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Abstract—Stochastic, iterative search methods such as 

Evolutionary Algorithms (EAs) are proven to be efficient 

optimizers. However, they require evaluation of the candidate 

solutions which may be prohibitively expensive in many real 

world optimization problems. Use of approximate models or 

surrogates is being explored as a way to reduce the number of 

such evaluations. In this paper we investigated three such 

methods. The first method (DAFHEA) partially replaces an 

expensive function evaluation by its approximate model. The 

approximation is realized with support vector machine (SVM) 

regression models. The second method (DAFHEA II) is an 

enhancement on DAFHEA to accommodate for uncertain 

environments. The third one uses surrogate ranking with 

preference learning or ordinal regression. The fitness of the 

candidates is estimated by modeling their rank. The techniques’ 

performances on some of the benchmark numerical optimization 

problems have been reported. The comparative benefits and 
shortcomings of both techniques have been identified. 
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I. INTRODUCTION 

Evolutionary Algorithms (EAs) are biologically inspired 
iterative processes where a population of candidate solutions is 
evolved generation after generation. In a typical EA a number 
of new offspring candidate solutions are produced through 
mutation, recombination and selection. Individuals for 
producing offspring are chosen using a selection strategy after 
evaluating the fitness value of each individual in the selection 
pool.  In many real world optimization problems this fitness 
evaluation can be very expensive.  

The use of surrogates to reduce the expensive function 
evaluation is found to be orders of magnitude cheaper 
computationally [21, 9, and 18]. Incorporation of approximate 
models may be one of the most promising approaches to 
realistically use EA to solve complex real life problems, 
especially where: (i). Fitness computation is highly time-
consuming, (ii). Explicit model for fitness computation is 
absent, (iii). Environment of the evolutionary algorithm is 
noisy etc. However, considering the obvious risk involved in 
such approach, an EA with efficient control strategy for the 
approximate model and robust performance is welcome. 

There are different ways, in which a surrogate or 
approximation model can be incorporated in an EA [15]; some 
of which are as follows: 

Problem level approximation. In this approach, the 
statement of the problem itself is replaced by a reduced one 
that is easier to solve. See [15] for some examples on this. 

Functional approximation. As the name suggests, in this 
approach, an alternate and explicit expression is constructed for 
the objective function, for the purpose of reducing the cost of 
evaluation. A set of evaluated points are used to build the 
approximate fitness model. This model is used to predict the 
fitness of candidate solutions. Usually a fraction of individuals 
in the population are selected and evaluated within each 
generation or over a number of generations to generate training 
points and are added to the training set to update the surrogates 
to maintain a reliable surrogate during evolution. See [13, 14, 
and 15] for examples on this technique. 

EA specific approximation. This approach is specific for 
evolutionary algorithms and utilizes the algorithm’s structural 
and functional aspects. 

For a detailed review on use of approximation in EA, see 
[15].In this paper we investigate three different methods which 
use surrogates to reduce the number of actual function 
evaluations in EA [4]. 

In the first one, namely, Dynamic Approximate Fitness 
based Hybrid Evolutionary Algorithm (DAFHEA), 
Bhattacharya et. al [2, 3] use both “functional approximation” 
and “EA specific approximation”. It uses an approximation 
model to partially replace expensive fitness evaluations in 
evolutionary algorithm. DAFHEA uses an explicit control 
strategy (a cluster-based on-line learning technique) to 
improve reliability of using such approximate models to reduce 
expensive function evaluations. Also the approximate 
knowledge thus generated is exploited to avoid premature 
convergence (one of the major impediments of using 
evolutionary algorithm to solve complex real life optimization 
problems). 

The second method, DAFHEA II [5] is an enhancement on 
DAFHEA to cover situations, where information from variable 
input dimensions and noisy data is involved. DAFHEA-II uses 
a multi-model regression approach. The multiple models are 
estimated by successive application of the SVM regression 
algorithm. Retraining of the model is done in a periodic 
fashion. 

In the third method, Runersson [22] makes use of the EA 
feature that unlike classical optimization techniques, in rank 
based selection, selection of the best candidates requires only 
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the rank or partial rank of the candidates. Here, the fitness of 
individuals is indirectly estimated by modeling their rank using 
surrogate. Preference learning or ordinal regression is used to 
implement a kernel-defined feature space. 

The features and effectiveness of the above two surrogate-
based methods have been investigated in this work. The above 
two methods have been selected for comparison as they are 
based on very different concepts and may reveal important 
characteristics which may be useful for specific problem cases. 

Rest of the paper is organized as follows. Section II 
presents a brief review on use of surrogates in evolutionary 
computing. Section III outlines the features of the surrogate-
based EA methods which we have investigated in this research. 
Section IV presents the experiment details and discussions on 
the findings. Finally, concluding remarks are summarized in 
Section V. 

II. SURROGATE-BASED EVOLUTIONARY ALGORITHM 

The use of an approximate model to speed up optimization 
dates all the way back to the sixties [8]. The most widely used 
models being Response Surface Methodology [17], Krieging 
models [23] and artificial neural network models [6]. As has 
been mentioned in Section 1, the concept of using approximate 
model varies in levels of approximation (Problem 
approximation, Functional approximation, and Evolutionary 
approximation), model incorporation mechanism and model 
management techniques [15]. 

In the multidisciplinary optimization (MDO) community, 
primarily response surface analysis and polynomial fitting 
techniques are used to build the approximate models [11, 27]. 
These models work well when single point traditional gradient-
based optimization methods are used. However, they are not 
well suited for high dimensional multimodal problems as they 
generally carry out approximation using simple quadratic 
models. 

In another approach, multilevel search strategies are 
developed using special relationship between the approximate 
and the actual model. An interesting class of such models 
focuses on having many islands using low accuracy/cheap 
evaluation models with small number of finite elements that 
progressively propagate individuals to fewer islands using 
more accurate/expensive evaluations [29]. This approach may 
suffer from lower complexity/cheap islands having false 
optima whose fitness values are higher than those in the higher 
complexity/expensive islands. Rasheed et al. in [19, 20], uses a 
method of maintaining a large sample of points divided into 
clusters. Least square quadratic approximations are periodically 
formed of the entire sample as well as the big clusters. Problem 
of unevaluable points was taken into account as a design 
aspect. However, it is only logical to accept that true evaluation 
should be used along with approximation for reliable results in 
most practical situations. Another approach using population 
clustering is that of fitness imitation [15]. Here, the population 
is clustered into several groups and true evaluation is done only 
for the cluster representative [16]. The fitness value of other 
members of the same cluster is estimated by a distance 
measure. The method may be too simplistic to be reliable, 
where the population landscape is a complex, multimodal one. 

Jin et al. in [13, 14] analyzed the convergence property of 
approximate fitness based evolutionary algorithm. It has been 
observed that incorrect convergence can occur due to false 
optima introduced by the approximate model. Two controlled 
evolution strategies have been introduced. In this approach, 
new solutions (offspring) can be (pre)-evaluated by the model. 
The (pre)-evaluation can be used to indicate promising 
solutions. It is not clear however, how to decide on the optimal 
fraction of the new individuals for which true evaluation should 
be done [1]. In an alternative approach, the optimum is first 
searched on the model. The obtained optimum is then 
evaluated on the objective function and added to the training 
data of the model [19, 26, and 1]. Yet another approach as 
proposed in [14], a regularization technique is used to eliminate 
false minima. 

III. THE INVESTIGATED METHODS 

The main features of the three techniques investigated in 
this work, DAFHEA, DAFHEA II and the preference learning 
based EA are outlined below. 

A. The DAFHEA Technique 

The primary objectives of the proposed algorithm and their 
realization are as below. 

1) The main objective of DAFHEA is to reduce the 

number of actual fitness function evaluations to speed up the 

search process. The proposed algorithm achieves this by 

partially replacing actual function evaluation (as is required 

in traditional genetic algorithm) by SVM based estimation. 

The DAFHEA framework includes a global model of genetic 

algorithm (GA), hybridized with support vector machine 

(SVM) [28] as the approximation tool. 

2) The related major objective is to minimize the 

adverse effect of estimation. To this end explicit control 

strategies are used for evolution control, leading to 

considerable speedup without compromising heavily on 

solution accuracy. 
The controlled use of estimation is the primary reason why 

the proposed algorithm should be successful in reducing actual 
fitness function evaluation without heavily compromising on 
solution accuracy. The basic algorithm is as below. 

Step One: Create a random population of cN  individuals, 

where, ac NN *5  and aN actual initial population size. 

Step Two: Evaluate cN  individual using actual expensive 

function evaluation. Build the SVM approximate model using 
normalized expensive function evaluation values as training set 
for off-line training. (Use of normalized values in the training 
set appears to improve performance of meta-model, reducing 
effects of unnaturally high or low values). SVM hyper-
parameters are initially tuned based on this training set. 

Step Three: Select aN  best individual out of cN  

evaluated individuals to form the initial GA population. 

Remarks: The idea behind using five times the actual EA 
population size (as explained in Step One) is to make the 
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approximation model sufficiently representative at least 

initially. Since initial EA population is formed with aN best 

individuals out of these cN individuals, with high 

recombination and low mutation rates, the EA population in 
first few generations is unlikely to drift much from its initial 
locality. Thus it is expected that large number of samples used 
in building the approximation model will facilitate better 
performance at this stage. Also using the higher fitness 
individuals, chosen out of a larger set should give an initial 
boost to the evolutionary process. 

Step Four: Select parents using suitable selection operator 
and apply genetic operators namely recombination and 
mutation to create a new generation. 

Step Five: Use SVM approximation model to compute 
fitness of new generation individuals based on approximate 
evaluation. Form m  distance-based (considering spatial 
distribution of individuals) clusters in the new population 

space. If for some n  clusters, the standard deviation 
Predefined Threshold, rearrange solution space into nm  

clusters. Compute a merit function )(xfm  as below: 

ij
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In the equation (1), )(xf a is the predicted fitness function 

value. i is standard deviation (in terms of objective value) for 
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thi cluster and ijd  is the normalized minimum Euclidean 

distance of 
thj  point of 

thi  cluster from the all truly evaluated 

points so far [22]. is is the sparseness of the 
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2  and 3  are scaling factors for i , ijd  and is respectively. 
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Step Six: Dynamically update the approximate model as 
below: 

1) Identify the cluster containing the optimum based on 

approximation. 

2) Perform expensive evaluation for the approximate 

optimum and its k nearest neighbors. 

3) Also perform expensive evaluation for the centroid of 

all other data clusters and their k nearest neighbors. 

4) Expand neighborhood for true evaluation until a 

point is found in each space dimension such that percentage 

error  Predefined threshold. 
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In the equation (3), ita =True value of the 
thi neighbor and 

ipa =Predicted value of the 
thi neighbor and max ki  . 

Add the newly evaluated points to approximate model 
training set to update model. 

Step Seven: When termination/evolution control criteria 
are not met, repeat Step Four to Step Seven. 

Remarks: It must be noted, the optimum is considered 

based on the original predicted value )(xf a . For all other 

purposes fitness based on the merit function )(xfm  is 

considered. Periodic parameter tuning of the SVM 
approximation model was incorporated, though no specific 
criterion was used. 

Further details on the above method can be found in [2, 3]. 

B. The DAFHEA II Technique 

As in the original DAFHEA framework, DAFHEA-II [5] 
includes a global model of genetic algorithm (GA), hybridised 
with support vector machine (SVM) as the approximation tool. 
Expensive fitness evaluation of individuals as required in 
traditional evolutionary algorithm is partially replaced by SVM 
approximation models (unlike the original DAFHEA, multi-
model regression is used). Evolution control is implemented by 
periodic true evaluations, leading to considerable speedup 
without compromising heavily on solution accuracy. Also the 
approximate knowledge about the solution space generated is 
used to maintain population diversity to avoid premature 
convergence. 

5) Functional Details 
The operational detail of DAFHEA-II [15] framework is as 

described below: 

Step One: Create a random population of cN  individuals, 

where, ac NN  5  and aN actual initial population size. 

Step Two: Evaluate cN  individual using actual expensive 

function evaluation. Build the SVM approximate models using 
the candidate solutions as input and the actual fitness 
(expensive function evaluation values) as targets forming the 
training set for off-line training. 

Step Three: Select aN  best individual out of cN  

evaluated individuals to form the initial GA population. 

Remarks: The idea behind using five times the actual EA 
population size (as explained in Step One) is to make the 
approximation model sufficiently representative at least 

initially. Since initial EA population is formed with aN best 

individuals out of these cN individuals, with high 

recombination and low mutation rates, the EA population in 
first few generations is unlikely to drift much from its initial 
locality. Thus it is expected that large number of samples used 
in building the approximation model will facilitate better 
performance at this stage. Also using the higher fitness 
individuals, chosen out of a larger set should give an initial 
boost to the evolutionary process. 

Step Four: Rank the candidate solutions based on their 
fitness value. 
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Step Five: Preserve the elite by carrying over the best 
candidate solution to the next generation. 

Step Six: Select parents using suitable selection operator 
and apply genetic operators namely recombination and 
mutation to create children (new candidate solutions) for the 
next generation. 

Step Seven: The SVM regression models created in Step 
two are applied to estimate the fitness of the children (new 
candidate solutions) created in Step six. This involves 
assignment of most likely or appropriate models to each 
candidate solution. 

Step Eight: The set of newly created candidate solutions is 
ranked based on their approximate fitness values. 

Step Nine: The best performing newly created candidate 
solution and the elite selected in Step five are carried to the 
population of the next generation. 

 Step Ten: New candidate solutions or children are created 
as described in Step six. 

Step Eleven: Repeat Step seven to Step ten until either of 
the following condition is reached: 

1. The predetermined maximum number of generations 

has been reached; or 

2. The periodic retraining of the SVM regression 

models is due. 

Step Twelve: If the periodic retraining of the SVM 
regression models is due, this will involve actual evaluation of 
the candidate solutions in the current population. Based on this 
training data new regression models are formed. The algorithm 
then proceeds to execute Step four to Step eleven. 

Remarks: The idea behind using periodic retraining of the 
SVM regression models is to ensure that the models continue 
to be representatives of the progressive search areas in the 
solution space. 

C. The Preference Learning Based EA 

The second method is directly based on preference learning 
or ordinal regression based technique proposed by Runersson 
in [22] with the variation that we have used a genetic algorithm 
implementation instead of CMA-ES. This method is based on 
the assumption that in a stochastic and direct search method 
such as EA, ordinal regression should be able to offer adequate 
surrogates as only full or even partial ranking of the individuals 
or search points is sufficient for the selection process. 
Accordingly, the surrogate approach is considered as a 

preference learning task, where a candidate point ix  is preferred 

over jx  if ix  has a higher fitness than jx  . The training set for 

the surrogate model is thus composed of pairs of points  
kji xx ,  

and a corresponding label  1,1 kr  , taking the value +1 or -1 

depending on whether ix  has a higher fitness than jx  or vice 

versa. 

The technique used for preferential learning or ordinal 
regression is kernel based.  See [Runersson] for details on the 
method of ordinal regression using kernel defined features. 

Model selection in surrogate ranking involves appropriately 
choosing a suitable kernel and its parameters as well as the 

regulation parameter C  which controls the balance between 
model complexities and training errors.  Choice of a suitable 
kernel is problem specific. 

As the search progresses, different regions of the search 
space are sampled and the original surrogate ranking model 
may be insufficiently accurate for new regions of the search 
space. It is therefore extremely important to update the 
surrogate during evolution. We have followed the surrogate 
update method suggested by Runersson in [22]. The strategy 
involves estimating the ranking of a population of points using 
the current surrogate and identifying the highest ranking point. 
The point is then evaluated using the true fitness function and 
its rank is calculated. Accuracy of the surrogate is evaluated by 
comparing the estimated rank with the true rank. The point 
evaluated with true fitness function is added to the training set. 

IV. EXPERIMENTS 

A. Experiment Details for DAFHEA 

It may be noted that the target problem domain for our 
proposed algorithm involves time consuming actual fitness 
function evaluation. This property or characteristic of the 
fitness function is external to the EA process. Hence, to verify 
DAFHEA’s effectiveness, it is sufficient to verify if DAFHEA 
can effectively reduce the number of actual function 
evaluations without compromising on accuracy for any set of 
standard test functions. Considering this, the performance of 
the proposed algorithm has been tested on five classical 
benchmark test functions: namely, Spherical, Ellipsoidal, 
Schwefel, Rosenbrock, and Rastrigin. Description of the test 
functions are as given in [3]. These benchmark functions in the 
test suit are scalable and are commonly used to assess the 
performance of optimization algorithms [30]. For Spherical and 

Rastrigin the global minimum is   0xf  at   0
n

ix . 

Rosenbrock has a global minimum of   0xf at  1
n

ix . 

All simulations were carried out using the following 

assumptions: The population size of n10 was used for all the 

simulations, where n  is the number of variables for the 
problem; for comparison purposes three sets of input 

dimensions are considered; namely, n 5, 10 and 20. For all 
cases, tenfold validation was done with the number of 
generations being 1000; the SVM regression models [8] were 
trained with five times the real GA population size initially. 

All the simulation processes were executed using a 

Pentium
® 

4, 2.4GHz CPU processor for both DAFHEA and the 
Preference Learning based EA. 

B. Experiment Details for DAFHEA II 

Both non-noisy and noisy versions of the chosen 
benchmark functions have been used to test DAFHEA II. The 
noisy versions of the functions have been obtained as follows. 
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     2,Nxfxf Noisy 


  

Here,  2,N = Standard Normal (or Gaussian) 

distribution with mean,  = 0 and variance, 
2 = 1. The 

probability density function  2,; xf  is defined as 

follows. 
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All simulations were carried out using the following 

experiment setup: The population size of n10 was used for all 

the simulations, where n  is the number of variables for the 
problem; for comparison purposes three sets of input 

dimensions are considered; namely, 10,5n  and 20. For all 

three cases, tenfold validation was done with the number of 
iterations being 1000 for all non-noisy versions of the test 
problems; the SVM regression models were trained with five 
times the real EA (GA in this case) population size initially. 
However, in case of the noisy versions of the test functions 
much larger number of iterations has been used to obtain 
acceptable level of accuracy of results. All the simulation 

processes were executed using a Pentium
® 

4, 2.4GHz CPU 
processor. 

C. Experiment Details for Performance Learning Based EA 

Following Runersson’s [22] method a 2-norm soft margin 
support vector machine (SVM) has been used and the 
technique has been implemented using a classical genetic 
algorithm. As mentioned earlier, choice of appropriate kernel is 
an important factor in the performance learning based EA. 
Runersson [22] has tried ordinal regression with different 
kernels and concluded that 4th order polynomial kernel 
produces the best results for the Rosenbrock’s function. For the 
sake of fair comparison we have used the same kernel for this 
test function. For the Spherical function, the 2nd order 
polynomial kernel performed best. Gaussian distribution with 
variance 0.12 has been used for the Rastrigin’s function. 

Training points have been generated using a standard 
normal distribution centered about the origins (global minima) 
of the respective test functions. 1000 testing points were 
generated in the same manner. Using 60 randomly sampled 
training points the surrogate model has been estimated by 

ordinal regression. The regulation parameter  C
 
has been 

chosen as 1.0E6. 

As the search zooms in on a local minimum, the search will 
benefit from use of different kernel [22]. As suggested by 
Runersson in [22] a Gaussian distribution with variance 0.12 

was used in case of the Rosenbrock’s and the Spherical 
functions in similar situations. 

The surrogate has been validated and updated as explained 
in Section 3.2, every second generation. 

D. Results and Discussions 

Performances of the three investigated methods on non-
noisy versions of Spherical, Ellipsoidal, Schwefel, Rosenbrock, 
and Rastrigin functions with n  5, 10 and 20 have been 
demonstrated in Table I. We have not reported any information 
on the number of actual function evaluations required for 
DAFHEA II in Table I as by design this technique employs 
additional function evaluations to achieve better performance 
in noisy environment. To give an idea about its efficacy in the 
noisy environment, Table II presents the comparative 
performances of the canonical Genetic Algorithm, DAFHEA 
and DAFHEA II in terms of number of actual function 
evaluations required when tested on the noisy versions of the 
test functions.  

As can be observed from these results, Preference Learning 
based EA seems to have an advantage in terms of “number of 
actual function evaluations” over DAFHEA. However, its 
performance in terms of “mean fitness” is just not comparable 
to that of DAFHEA in all nine test cases. Both methods found 
the classical Spherical function easier to tackle as compared to 
the Rosenbrock’s and the Rastrigin’s functions. For both 
algorithms the mean function values for the spherical functions 
were better than their Rosenbrock counterparts. However, it 
may appear that based on the number of function evaluations, 
the spherical function was much harder for DAFHEA to solve 
than its Rosenbrock counterpart of the same dimension. It must 
be noted that increase in number of iterations and thus increase 
in the number of actual function evaluation showed no 
improvement in case of the Rosenbrock’s function.  In 
general, both models gained on performance with increase in 
training set size. 

As can be anticipated, performances of both techniques 
deteriorated with increase in problem dimensions. However, 
this deterioration is much higher in case of the Preference 
Learning based EA, where the results are practically unusable 
except in case of Spherical function. Increase in the number of 
true function evaluations does not seem to improve the 
situation. 

Other general observations are as below: 

Both DAFHEA and Preference Learning based EA are 
applicable to situations where no explicit or computable fitness 
function is available. However, the concept of using preference 
learning based surrogate ranking may show more flexibility in 
such scenarios. 

In the Preference Learning based EA, surrogate ranking has 
been realized using kernel based ordinal regression. That 
means the method is easily adaptable to any data types as long 
as a suitable kernel can be defined for the specific problem at 
hand. However, this is both an advantage and a disadvantage as 
this means, sufficient knowledge of the characteristics of the 
problem is required which may be difficult in real world 
scenarios. 

The preference learning based EA benefits from selection 
of different kernel while the search zooms in on a local 
minimum. However, this switch may impose some additional 
computational as well as decisional overhead. 
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Surrogate ranking with RBF kernel tended to suffer from 
overfitting and get stuck in local minima. Second order 
polynomial performed better in case of higher order 
Rosenbrock’s function. 

The major drawback of the preference learning based 
surrogate ranking seems to be its inefficiency in handing higher 
dimensional problems, which is a common situation for most 
real world optimization problems. 

TABLE I.  PERFORMANCES OF THE DAFHEA TECHNIQUE (M1), THE 

DAFHEA II TECHNIQUE  (M2) AND THE PREFERENCE LEARNING BASED EA 

(M3) AS IMPLEMENTED ON SPHERICAL, ELLIPSOIDAL, SCHWEFEL, 
ROSENBROCK, AND RASTRIGIN FUNCTIONS WITH n  5, 10 AND 20. 

PERFORMANCE MEASURES HAVE BEEN EXPRESSED AS THE “MEAN FITNESS” 

AND THE “NUMBER OF ACTUAL FUNCTION EVALUATIONS”. 

Function Mean 

Fitness  

(M1) 

Mean 

Fitness  

(M2) 

Mean 

Fitness 

(M3) 

No of 

Actual 

Function 

Evaluations 

(M1) 

No of 

Actual 

Function 

Evaluations 

(M3) 
Rosenbrock(5) 1.789E-

41 

1.998E-

38 

1.1103E-

0.7 

7015 1200 

Rosenbrock(10) 1.991E-

39 

1.918E-

26 

1.0005 6990 4000 

Rosenbrock(20)  2.313E-

36 

1.901E-

19 

2.1108 21170 17000 

Spherical(5)  1.138E-

60 

1.138E-

56 

1.0102E-

7 

21210 375 

Spherical(10) 1.152E-

58 

1.588E-

43 

1.0081E-

5.5 

77520 1200 

Spherical(20) 1.58E-

55 

1.388E-

35 

1.0125E-

5.5 

110420 2750 

Ellipsoidal(5) 3.220E-

57 

3.412E-

51 

1.0000E-

6.1 

18500 400 

Ellipsoidal(10) 3.271E-

55 

2.523E-

39 

1.0100E-

5.5 

65700 1500 

Ellipsoidal(20)  2.209E-

52 

1.323E-

32 

1.0511E-

4.5 

95510 2900 

Schwefel(5)  1.198E-

54 

1.911E-

48 

1.0001E-

0.8 

11500 2700 

Schwefel(10) 1.199E-

51 

2.971E-

38 

0.9000 15000 5000 

Schwefel(20) 1.023E-

48 

1.989E-

31 

2.0002 25100 18000 

Rastrigin(5) 3.285E-

5 

3.322E-

1 

1.1901E-

0.8 

4550 1700 

Rastrigin(10) 3.089E-

3 

3.388E-

1 

0.9899 7175 5000 

Rastrigin(20) 1.324E-

1 

10.032 3.0011 28010 15000 

V. CONCLUSIONS 

Use of surrogates may be the most realistic answer to 
problems an iterative, stochastic search process like EA faces 
while dealing with situations, where, true fitness computation is 
highly expensive, or explicit model for fitness computation is 
absent, or environment of the evolutionary algorithm is noisy 
and so on. In this research, we have investigated three 
surrogate-based EA methods which aim at addressing some of 
these problems. While the first two methods, DAFHEA and 
DAFHEA II are based on “functional approximation” and “EA 
specific approximation” (see Section I), the second method 
uses surrogate ranking by ordinal regression or preference 
learning. Experiment results have shown, while Preference 
Learning based EA has some cost advantage in terms of 
number of true function evaluations, DAFHEA clearly should 

be the choice where accuracy (mean fitness value) is of 
paramount importance. DAFHEA II that uses multi-model 
regression for surrogate generation, shows some advantage 
over original DAFHEA and Canonical GA when applied to 
noisy functions, in terms of solution accuracy (results have not 
been shown in this article). However, this comes at the expense 
of some extra overhead in terms of number of actual function 
evaluations. 

TABLE II.  PERFORMANCES OF THE CANONOCAL GA (M1), THE 

DAFHEA TECHNIQUE (M2) AND THE DAFHEA II TECHNIQUE  (M2) AS 

IMPLEMENTED ON NOISY VERSIONS OF SPHERICAL, ELLIPSOIDAL, SCHWEFEL, 
ROSENBROCK, AND RASTRIGIN FUNCTIONS WITH n  5, 10 AND 20. THE 

PERFORMANCE MEASURE HAS BEEN EXPRESSED AS THE “NUMBER OF ACTUAL 

FUNCTION EVALUATIONS”. 

Function No of 

Actual 

Function 

Evaluations 

(M1) 

No of 

Actual 

Function 

Evaluations 

(M2) 

No of 

Actual 

Function 

Evaluations 

(M3) 
Rosenbrock(5) 35,000 9500 9000 

Rosenbrock(10) 100,000 71250 71000 

Rosenbrock(20)  500,000 290,500 290,000 
Spherical(5)  100,000 59000 58000 

Spherical(10) 100,000 76000 75000 

Spherical(20) 500,000 300,500 300,000 
Ellipsoidal(5) 100,000 59000 58000 

Ellipsoidal(10) 100,000 85000 84500 

Ellipsoidal(20)  250,000 81550 81500 
Schwefel(5)  100,000 69000 68000 

Schwefel(10) 100,000 65000 64500 
Schwefel(20) 300,000 200,050 200,000 
Rastrigin(5) 100,000 5500 5100 

Rastrigin(10) 100,000 20500 20000 
Rastrigin(20) 500,000 410,500 410,000 
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