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Abstract—In this paper, we introduce the Navier-Stokes 

equations with a new boundary condition. In this context, we 

show the existence and uniqueness of the solution of the weak 

formulation associated with the proposed problem. To solve this 

latter, we use the discretization by mixed finite element method. 

In addition, two types of a posteriori error indicator are 

introduced and are shown to give global error estimates that are 

equivalent to the true error. In order to evaluate the performance 

of the method, the numerical results are compared with some 

previously published works and with others coming from 
commercial code like ADINA system. 
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I. INTRODUCTION 

This paper describes a numerical solutions of Navier-stoks 
equations with a new boundary condition generalizes the will 
known basis conditions, especially the Dirichlet and the 
Neumann conditions. So, we prove that the weak formulation 
of the proposed modelling has an unique solution. To calculate 
this latter, we use the discretization by mixed finite element 
method. Moreover, we propose two types of a posteriori error 
indicator which are shown to give global error estimates that 
are equivalent to the true error. To compare our solution with 
the some previously ones, as ADINA system, some numerical 
results are shown. This method is structured as a standalone 
package for studying discretization algorithms for PDEs and 
for exploring and developing algorithms in numerical linear 
and nonlinear algebra for solving the associated discrete 
systems. It can also be used as a pedagogical tool for studying 
these issues, or more elementary ones such as the properties of 
Krylov subspace iterative methods [15].  

The latter two PDEs constitute the basis for computational 
modeling of the flow of an incompressible Newtonian fluid. 
For the equations, we offer a choice of two-dimensional 
domains on which the problem can be posed, along with 
boundary conditions and other aspects of the problem, and a 
choice of finite element discretizations on a quadrilateral 
element mesh.  

Whereas the discrete Navier-Stokes equations require a 
method such as the generalized minimum residual method 
(GMRES), which is designed for non symmetric systems [15]. 

The key for fast solution lies in the choice of effective 
preconditioning strategies. The package offers a range of 
options, including algebraic methods such as incomplete LU 
factorizations, as well as more sophisticated and state-of-the-
art multigrid methods designed to take advantage of the 
structure of the discrete linearized Navier-Stokes equations. In 
addition, there is a choice of iterative strategies, Picard 
iteration or Newton’s method, for solving the nonlinear 
algebraic systems arising from the latter problem. 

 A posteriori error analysis in problems related to fluid 
dynamics is a subject that has received a lot of attention during 
the last decades. In the conforming case there are several ways 
to define error estimators by using the residual equation. in 
particular, for the Stokes problem, M. Ainsworth, J. Oden 
[10], C.Carstensen, S.A. Funken [12], D.Kay, D.Silvester [13] 
and R.Verfurth  [14], introduced several error estimators and 
provided that that they are equivalent to the energy norm of 
the errors. Other works for the stationary Navier-Stokes 
problem have been introduced in [5, 8, 15, 16].                                                                                                                                                                                                                                

The plan of the paper is as follows.  Section II presents the 
model problem used in this paper. The weak formulation is 
presented in section III. In section IV, we show the existence 
and uniqueness of the solution.  

The discretization by mixed finite elements is described in 
section V. Section VI introduced two types of a posteriori 
error bounds of the computed solution. Numerical experiments 
carried out within the framework of this publication and their 

comparisons with other results are shown in Section VII. 

II. GOVERNING EQUATIONS 

We will consider the model of viscous incompressible flow 

in an idealized, bounded, connected domain in .
2
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The vector field u


 is the velocity of the flow and the scalar 
variable p represents the pressure.  

Our mathematical model is the Navier-stoks system with a 

new boundary condition (3) noted .,, cbaC  where 0  a 

given constant is called the kinematic viscosity,  is the 

gradient, .   is the divergence and 
2
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and A is a real matrix 

defined as  
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III. THE WEAK FORMULATION 
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IV. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION 

In this section we will study the existence and uniqueness 
of the solution of problem (18), for that we need the following 
results. 
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This result allows us to prove that ). ),(( 
,

1
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Hilbert space which is obliged condition for to obtain the 
existence and uniqueness of the solution.  
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Theorem 4.6.  Assume that ν and  )( 2 Lf
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following condition 

(34)            )( allfor  .
1

0,,


 nJ
Hvv

N
vf

 
 

 [0,1[.number   fixed someFor   

 
 Then there exists an unique    )()(,  2

0
1

0,  LHpu n



satisfies (18), and holds 

       .                          
, N

u
J






                                        (35) 
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V. MIXED FINITE ELEMENT APPROXIMATION 
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The system is referred to as the discrete Newton problem.  
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VI. A POSTERIORI ERROR ESTIMATOR 

In this section we propose two types of a posteriori error 
indicator, a residual error estimator and local Poisson problem 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No.3, 2013 

149 | P a g e  
www.ijacsa.thesai.org 

estimator, which are shown to give global error estimates that 
are equivalent to the true error. 

A. A Residual Error Estimator  

The bubble functions on the reference element 
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We have 
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Theorem 6.10.  For any mixed finite element 

approximation (not necessarily inf-sup stable) defined on 

rectangular grids hT , the residual estimator R  satisfies: 
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Note that the constant C in the local lower bound is 
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This establishes the upper bound. 

Turning to the local lower bound. First, for the element 
residual part, we have: 
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In addition, from the inverse inequality (47) 
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 Using (58), (59) and (4), gives 
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Finally, combining (68), (69), (71) and (73) establishes the 

local lower bound. 

B. The Local Poisson Problem Estimator. 

The local Poisson problem estimator defined as: 
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Theorem 6.11.  TP, is equivalent to TR,   estimator:  
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Next, we let EEE bRw


  ( Eb  is an edge bubble function). 
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Combining (78), (79) and (80), establishes the upper bound in 

the equivalence relation. 

For the lower, we need to use (65): 
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Now, since v


is zero at the four vertices of  T, a scaling 
argument and the usual trace theorem, see e.g. [15, Lemma 

1.5], shows that v
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Combining these two inequalities with (82) immediately 
gives the lower bound in the equivalence relation. 

 
Consequence 6.12. For any mixed finite element 

approximation (not necessarily inf-sup stable) defined on 

rectangular grids hT , the residual estimator 
P  satisfies: 

PJ
Ce  

 ,0,

  

              
Note that the constant C in the local lower bound independent 
of the domain. 

VII. NUMERICAL SIMULATION 

In this section some numerical results of calculations with 
mixed finite element Method and ADINA system will be 
presented. Using our solver, we run the flow over an obstacle 
[15] with a number of different model parameters. 

Example: Flow over an obstacle. This is another classical 

problem. The domain is     and is associated with modelling 
flow in a rectangular channel with a square cylindrical 
obstruction. A Poiseuille profile is imposed on the Inflow 

boundary ),11  ;0(  yx and noflow (zero velocity) 

condition is imposed on the obstruction and the top and 
bottom walls.  A Neumann condition is applied at the outflow 
boundary which automatically sets the mean outflow pressure 

to zero.   a disconnected rectangular region 1) (-1,×8) (0,  

generated by deleting the square 1/4). (-1/4, ×9/4) (7/4,   

 

Fig.1. Equally distributed streamline plot associated with a 32×80 square 

grid
01 PQ  approximation and .

500
1  

 
Fig.2. uniform streamline plot computed with ADINA System, associated 

with a 32 × 80 square grid and 
.

500
1    

 
Fig.3. Velocity vectors solution by MFE with a 32 × 80 square grid and 

.
500

1  
 

 
Fig.4. The solution computed with ADINA system. The plots show the 

velocity vectors solution with a 32 × 80 square grid and .
500

1    

 The two solutions are therefore essentially identical. This 
is very good indication that my solver is implemented 
correctly. 

 
Fig.5. Pressure plot for the flow with a 32 × 80 square grid. 
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Fig.6. Estimated error 
TR,  associated with 32 × 80 square grid and

  01 PQ    approximation 

TABLE I.  
TABLE1. The local Poisson problem error estimator Flow over 

an obstacle with Reynolds number Re = 1000. 
  


 hu. estimated velocity divergence error.

 

 

 Grid            

 

    


,0
. hu  

          P  

8 × 20 5.892389e-001 3.210243e+001 

16 × 40 1.101191e-001 6.039434e+000 

32 × 80 3.707139e-002 2.802914e+000 

64 ×160            1.160002e-002 1.484983e+000 

 
TABLE II.  A residual error estimator for Flow over an obstacle with 

Reynolds number Re = 1000.  

Grid            R  

8 × 20           9 ,309704e+00 

16 × 40           1,727278e+000 

32 × 80            8,156479e -001 

64 × 160            4.261901e-001 

VIII. CONCLUSION 

We were interested in this work in the numeric solution for 
two dimensional partial differential equations modelling (or 
arising from) model steady incompressible fluid flow. It 
includes algorithms for discretization by mixed finite element 
methods and a posteriori error estimation of the computed 
solutions. Our results agree with Adina system. 

Numerical results are presented to see the performance of 
the method, and seem to be interesting by comparing them 
with other recent results. 
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