqing Jiao and Baoguo Xu, “An image enhancement approach using
Retinex and YIQ”, IEEE Xplore, Inter-national Conference on
Information Technology and Computer Science,

DOI:10.1109/ITCS.2009.104, July 2009, pp.476-479.

[18] Gwanggil Jeon, “Image enhancement in YIQ space”, Proceeding of First
International Conference on Advanced Computer and Information

Technology, ASTL vol.22, 2013, pp.109-112.

[19] Sankar K.Pal and Robert A.King, “Image enhancement using smoothing
with fuzzy sets”, IEEE Transactions on Systems, Man and Cybernetics,

Vol. SMC-11, No.7, 1981, pp.494-501.

[20] Peng Dong-liang and Xue An-ke, “Degraded image enhancement with

applications in robot vision”, IEEE Xplore, International Conference on
Systems, Man and Cybernetics, DOI:10.1109/ICSMC.2005.1571414,

Vol.2, October 2005, pp.1837-1842.

[21] Scott E.Umbaugh, “Chapter 4: Segmentation and Edge/Line Detection”,
Computer Imaging- Digital image analysis and processing, CRC Press,

2005, pp.184-188.

[22] Young-Jip Kim and Byung-Kook Kim, “Load balancing algorithm of
parallel vision processing system for real –time navigation”, IEEE

Xplore, International Conference on Intelligent Robots and Systems,
DOI:10.1109/IROS.2000. 895242, Vol.3, Oct-Nov 2000, pp.1860-1865.

