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Abstract—In this work we investigate the orbit-attitude pertur-
bations of a rigid spacecraft due to the effects of several forces
and torques. The spacecraft is assumed to be of a cylindrical
shape and equipped with a charged screen with charge density
o. Clearly the main force affecting the motion of the spacecraft
is the gravitational force of the Earth with uniform spherical
mass. The effect of oblate Earth up to J> is considered as
perturbation on both the orbit and attitude of the spacecraft,
where the attitude of the spacecraft is acted upon by what is
called gravity gradient torque. Another source of perturbation
on the attitude of the spacecraft comes from the motion of
the charged spacecraft in the geomagnetic field. This motion
generates a force known as the Lorentz force which is the source
of the Lorentz force torque influencing the rotational motion of
the spacecraft. In this work we give an analytical treatment of
the orbital-rotational dynamics of the spacecraft. We first use
the definitions of Delaunay and Andoyer variables in order to
formulate the Hamiltonian of the orbit-attitude motion under the
effects of forces and torques of interest. Since the Lorentz force
is a non-conservative force, a potential like function is introduced
and added to the Hamiltonian. We solve the canonical equations
of the Hamiltonian system by successive transformations using a
technique proposed by Lie and modified by Deprit and Kamel
to solve the problem. In this technique we make two successive
transformations to eliminate the short and long periodic terms
from the Hamiltonian.

I. INTRODUCTION

The motion of a rigid spacecraft is specified by its position,
velocity, attitude, and attitude motion. The first two describe
the translational motion of the center of mass of the spacecraft,
while the latter two describe the rotational motion of the body
about the center of mass, In general the translational and
attitude motions are independent as long as no resonance con-
ditions are assumed between the orbital and rotational motions,
where in this case attitude-orbit coupling results. A spacecraft
is in general under the perturbation effect of gravitaional
potential of the Earth, which includes both perturbations on the
orbital and the attitude motion of the spacecraft. Other forces

maybe added to the gravitational force, such as solar radiation
pressure, which is investigated analytically in [11] and [2]
. In this work we invesitgate analytically the perturbation
effects of both the gravitational force up to J» and Lorentz
force on both the orbital and attitude motion. Following the
work of [2], this paper is organized as follows: we formulate
the Hamiltonian of the motion of the spacecraft under the
perturbing forces and torques, the problem is then tackled
using the straight forward Lie technique. This technique was
proposed by Lie and developed by Deprit and Kamel (see
[1] and [5]). In this technique we perform two successive
transformations to eliminate the short and long periodic terms
from the Hamiltonian, and hence the new canonical equations
are solved easily. The novelty of this work is that we obtain
an analytical solution of the problem. Despite the numerical
solution is accurate and can be applied in practise, analytical
treatments can lead to closed form solutions, and enables us
to analyze the problem.

II. COORDINATE SYSTEMS AND SYSTEMS OF
CANONICAL VARIABLES

Before starting to formulate the problem we first define
the coordinate systems and the canonical variables used to
describe the motion. Let the inertial coordiante system OXY Z
with origin at the Earth’s center and defined such that the
X —axis is toward the Vernal Equinox, the Y —axis is normal to
the X —axis and located in the equatorial plane and the Z —axis
coincides with the rotational axis of the Earth. Three unit
vectors (%7 7, lAc) are taken in the XY, Z directions respectively.
The body coordinate System O’ XY’ Z’ is located at the center
of mass of the spacecraft with X’ —axis, Y’ —axis and Z'—axis
choosen along the principal axes of the spacecraft.The three
unit vectors (€1, €, €3) are taken in the X', Y’ Z’ directions
respectively. The orbital coordinate system O’¢n( is located
at the center of mass of the spacecraft and with the &{—axis
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along the radius vector of the spacecraft from the geocenter,
the n-axis is normal to the radius vector and in located in
the orbital plane and (-axis is normal to the orbital plane.The
three unit vectors (R, S, T) are taken in the &, 7, directions
respectively.

A. Sets of Canonical variables

There are two types of sets of canonical variables used,
one for the description of the orbital motion , and the other
describes the attitude motion. There are many sets of variables
for both types. Two of the most famous sets are Delaunay and
Andoyer sets of variables used to describe both orbital and
attitude motion respectively.

B. Delaunay variables

Delaunay variables are usually used to describe the orbital
motions of the Earth and of the Moon and Sun, assumed to
produce measurable tidal effects. They are usually defined as

l : Mean anomaly, g : Argument of perigee, h : Longitude
of the node, L = /pua , G = /pa(l —e?) and H =
v pa(l —e?)cosI. Where p is the Earth’s mass, a is the
semi-major axis of the spacecraft, e is the eccenricity, and
I is the inclination.

C. Andoyer variables

Andoyer variables are the most commonly used for the de-
scription of attitude motion. [3] performed transformation from
the inertial frame to the body frame through the intermediate
invariable plane using 3 — 1 — 3 — 1 — 3 successive rotations.

The transformation matrix of this transformation is given in
terms of Andoyer variables as:

R(haaIavganavla) = [Vl V2 V3} (1)

where [, is the inclination of the invariable plane on the
reference plane, J, is the angle between the invariable plane
and the body plane. The column vectors V1, V5 and V'3 are
given as:

(Chy (CgoCly — €1,5guS1,) — Sha(—S1,57,51,
+er, (€, 8g. + €gaCa,51,))
Cho (=€, Cl 59, = CguSta) = Sha(—C1, 81,54,
+er, (CgaCraCl, — Sg.51,))
ChoSgaSJs — Shy(—CJ, 81, — C1,Cg.5.7.)

Vi

Sha(CgaCla = CJu5g.51,)
+cn, (—=51,57,5L, + c1,(C1, 89, + Cg,€J,51,))
Sha (=€, C1u 59, — Cga51,)
+cp, (1, 81,87, + 1, (CguCr.CL, — Sgu51,))
SguShaSJ, + Chy(—C1, 81, — €1,Cq,57,)

Vy

C1,8.7,81, + 51,(C1, 89, + Cg,C1,51,)
e, 8, t+51,(cg.C,01, — Sg.51,)
C1,CJ, = 81,57,Cq,

Vi =

Andoyer variables used in the previous transformation are
defined as: L, = Z’ component of the angular momentum
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vector (i.e. that normal to the body plane), G, = Total
angular momentum vector, H, = Z component of the angular
momentum vector (i.e. that normal to the reference plane). The
conjugate angle variables are :

l, = the longitude of the X’ axis (of the body frame) with
respect to the node of the body plane on the invariable plane.
go = the longitude of the node N3 with respect to Nj
(measured in the invariable plane).

h, = longitude of the node Ny with respect to the X axis (of
the inertial frame).

ITII. FORMULATION OF THE HAMILTONIAN OF
THE ORBIT-ATTITUDE MOTION

The Hamiltonian of the orbit-attitude motion of the space-
craft is formulated using the prescribed Delaunay and Andoyer
variables. The total Hamiltonian consists of the Hamiltonian
of the gravitational potential, the Hamiltonian of the torque
free motion, and the Hamiltonian of the Lorentz torques.

A. Hamiltonian of the gravitational potential

As mentioned before the gravitational potential of oblate
Earth will be considered affecting on a spacecraft of a cylin-
drical shape and consisting of only one single body. The
gravitational potential of the Earth is given by [4] as

Voo = —q 5 h(q) (1= 35 00)}s)
3 R -
AR R (ELE R

—5(1 — 7sin® ¢) %y + 253 4 20sin ¢ T4]}  (2)

where sin¢. = sinI'sin(f + g), Jo» = 1.083 x 1073 is the
coefficient of the second harmonic of Earth’s gravitational
potential and

2 2
Y= E I; Yo = E IiCiS , 23 = g Iiceig DI g I;icizceis
i=1 i=1 i=1 i=1

and I; are the principle moments of inertia of the satellite,
c;3 are the direction cosines between the principle axes and
the unit vector S along the radius vector R, and c;3 are the
direction cosines between the principal axes and the Earth’s
rotational axis.

The direction cosines c¢;3 and ce;3 need to be evaluated
in terms of Delaunay and Andoyer variables. They were
evaluated in [2] and [6] as:
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1

as= > Agrcos((f+ )+ ilha — )+ jga + k) )
iaj7k =-1
k#0
’ 1
cs= > Byrsin((f +g) +ilha —h)+ jga + kla) @
iajvk =-1
k#0
and 1
cn= Y. Cysin((f+g) +iha —h) + jga) )
iaj =-1

where the coefficients A;;x, B;;i, and C;; are known functions of I, I, and J, arising from the transformations between frames.
Now after evaluating the direction cosines c¢;3 we proceed in evaluating their squares cZ;,. We have

2
iy = Z Z P;jkm cos(i(f + g) + j(ha — h) + kga + mly,) (6)
=02 G kom = -2
where
1 1
Al/ 1250 % A
P = Prn = 3 3 S A,
Vi, p1 = -1 V2, 2 = -1 V3, U3 = -1,1
vrpur=j3 votpus=k wvzktuz=m
2
Gy =Y > Qijkmcos(i(f + )+ j(ha — h) + kga + mly) )
i=0.2 oy — 9
where
1 1
Buyvavs By jiops
Qojkm = Q2jkm = Z Z Z s el
vispr=—-1 wvo,up=-1 w3,u3=-1,1
vi—pm=j vo—po=k vz—puz=m
1 1
_— 3 3 Buivavs Biupops
2
Vl?.ul:il Z/Q,,UQ:*I V37/'L3:7171
vitur=j vatpe=k vstpuz=m
and )
Gs=>, Y.,  Rircos(i(f+g) +j(ha —h) +kga) ®)
1=0,2 j, k= —9
where
1 1 oo
Rojr = Roji = Z Z 7“”22 Pars

vi,pp = =1 wvo,pue = -1
m—p=j ve—p2=k
1 1

CV1V2C 1H2
-y S Cunlae

v, = =1 wo, e = -1
mtm=j vatpz=k
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The direction cosines c¢.;3 are evaluated as:

1
Cel3 = Z Acijsin(ige + jla)

i=0,
j=-1
1
Cs= Y Beijcos(iga + jla) ©)
i=0,
j=-1

1
Ce33 = Z Cei COS(iga)
1=0

Here A.ij, Beij and C,; are functions of I, I,, and J,. Their squares are also evaluated as:

= > Eji, cos(jiga + klo) (10)

where
1 1
Ejk _ Z Z A€V1V22A€,u1#2
vi,p1 =0  vo, e =—1
vi—pr=j va—pz=F%
1 1
- > 3 Acviva Aepria
2
vi,pr =0 v e =—1
v+ =73 vatpe==k

2
3 = > Fjy, co8(jga + Kla) (11)
j=—-1,k=-2
where
1 1

ij _ z Z B€V1V2QB€,U1M2

vy, 1 =0 Vo, U2 = -1
=35 vatpus==~%

and
2
33 = Z G cos(jga) (12)
j=—1

where

¢ = Yy Gl

2
V17N1:O
vitp =7

The products c;3ce;3 are also evaluated as:

1 2
cisces= > Upmsin(f +g) + j(ha — h) + kga + mla) (13)

j=—1k,m=-2
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where

1 1 1 A A
Ujkm _ Z Z Z V1V2V32 ep2 3
V1:_17 V2:_17 VS?M3:_17
Vlzj ,UQZO, V37é05
votpe=k vstuz=m

1
- EE: ji: Avivavs Aepaps
2
vy = 717 Vo 71, V3, U3 = 71,
V=] p2 =0, v3 # 0,
—pe=k v3—puz=

—
—

In the same way we get :

CogCers = Z Z Vikm sin((f + g) + j(ha — h) + kga +mla) (14)
j=—1km=-2
where
1 1 1 B B
— vivavz e i3
Vikm = D > >, e
vy = 713 vy = 713 V3, U3 = 713
V1 =] o =0, v3 #0
Vot o = v3 £ us
and . )
cssCess = Y Y Wigsin((f +g) + j(ha — ) + kga) (15)
j=—1k=—2
where

&
I
B

- CisCe
; 122 2

vy = 71, 120} 71,
vy =] p2 =0,
170} + Mo = k

B. Contribution of the gravitational potential to the total Hamiltonian

Considering the spacecraft is of a cylindrical shape and considering the dimensions of the cylinder to be of length ~ 100m
then R—”E is of order J», where p is the radius vector of any point on the spacecraft relative to its center of mass, and
RE is the Earth’s radlus Now note that the pr1nc1pa1 moments of inertia I; are directly proportional to the square of p,
sin®(¢.) = sin®(I)(3 — 3 cos(2g +2f)) and a = L . We then have a new form of the gravitational potential written in terms
of Delaunay and Andoyer variables as:

2 14 a\®
v, = _2“? + ng (R> [(3s® — 2) — 3s” cos(2f + 29)] (16)
J2 4R2 a 3 7,k,m=2 . .
- () | X Bcosl ) il 1)+ g )
¢ jok,m = —2
i=02
J3 3SR [ a \° i . .
- 372| ;Llo <R> |: Z Czjkm COS(Z(f + g) +j(ha - h) + kga + mla):|
‘ j7 kv m = —2
=-2,0,2,4

a7

where R. is the distance from the center of Earth to the center of mass of the spacecraft, s = sinl, Ay = p*R? and the

coefficients B11 and Cz]k:m are functions of I, J,, I, I;, R. and Jo
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C. Contribution of Lorentz force to the Hamiltonian

If we consider the spacecraft is equipped with a charged cylindrical sheet with surface charge density o, the total charge of
the spacecraft is Q = [ g 0dS, where S is the surface area of the screen. It was shown by [?] that when the center of charge
is off-center, the expression for Lorentz torque can be approximated by :

Nl = on X (V X B)b (18)

where p, is the radius vector of the center of charge and is given by in the body coordinate system
R . . 1
Po = To€] + Yoba + 2063 = — [ opdS
QR Js

v is the velocity of the center of mass of the spacecraft relative to the ECEF (Earth Centered Earth Fixed) frame and B is the
geomagnetic field intensity.

B=—grad U, (19)

where U, is the geomagnetic potential. We use here the inclined dipole model for the geomagnetic potential described in the

Cartesian coordinates. [?]
3 z T Y
U, = =%(go— — +h = 20
s R2(90R6+91RC+ 1Rc) (20)

where
go = —29615,g; = —1728, h; = 5186

Evaluating equation (18) in terms of Delaunay and Andoyer variables takes long calculations. The final form of the Lorentz
torque is then

R 1,j=3,k=2 1
E
Nl = Q( R )3 Z |: ?jkmnrs
‘ i,j=0 m,n=-1
k=— r,s=—1
x cos(if + jg+ kh + mg, + nhg +1ly + sE)
+X’?jkmnrs sin(if + jg + kh + mga + nhe + 1l + sE)} ) €1
i,j=3,k=2 1
+ ( Z Z [ngmms cos(if + jg + kh + mgg + nhe +rl, + sE)

,7=0 m,n=-1
k=-2 rs=-1

+}/;2kmnrs sin(if +jg + kh +mga + nha +rly + SE):| > €2
§,j=3,k=2 1
+ Z Z [Z?jkmms cos(if + jg + kh + mg, + nhy + rl, + sE)

1,j=0 mn=-1
k=-2 rs=-1

+Zl(')jkmn'rs Sin(if + jg +kh + mga + nhg +1ly + SE)} ) é3 20
where E is the eccentric anomaly, and the coefficients X?jkmms,f(?j kemnrs> Vi kmnrs: fﬁgkmms Z temmrs and Z%kmms are

known functions of I, I, and J, and arise from the transformations between coordinate systems.

D. Potential like function

Since Lorentz force is not conservative, i.e not derived from a potential function, we introduce the potential like function to
contribute to the Hamiltonian. The potential like function ¥; has the form

¥ = —Ni.Re = —N1.R.(c13€1 + c23€2 + €33€3) (22)
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The potential like function is then evaluated in the form :

s=1
R3 i,j=4,k=3 m,n,r = 2
— E 11
191 - —QR2< Z Z |:Aijk:mnrs
N ij==2 mnr=-2
k=-3 s=-—1

x sin(if + jg + kh + mgq + nhg +rl, + sE)

+A s €OS(Lf + jg + kh + mga + nha +rly + sE)}) (23)

According to [?], the magnitude of the Lorentz torque acting on a spacecraft is
INi| = Qlpo|Re(wo — wr)[B] (24)

where w, is the angular velocity of the rotation of the orbital coordinate system relative to the inertial system and wg is the
angular velocity of diurnal rotation of the Earth. Thus if we take a practical example in which R, = 7 x 10% m, S = 100 m?,
the electric potential U = 3 x 10°V and electric capacity cs = 107!}, so that the charge has a magnitude of 3 x 1073.
wo = 1.1 x 1072 and if |po| = 0.5 m then the Lorentz torque is of order ~ 1075, i.e. the order of Lorentz torque is close to
J2. In terms of the small parameter .J the potential like function can be written as:

s=1
72 i j=4,k=3 m,n,r =2
9 = —2—2' ( Z Z {A%}kmm,s sin(if + jg + kh + mg, + nhg + rl, + sE)
N ii=—2 mynr=-2
=-3 s=—1

(25)

o \? QuR},
R,) L2

+g%]1km7Lrs COS(if + .jg + kh + mgq + Tlha + Tla + SE):|> (

where @ = 2}—?
2

E. Total Hamiltonian

Using the expressions of the gravitational potential and the potential like function, the total Hamiltonian is then written as:

SJ’IL
_N" 22
H=> “ZH. (26)
n=0
where
2
g2 1 /1 1\ ., 1
= (-2 )2+ ¢ 27
Ho 2L2+2(13 11) ot op @ 7)

where the second and third terms in H( belong to the Hamiltonian of the torque free motion.

14 ’
o= 1 (13) (85> — 2) — 352 cos(2f + 29)] 28
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4 P2 3 7,k,m=2
WR: [ a » .
Hy = — 208 \ & Z Bwkm cos(i(f + g) + j(ha — h) + kge + mly)
Jok,m = -2
1 =0.2
s=1
~ iimd k=3  M,n,T =2
QMRSE a 2 2y )
- 12 R7c Z Z Az]kmn75 X
,j=-2 myn,r=-2

k=-3 s=-1
sin(if + jg + kh + mg, + nhg + rl, + sE)

+Az]kmnrs cos(if + jg + kh +mgq +nhg +rl, + SE)] ) (29)
3R [ a\® Pham=2 , .
Hs = ;Lloe (R) { Z Cij:m cos(i(f +g) + j(ha — h) + kga + mla)} (30)
‘ ja ka m= —2
= 92,0,2,4

From the above equations we note that H; is a function of L, L, and GG, hence [, [,and g, are fast variables while the other
variables are slow ones.

IV. PERTURBATION APPROACH

Let € be the small parameter of the problem and let the canonical system of differential equations be written as :
u=Hf , U=-H!
What is required is to construct two (or more) transformations (u,U;e) — (&, U) and (&, U;€) — (u, U) analytic in e at
€ = 0 to eliminate in succession the short and long period terms from the Hamiltonian such that U reduce to constants and

U become linear functions of time.
The old and new Hamiltonians and the Generators are assumed expandable as

H::m+z%m
H* (=, ty, dg; Use) = H5(01)+ZLT;H;(*aﬁ2,@3;U)
H*(=Ue) = H3'(U +Z CH () 31)
W(:Use) = Z W1 (50
W*(*,Tjg,’uig;[};ﬁ) = Z Wn+1 Iig,’lig;év)

Elimination of Short period terms

Using the transformation equations we have the following basic identities

H; = Hj
n—1
~ n—1 n—1 "
E1:1ﬂ+;{(j1>Wﬁﬂm+< j)GﬂﬁJ (32)
j=
Let u; be the fast variable in H . We choose H to be the average of fi:n over up; 1. e.

HY =< H, >u, (33)

So that the periodic term is
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P, =H, — H: = (Hy; W,,) (34)

OHy\ ' .

After determining the generator, the elements of the transformation and its inverse are determined by

from which

2 2
. I3 < _7 I3 i)
u7u+zﬁu , UfUJrZHU (35)
n=1 n=1
2 Jn 2 Jn
U =u+ Zl S (wU) . U=U+ Zl U™ (u,U) (36)
where
=M e M e 37)
ou oU
o _ 9 oo = M2y (38)
ou ’ ou
and
u®M = ;M , u® = 3@ yor,a® (39)
U = _ggm , U® = _y® 4 or,UM (40)

where L is the Lie derivative. .
Note that in the last two equations the right hand sides are evaluated at &« = u and U = U.
A. Elimination of Long period terms
The second transformation to eliminate the long period terms proceeds in exactly the same way but replacing (u,U) by
(4, U); (4,U) by (4,U); H by H* ; H* by H** and W by W*
V. SOLUTION OF THE TRANSLATIONAL ROTATIONAL MOTION

In this section the translational rotational motion is solved using the Lie technique. As discussed in the previous section,
there will be two successive canonical transformations in order to eliminate the short and long period terms in succession.
secular and periodic terms will be retained up to O(J3) and O(.J3) respectively.
A. Short Period transformation

we proceed to eliminate the short period terms (those depending on [,[, and g,) from the Hamiltonian in equation (26)
1) Zero Order: Using equation (32) and equation (27) we find that :

2
* H 171 1 2 L o
= = — —_— —_ L
Ho = Ho 2L2+2(13 Il) a+2[1Ga

where all the variables in the right hand side are understood to be single primed, but the primes are removed from now on
for simplicity.
2) First Order: From equation (32) we have :

HE = Hy + (Ho; Wh) 1)
and
H, = H _ 1A a0 3[(382—2)—382008(2f+2)]
1 1= 176 R, g

we then choose H] to be the secular part of ﬁl. Thus we take the average of ﬁl over the fast angles.

- 1 27 27 27 -
ik =< H; >lla ga™= 873/ / Hldladgadl (42)
™ Jo 0 0
That is - e
* 2
ipe i) 43
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The Periodic part is given as

~ % 1 AQ [¢ 3 H3 2 AQ I’I2
Since P is independent of [, and g,, we have only 3;‘;1 not vanishing.
thus
L3 1 A, H3 .
L R e (( —355)(f — L +esin(f))
1
—33[ sin(2f + 29) + g(gsnmaf+2g)+smpf+29n}) (45)
3) Second order: Again we use the perturbation equations.
The equations for the second order are :
Hy = Ho+ (Ho; Wo) (46)
Ho = Ho+ (H1 + HT; Wl) “n
Where Hs is given in equation(29) and the bracket (M, + H7; W1) is evaluated as:
. 3A2 9 2 3A43(4—5s?)
(Ha +H; W) = T16,2LAGE (35 —2)" — T16205GT Z 7o cos(if +2g)
9A3s? 2 a\? .
+ m(ll —5s%)(f=1) E sin(2f + 2¢)
44;£L47 — E:E:Hycwzf+zm) (48)
256eu2 L11G8 /

j=—11=0

where f is the true anomaly, K?, and H ;4 are functions of e and s. Now Hy is easily obtained. Now we take H3 in equation

(46) to be the average of Hs }
_ 1 2 27 2m
o< > = dladgedl
My =<Ho>1.0.= g3 /0 /O ; Hadladg

In performing this averaging we use Hansen coefficients to express functions of the true and eccentric anomaly in terms of
the mean anomaly.

<}§ > cos(mf) = Zak " (e) cos(kl) (49)
¢ k>0
and .
(; > sin(mf) = Zbin " (e) sin(kl) (50)
¢ k>0

where the coefficients a, b are Hansen coefficients that many procedures has been developed to evaluate[?].
Upon averaging of H, we have

2 J=2 ~11 QuR?
ZHZ* cos(ig) + Z By joo cos(ig + j(ha — 1)) — E x

12
Jj=-2
i=0,2,—2
j=4,k=3 =
Z |:F]k:0n00 sin(jg + kh +nh,) + kOnOO cos(jg + kh + nhy)
j=-2 n=-2
k——3

(S
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and the generator Ws is given as

o j=dk=3  TLN,T =2
W2 = Z Z |:F7,jkmnr Sln(il + ]g + kh + mga + nha + ’I’la)
i=—00 j=-2 mn,r=-2

k=3

+ Fzgkmnr COS(’il + ]g + kh + mga + nha + ’I"Za) (52)
where Fjl'klOnOO’ Fjlklomo’ F2 iy and F%kanr are functions of the action variables.
4) Third order:: The equations for the third order are
H; = ﬁj + ('Ho; Wg) (53)

Hy = H3+§;{< jzl )(H3—j§Wj)+<§ )@'%—j}

= 7‘[3 + (Hz; Wl) + 2G1IH§
+2(H1; Wz) + GQHT
= ’H3—|—(H2+2/H; — (HT;Wl);Wl)+(2H1+HT;Wz) 54)

The bracket (Ho + 2H5 — (H7; Wh); W1) is evaluated as

) j=4,k=3

(HQ + 27_[; - (Hia Wl) ) Wl) = Z Z Z zykmnr

i=—00 ] —_4 ™ ,n,r=—2
k=-3
cos(il + jg + kh +mg, + nhy +1l,)

+ QU sin(il + jg + kh 4+ mg, + nhg + rl,)

(55)
and the bracket (H; + 2H7}; Wa)
0o  j=4,k=3 m,n,r =2
(Hl + 27-[1{7 WQ) = Z Z zzj'zkmm" X
=T i =4 myn,r=-2
k=-3
cos(il + jg + kh + mg, + nhg + 1rl,)
QB Sl + g + kb + Mg +nha +7l,)] (56)
So that when using equation (30) we have
H; =< H3z + (7‘[2 + 27‘[; — ( T; Wl) ; Wl) + (27’[1 + /HT; Wz) >1la.ga
After performing the averaging we have
2
N 3uSR2 % ; .
Hy = — 5110 [ Z Cgooao " cos(ig + j(ha — h))
j=-2
i=-2,0,2,4
J=Lk=3 2 ~11 ~22
+ Z Z (Qj,m cos(jg + kh +nha) + Qjy, sin(jg+kh+nha)> (57)
j — 4 n=-—2
k=-3
~11 ~22

where Q”kmm,Q”kmnNkamm,Q” kmm,éjkn and @, are all functions of the action variables and the previously
computed coefficients.
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B. Elements of Short Period transformation

The elements of the transformation are obtained following the same procedures used by Kamel[?]. The equations are :

oW oW.

ul ==t =Wy, P = Lyt (i=1,2,3) (58)

N oW~ N oW N
oY = - anl =Wispi , UP=- au? + LU0 (i=1,2,3) (59)

where
oW1, oW1,
Lyt =3 | S Wy + W sy (60)
o j=1 [ auj Y 8Uj 1.3+
3

N an i+3 an i+3

LU'(I):E RALR ALY /PR LS HACA T (61)
o j=1 9, N oU; v

The derivatives of W5 in the above expressions were already computed while evaluating Poisson brackets.

c. Long Period Transformation
In the new transformation we consider that the new Hamiltonian is expandable in powers of J, such that

2
N JW NI NN U
W =Hy (L, Ga, La) + Y “EH (LG H, Ly, G, Ha) (62)
n=1

and the generator W* is expandable as

2
NN N S JI N N S
W (9,1 hay L, G H, Ly Ga, Ho) = 3“2 W1 (9, b ha, L, G, H, Lo, Ga, Ha) (63)
n=0

We use the same equations of transformation but now to transform the system associated with H* to H**

Hy = H
Wy = HL+ (Hy W)

n—1
H;+Z{<?:i )(H;_j;wj)+("j_.1 >GjH;;*_j} (64)
j=1

but since W* is a function of the slow variables only (g, h, ha) then the bracket (; W) vanishes, and the last two of
equations (64) can be written in a single equation as

n—1
Ho, =Hn+Z{<’;_1 )(Hnj;Wj>+<”j )Gﬂim} (65)
j=1

Now we solve for different orders as before.
1) Zero Order:: The identity for the zero order is

0,

M =

2
*ok H 1 1 1 2 1 2
= 4+ (- )L2+ G
o 2L2+2(13 11) ot op, “a

where we will be omitting the double primes from now on for simplicity.
2) First order: From equation (65) the identity for the first order is

thus

M=
from which
1 A, H?

e i )

(66)
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3) Second order: : From (65) the identity for the first order is

1
Hyr = 7—[2+Z{< 0 >( 1;W1)+< ] >G1’H1 }
j=1
= M5+ (H;Wi) + GiHT™
= Hy+ (H;Wh) + (M1 W)
= Hy+2(H; W) (67)
so that
— =M QuRj,
Hy = 2(HY; W) Z H} cos(ig) Z By, joo cos(ig + j(ha — h)) — 72 X
J=-2
i=0,2,-2
j=4,k=3 n=2
Z |:Fj1k10n00 sin(jg + kh + nhy) + Fjlklonoo cos(jg + kh + nhy) (63)
j=-2 n=-2
k=-3

we perform the averaging over 35 and the secular part in the right hand side is then chosen to be #H5*
that is

~11 Q R
* % * ,u
Hy™ = Hg+ Bogooo — I 2E Fidoooo (69)
and then we evaluate W; from the remaining part as
j=4k=3 =
Wy = > [Rjkn cos(jg + kh + nha) + R}y, sin(jg + kh + nhy)
j=-2 n=-2
k=-3
~11

where as before the coefficients H;, By, o0, F 40m00> F Sron00s Rk, and R;‘,m are functions of the action variables and the
previously computed coefficients.
4) Third Order:: The equations of the third order are

Myt = Hi+3(Mp;W3) (70)
. 2 2 2
H:; = Hi +Z{( -1 ) (Hz_j; W)+ ( j )Gj’}{gij}
j=1
* 3 * sk *
= H3+§(H2+H25W1) (71)
the bracket (H3 + H3*; W) is evaluated as
j=8,k=6 n=4
(Hy +HE W) = Z (Sitd cos(jg + kh + nhe) + Sipa sin(jg + kh + nhy)) (72)
j=—6 n=-4
k=—6
Proceeding, we then evaluate H3* as
ok 17 % 3M6R4 —5,0 3 *
H3" =<Hz >gnn,= o710 Cob00%0 > | + Qbaooo + Qo000 + 550661 (73)
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and
6 P4 k=2
Wi = _’;Llfg S EPsin(ig+ k(ha — 1)
=2
7=-2,0,2,4
| i=hk=s 2
DYDY [Q;ﬁisln(jg+kh+nh ) — Q% cos(jg + kh + nh, )]
j=—4 "2
k=-3
1 j=8,k=6 =
+ 3 Z [Sjkn sin(jg + kh + nhg) — Sj,mcos(]g—i—kh—&—nh )} (74)
j=—6 n=-4
k=—-6

D. Elements of Long Period transformation

The elements of the transformation and its inverse maybe obtained from the equations of short period transformation, but
with the replacement of W,, by W7, (u,U) by (4, U) , L, by L* and (,U) by (u,U).

E. Secular perturbations and the computation of position and velocity

The equations of motion are now reduced to

d&' OH*™* div M
w_ T A _oHT (75)
dt ou dt dUr
where c are arbitrary constants so that they admit the solution
U=U, , u=ug+ect (76)

where the constants (Uo, ﬁo) are to be determined from the initial conditions.

Let the elements (ug, Uy) be known at a given initial epoch ¢, then we can obtain the constants (UO, ﬁo) as follows:
1- From the elements of the transformation we can compute the initial values (Up, o) from

2 2
N Jn n ‘ Jn n
o = uo + Y ;’ﬁug) . Uo=Us+ ) ﬁUO) (77)

n=1

2- From the corresponding equations for the elements of the long period transformations
2
o = g + Zi' , UO_UO—i—Z 2U0" (78)

Now having determined lio and Uy we can evaluate H** = ’H**(U), and in turn the constants ¢ are now known.
To compute the position and velocity at any time ¢ we compute

2 N 2 Jﬂ N
= Z um o U=U+) ﬁU(”) (79)
n=1 n=1
then
2 JTL ’I’L
_ s J2 +(n) I3 gy
u-u—l-z_:ln!u ., U= U+Z g (80)

Having determined (u, U) at time t, we compute the position, velocity, attitude and attitude motion of the spacecraft.
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VI. CONCLUSION

In this paper we have obtained an analytical solution for the orbit-attitude motion of a charged spacecraft under the effect of
Earth oblateness (J2) and Lorentz force through Hamiltonian framework. The problem is tackled by means of Lie perturbation
technique. Two successive canonical transformations were performed in order to eliminate the short and long period terms in
succession. secular and periodic terms were retained up to O(J3) and O(JZ) respectively.
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