
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

130 | P a g e

www.ijacsa.thesai.org

Reducing Attributes in Rough Set Theory with the

Viewpoint of Mining Frequent Patterns

Thanh-Trung Nguyen

Department of Computer Science

University of Information Technology,

Vietnam National University HCM City

Ho Chi Minh City, Vietnam

Phi-Khu Nguyen

Department of Computer Science

University of Information Technology,

Vietnam National University HCM City

Ho Chi Minh City, Vietnam

Abstract—The main objective of the Attribute Reduction

problem in Rough Set Theory is to find and retain the set of

attributes whose values vary most between objects in an

Information System or Decision System. Besides, Mining

Frequent Patterns aims finding items that the number of times

they appear together in transactions exceeds a given threshold as

much as possible. Therefore, the two problems have similarities.

From that, an idea formed is to solve the problem of Attribute

Reduction from the viewpoint and method of Mining Frequent

Patterns. The main difficulty of the Attribute Reduction problem

is the time consuming for execution, NP-hard. This article

proposes two new algorithms for Attribute Reduction: one has

linear complexity, and one has global optimum with concepts of

Maximal Random Prior Set and Maximal Set.

Keywords—accumulating frequent patterns; attribute

reduction; maximal set; maximal random prior set; mining

frequent patterns; rough set

I. INTRODUCTION

Attribute reduction has played an important role in rough
set applied in many fields, such as data mining, pattern
recognition, machine learning. In recent years, there are many
proposed reduction algorithms based on positive-region,
information entropy and discernibility matrix (Qian et. al.
2011).

Attribute reduction methods have been applied by reducing
inadequate features to discover hidden patterns from high
dimensional data sets. Meanwhile, the nature of the original
features still remained and the time consuming for pattern
recognition has been decreased (Dash et. al. 2010) (Liang et. al.
2013) (Qian et. al. 2010). The characteristics of the data set are
remained by keeping the important attributes. Therefore, the
quality of this data set has been enhanced through the removal
of redundant attributes (Sadasivam et. al. 2012). Also, rule
induction can be applied in rough set theory due to attribute
reduction algorithms (Yao and Zhao 2008) (Ju et. al. 2011).

One of applications of attribute reduction is gene selection.
A paper presented a Quick Reduct based Genetic Algorithm
(Anitha 2012) while a minimal spanning tree based on rough
set theory for gene selection was introduced (Pati and Das
2013). Based on cross entropy, the relatively dispensable
attributes have been omitted in the decision system and the
optimal attributes set has described the same discriminative
features for the original data set (Zheng and Yan 2012). In the

sense of entropies, many discernibility matrixes were
introduced (Wei et. al. 2013).

Based on indiscernibility and discernibility, similarities and
differences of objects have been figured out and hence,
attribute reduction has been carried out according to these basic
theories. Attribute set is reduced by generating redacts using
the indiscernibility relation of Rough Set Theory (Sengupta and
Das 2012). By transforming discernibility matrix into a
simplest equivalent matrix, valuable attributes have been
retained while unimportant attributes will be removed from the
discernibility matrix (Yao and Zhao 2009). An attribute
reduction algorithm based on genetic algorithm with improved
selection operator and discernibility matrix was researched and
introduced (Zhenjiang et. al. 2012). Some others discussed an
algorithm on discernibility matrix and Information Gain to
reduce attributes (Azhagusundari and Thanamani 2013).

In addition, a proposed hybrid algorithm for large data sets
was studied to overcome the shortcoming about
computationally time-consuming and inefficient significance
measure for more attributes with the same greatest value (Qian
et. al. 2011).

Heterogeneous attribute reduction technique can be based
on neighborhood rough sets by using neighborhood
dependency to evaluate the discriminating capability of a
subset of heterogeneous attributes. This neighborhood model
reduced the attributes according to the thresholds of samples in
decision positive region (Hu et. al. 2008).

In incomplete decision systems, attribute reduction
methods, such as distributive reduction and positive region
reduction have been given by discernibility function (Jilin et.
al. 2009). To deal with these systems, a paper proposed a new
attribute reduction method based on information quantity. This
approach improved traditional tolerance relationship
calculation methods using an extension of tolerance
relationship in rough set theory (Xu et. al. 2012). Another
research presented a new attribute reduction algorithm based on
incomplete decision table, which improves the two aspects of
time and space complexity (Yue et. al. 2012).

Handling attribute reduction problem in special systems is
also a challenged issue. There are some researches in attribute
reduction about dynamic data sets (Wang et. al. 2013), fuzzy
sets (Chen et. al. 2012), Inconsistent Disjunctive Set-valued
Ordered Decision Information System (Zhang et. al. 2012) etc.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

131 | P a g e

www.ijacsa.thesai.org

Even, the design and implement of rough set processor in
VHDL have studied on Binary Discernibility matrix and reduct
calculator block (Tiwari et. al. 2012). Thereby, the speed of the
operation for a dedicated hardware has been increased.

The calculation time is always a big issue in attribute
reduction. A new accelerator for attribute reduction has been
proposed based on perspective of objects and attributes (Liang
et. al. 2013). Particle swarm optimization was a new heuristic
algorithm which has been applied to many optimization
problems successfully (Ding et. al. 2012). Nowadays, it is often
used to solve non-deterministic polynomial (NP)-hard problem
such as attribute reduction problem. Co-PSAR was introduced
based on this idea to find the minimal reduction set. An
algorithm based on rough set and Wasp Swarm Optimization
was also introduced. It utilizes mutual information based
information entropy to find core attributes, and then utilizes the
significance of feature as probability information to search
through the feature space for minimum attributes reduction
result (Fan and Zhong 2012). A popular method in swarm
intelligence is Ant Colony Optimization (ACO). A research
proposed hybrid approach can help in improving classification
accuracy and also in finding more robust features to improve
classifier performance based on ACO (Arafat et. al. 2013).

Genetic algorithm was also researched and applied to
attribute reduction. The convergence speed of algorithm is
faster in global optimal solution (Zhenjiang et. al. 2012) (Liu
et. al. 2013).

Besides, granular computing has been a new research
approach studied to reduce the attribute in decision system (Li
et. al. 2013). A paper presented a novel granularity partition
model and developed a fast effective feature selection
algorithm in decision systems (Sun et. al. 2012).

Some other approaches have been researched recently about
Nonlinear Great Deluge Algorithm (Jaddi and Abdullah 2013),
Quantization (Li et. al. 2012), attribute significance (Zhai et. al.
2012), degree of condition attributes (Qiu et. al. 2012) … They
are all proved their efficiency in solving attribute reduction
problem.

This article introduces an algorithm based on bit-chains and
maximal random prior set. It finds out a reduction with linear
time but the result is not global optimization. Therefore,
another algorithm based on maximal set (a new development of
maximal random prior set) and the algorithm for Accumulating
Frequent Pattern (Nguyen TT and Nguyen PK 2013) to find a
global optimal reduction is also proposed.

II. FORMULATION MODEL

Definition 1 (bit-chain): < a1a2 … am > (for ai  {0, 1}) is a
m-bit-chain. Zero chain is a bit-chain with each bit equals 0.

Definition 2 (intersection operation ): The intersection

operation  is a dyadic operation in bit-chains space.

< a1a2 … am >  < b1b2 … bm > = < c1c2 … cm >, ai, bi 
{0, 1}, ci = min(ai, bi)

Definition 3 (cover operation): A bit-chain A is said to
cover a bit-chain B if and only if with every position having
bit-1 turned on in B, A has a corresponding bit-1 turned on.

Let A = < a1a2 ... am >, B = < b1b2 ... bm >, (bi=1..m  (bi = 1)

 (ai = 1))  A  B

Consequence 1: A bit-chain the result of an intersection
operation and differing from zero chain is always covered by
two bit-chains generating it.

(A  B = C)  (C  0)  (A  C)  (B  C)

Definition 4 (maximal random prior form  – S): The
maximal random prior form of a set S of bit-chains, denoted by

 – S, is a bit-chain satisfying four criteria:

 Being covered most by elements in S.

 Being covered by the first element in S.

 Having number of bit-1 turned on as much as possible.

 If there are more than one bit-chain meeting three
criteria above, the bit-chain chosen to be the maximal
random prior form of S is one covered by the first
elements in S.

For example, consider a set of 4-bit-chains <abcd>:

 a b c d

S = { (1 0 1 1);

(0 0 1 1);

(1 1 0 0);
(1 0 1 0) }

Review three bit-chains:

<0011>: has two bit-1 turned on but is only covered by the
first two bit-chains of S.

<1000>: has one bit-1 turned on and is covered by three bit-
chains of S.

<0010>: has one bit-1 turned on and is covered by three bit-
chains of S.

Between <1000> and <0010>, <0010> is covered by the

first two elements in S, so  – S has to be <0010>.

Definition 5 (maximal random prior elements): Maximal
random prior elements of set S of bit-chains have the following
characteristics:

The first element (p1) is form  – S

The second element (p2) is form  – S\{x  S  x  p1}

The third element (p3) is form  – S\({x  S  x  p1}  {x

 S  x  p2})

…

The k
th
 element (pk) is form  – S\({x  S  x  p1}  {x 

S  x  p2}  ...  {x  S  x  pk-1})

and S = {x  S  x  p1}  {x  S  x  p2}  ...  {x  S 
x  pk}

Definition 6 (maximal random prior set): A set P
containing all maximal random prior elements of a set S of bit-
chains is called maximal random prior set of S.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

132 | P a g e

www.ijacsa.thesai.org

Consequence 2: All elements in maximal random prior set
P do not have any the same position where bit-1 turned on.

Consequence 3: When the bit-chains set is arranged in
different orders, it will produce different maximal random prior
sets.

Theorem 1: When the intersection operations are made
between an element in S and elements in P, the results differing
from zero chain will not cover each other.

Proof: According to Consequence 2, the results made from
intersection operations of an element in S and elements in P
will not have bit-1 turned on at the same position. So that, these
will not cover each other.

III. ALGORITHM FOR FINDING MAXIMAL RANDOM PRIOR

SET

A. Idea

Consider a Boolean function f the intersection () of n

propositions. Each proposition in f is a union () of m variables
a1, a2, ..., am. According to commutative law of Boolean
algebra, n propositions of f can be changed into the form: f = A1

 A2  ...  Am, with:

A1 =
1k (a1  …)

A2 =
2k (a2  …) A2 does not contain a1

A3 =
3k (a3  …) A3 does not contain a1, a2

…

Am =
mk (am  …) Am does not contain a1, a2, …, am-1

i = 1..m; 0  ki  n  k1 + k2 + ... + km = n;

kp  0; 1  p  m  Ap = ap  Xp; Xp is a certain proposition.

So, f =  Ap =  (ap  Xp) = ( ap)  ( Xp)

Clearly, ( ap) is a reduction of f.

If n propositions in f are transformed into a set S of m-bit-
chains, the maximal random prior set P will be a reduction of f.

According to the above analysis, an algorithm is taken
shape to construct maximal random prior set P of the bit-chains
set S with the following main ideas:

Each element in set S will be inspected with the existing
order in S. At the same time, the set P will be also created or
modified correspondingly with the number of elements
inspected in S.

The initial set P is empty. Obviously, the set S with one first
element has the corresponding set P also containing only this
first element.

Scanning the next element of S, the intersection operations (

) made between this element and the existing elements of P
to find out the new maximal random prior forms. If the new
form is generated, it will replace the old form in P because this
new form is covered by elements of S more than the old form,

evidently. If the new form is not generated, obviously, the next
element of S is one new maximal random prior form.

However, a question maybe be brought out. Whenever the
next element in S is inspected, the elements have to carry out
intersection operations with the existing elements in P; at that
time, we have two element groups listed such as: (1) the old
elements of P, (2) the new elements created by the intersection
operations. Maybe, the new elements will cover together or
cover the old elements or be covered by the old elements.
Therefore, whether the set P is ensured the consistency as
Consequence 2 stated? The answer is “Yes” since Consequence
1 and Theorem 1 are generated to ensure this.

B. Proposed Algorithm

FIND_MaximalRandomPriorSet

Input: m-bit-chains set S

Output: maximal random prior set P

1. P = ;
2. for each s in S do

3. flag = False;

4. for each p in P do

5. temp = s  p;

6. if temp <> 0 then//temp differs

 from zero chain

7. replace p in P by temp;

8. flag = True;

9. break;

10. end if;

11. end for;

12. if flag = False then

13. P = P  {s};//s becomes ending
 element of P

14. end if;

15. end for;

16. return P;

C. Accuracy of The Algorithm

Theorem 2: FIND_MaximalRandomPriorSet algorithm can
find out the maximal random prior set P of a bit-chains set S
with a given order.

Proof by Induction:

With number of elements in S is 1, the only element in S is

also form  – S. According to the algorithm, the only element
in S is inserted into P. Then, the only element in P satisfies the
definition of maximal random prior set. Since, Theorem 2 is
correct when S has 1 element.

Assume that Theorem 2 is correct when S has k elements.
We need to prove Theorem 2 is correct when S has k + 1
element, too.

Because Theorem 2 is correct when S has k elements, we
have the set P contains all maximal random prior elements of
this set S.

When S has k + 1 elements, it means the original set S
having k elements are added a new element.

According to FIND_MaximalRandomPriorSet algorithm,
we make intersection operations between elements in current P
and the new (k + 1)

th
 element denoted sk+1 in S (line 4 and line

5):

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

133 | P a g e

www.ijacsa.thesai.org

 If the result of the intersection operation between sk+1
and an element pi in P differs from zero chain (line 6),

this result is form  – S\({x  S  x  p1}  {x  S  x 

p2}  ...  {x  S  x  pi-1}), with S has k + 1
elements. Replace pi in P by this new result element
(line 7). When sk+1, together with pi, create a new
maximal random prior form, we terminate intersection
operations between sk+1 and remaining elements in P
(line 9).

 If all intersection operations between sk+1 and each
element in P return zero chain, it means sk+1 does not

cover any element in P. Thus, the element sk+1 is form 
– {sk+1}, then sk+1 is inserted into P (line 13).

In both cases, we receive the set P satisfying the properties
of the maximal random prior set of S. So, Theorem 2 is correct
when S has k + 1 element.

In conclusion: FIND_MaximalRandomPriorSet algorithm
can find out the maximal random prior set P of a bit-chains set
S with a given order.

IV. ATTRIBUTE REDUCTION IN ROUGH SET THEORY

The maximal random prior set P is useful in solving and
reducing Boolean algebra functions. One of the most important
applications of the set P is finding out a solution of attribute
reduction problem in rough set theory.

A. Rough Set

In rough set theory, information system is a pair (U, A),
where U is a non-empty finite set of objects and A is a non-
empty finite set of attributes. A decision system is any

information system of the form (U; A  {d}), where d  A is
decision attribute.

TABLE I. A DECISION SYSTEM “PLAY SPORT”

 Wind Temperature Humidity Outlook Play Sport

x1 Strong Hot Normal Sunny Yes

x2 Strong Mild Normal Rain No

x3 Weak Hot Normal Rain No

x4 Weak Cool High Rain Yes

With |U| denotes cardinal of U, discernibility matrix of a
decision system is a symmetric |U|x|U| matrix with each entry

cij = {a  A  a(xi)  a(xj)} if d(xi)  d(xj), otherwise cij = .

TABLE II. DISCERNIBILITY MATRIX OF DECISION SYSTEM “PLAY

SPORT”

 x1 x2 x3 x4

x1    
x2 b,d   
x3 a,d   
x4  a,b,c b,c 

Table II presents a discernibility matrix of decision system
“Play Sport” where a, b, c, d denote Wind, Temperature,
Humidity and Outlook, respectively.

Discernibility function is a Boolean function retrieved from

discernibility matrix and can be defined by the formula f =  {

 cij  cij  }. According to Table II, we have discernibility

function f = (b  d)  (a  d)  (a  b  c)  (b  c).

Discernibility function can be simplified by using laws of
Boolean algebra. All constituents in the minimal disjunctive
normal form of this function are all reductions of decision
system (Pawlak 2003). However, simplifying discernibility
function is a NP-hard problem and attribute reduction is always
the key problem in rough set theory.

B. The Maximal Random Prior Set and Attribute Reduction

Problem

Consider a discernibility function f retrieved from
discernibility matrix of a decision system with m attributes has
n constituents. Each constituent in this function will be
transformed into an m-bit-chain, with each bit denotes an
attribute. The function will be converted into a set S has n bit-
chains. The maximal random prior set P of the set S is the
simplification of discernibility function f.

Set P shows (some) reduction(s) of function f. With each
bit-chain in P, the positions where bit-1 is turned on need to be
noticed. Value 1 of a bit means that the corresponding attribute
will appear in reduction of f. The collection of all attributes
retrieved from set P is a simplification of discernibility
function f.

Example: According to discernibility function f of decision
system in Table I, the set S includes:

S = { (0 1 0 1);

 (1 0 0 1);

 (1 1 1 0);

 (0 1 1 0) }

Initialize P = . Scan all elements in S

S[1] = (0 1 0 1) → insert (0 1 0 1) into P → P = { (0 1 0 1)
}

S[2] = (1 0 0 1) → (1 0 0 1)  (0 1 0 1) = (0 0 0 1) →
replace (0 1 0 1) in P by (0 0 0 1) → P = { (0 0 0 1) }

S[3] = (1 1 1 0) → (1 1 1 0)  (0 0 0 1) = (0 0 0 0) →
insert (1 1 1 0) into P → P = { (0 0 0 1); (1 1 1 0) }

S[4] = (0 1 1 0) → (0 1 1 0)  (0 0 0 1) = (0 0 0 0); (0 1 1

0)  (1 1 1 0) = (0 1 1 0) → replace (1 1 1 0) in P by (0 1 1 0)
→ P = { (0 0 0 1); (0 1 1 0) }

(0 0 0 1) → d and (0 1 1 0) → b  c

So, minimal function f = d  (b  c).

In conclusion, (d  b) and (d  c) are two reductions of
discernibility function f.

V. EXPERIMENTATION 1

FIND_MaximalRandomPriorSet algorithm is developed
and tested on a personal computer with specification: Windows
7 Ultimate 32-bit, Service Pack 1 Operating System; 4096MB
RAM; Intel(R) Core(TM)2 Duo, E7400, 2.80GHz; 300GB

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

134 | P a g e

www.ijacsa.thesai.org

HDD. Programming language is C#.NET on Visual Studio
2008. The results of some testing patterns:

TABLE III. SOME TESTING PATTERNS OF

FIND_MAXIMALRANDOMPRIORSET ALGORITHM

Length of bit-chain Number of bit-chains Time (unit: second)

10 1,000,000 0.2184004

10 2,000,000 0.3900007

10 5,000,000 1.0140017

10 10,000,000 2.0436036

25 1,000,000 0.2808005

25 2,000,000 0.546001

25 5,000,000 1.123202

25 10,000,000 2.8236049

50 1,000,000 0.2496004

50 2,000,000 0.7176013

50 5,000,000 1.9032033

50 10,000,000 3.978007

60 1,000,000 0.3744007

60 2,000,000 0.7644014

60 5,000,000 1.9344034

60 10,000,000 4.1964073

Attribute Reduction based on bit-chains and maximal
random prior set has just been introduced. It found a reduction
with linear time but the result is not global optimization. The
following example will show this problem clearly:

a b c d e g

 S = { (1 1 0 1 0 0);

 (1 1 0 1 0 0);

 (1 0 0 0 0 0);

 (0 0 1 1 0 0);

 (0 0 1 1 0 0);

 (0 0 1 0 0 0);

 (0 1 0 1 1 1);

 (0 1 0 1 1 1) }
When applying FIND_MaximalRandomPriorSet algorithm

to S, we have:

P = { (1 0 0 0 0 0); (0 0 1 0 0 0); (0 1 0 1 1 1) }

(1 0 0 0 0 0) → a; (0 0 1 0 0 0) → c; (0 1 0 1 1 1) → b  d

 e  g

So, minimal function f = a  c  (b  d  e  g). Hence, (a

 c  b), (a  c  d), (a  c  e), and (a  c  g) are four
reductions of discernibility function f.

But, if the order of the elements in S is changed as follows:

 a b c d e g

 S = { (1 1 0 1 0 0);

 (1 1 0 1 0 0);

 (0 0 1 1 0 0);

 (0 0 1 1 0 0);

 (0 1 0 1 1 1);

 (0 1 0 1 1 1)

 (1 0 0 0 0 0);

 (0 0 1 0 0 0); }
then we have:

P = { (0 0 0 1 0 0); (1 0 0 0 0 0); (0 0 1 0 0 0) }

(0 0 0 1 0 0) → d; (1 0 0 0 0 0) → a; (0 0 1 0 0 0) → c

So, minimal function f = d  a  c. This is also the
reduction of discernibility function f. Now, we can see that this
result is better than the above one because it emphasize the
importance of attribute d (the values of d show the difference
up to 6 times between the objects), and it also is succinct.

Obviously, with an arbitrary order of elements in S,
FIND_MaximalRandomPriorSet algorithm can not find out the
best result.

The next section is going to propose a new model which is
based on maximal set (a new development of maximal random
prior set) and NewRepresentative, the algorithm for
Accumulating Frequent Patterns (Nguyen TT and Nguyen PK
2013) to find a global optimal reduction.

VI. MAXIMAL SET

Definition 7 (maximal form  – S): The maximal form of a

set S of bit-chains, denoted by  – S, is a bit-chain which is
covered most by elements in S.

Definition 8 (maximal elements): Maximal elements of set
S of bit-chains have the following characteristics:

The first element (q1) is form  – S

The second element (q2) is form  – S\{x  S | x  q1}

The third element (q3) is form  – S\{x  S | x  q1}  {x 
S | x  q2}

…

The k
th
 element (qk) is form  – S\{x  S | x  q1}  {x  S

| x  q2} … {x  S | x  qk-1}

and S = {x  S | x  q1}  {x  S | x  q2} … {x  S |
x  qk}

Definition 9 (maximal set): A set Q, which contains all
maximal elements of a bit-chain set S, is called maximal set of
S.

VII. THE ALGORITHM FOR FINDING MAXIMAL SET

In one of our previous papers, we introduced an algorithm
to find out all frequent patterns of S set of transactions. Each
transaction is a bit-chain with bit locations stand for a type of
items. If bit-1 is turned on, it means customer bought it in
transaction and otherwise. The algorithm for accumulating
frequent patterns finds out the representative set P

*
 every time

when a new bit-chain added to S (Nguyen TT and Nguyen PK
2013). The below is the full algorithm:

NewRepresentative

Input: P is a representative set of S,

 z is a bit-chain added to S.

Output: The new representative set P of

S  {z}.

1. M =  // M: set of new elements of P
*

2. flag1 = 0

3. flag2 = 0

4. for each x  P do

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

135 | P a g e

www.ijacsa.thesai.org

5. q = x  [z; 1]
6. if q ≠ 0 // q is not a chain with all bits 0

7. if x  q then P = P \ x

8. if [z; 1]  q then flag1 = 1

9. for each y  M do

10. if y  q then

11. M = M \ y
12. break for

13. endif

14. if q  y then
15. flag2 = 1

16. break for

17. endif

18. endfor

19. else

20. flag2 = 1

21. endif

22. if flag2 = 0 then M = M  q
23. flag2 = 0

24. endfor

25. if flag1 = 0 then P = P  [z; 1]

26. P = P  M
27. return P

Note (Nguyen TT and Nguyen PK 2013):

 [z; n] is called a pattern. z is a bit-chain and n is the

frequency (n  , n  0).

  is called intersection operation between 2 patterns.

[a1a2…am; n1]  [b1b2…bm; n2] = [c1c2…cm; n1 + n2]; ai,

bi  {0, 1}, ci = min(ai, bi)

  is called contained operation between 2 patterns. [u1;

n1]  [u2; n2]  (u1 = u2)  (n1 ≤ n2)

 A pattern [u; k] of S is called maximal pattern – denoted

[u; k]maxS – if and only if it doesn’t exist k’ such that

[u; k’]maxS and k’ > k.

 P
*
 is representative set of S when P

*
 = {[u; n]maxS 

∄[v; m]maxS : (v  u and m > n)}. Each element in P
*
 is

called a representative pattern of S.

Consequence 4: The bit-chain of the pattern which has the
highest frequency in Representative Set of a set S is the
maximal form of S.

From Consequence 4, the Definition 8 can be modified to
become the following definition.

Definition 10 (maximal elements): Maximal elements of
set S of bit-chains have the following characteristics:

The first element (q1) is the element {y0  P
*
 | x  S, x 

y0 and y  P
*
 | x  S, x  y  y0.frequency > y.frequency}

The second element (q2) is the element {y0  P
*
 | x  S1, x

 y0 and y  P
*
 | x  S1, x  y  y0.frequency >

y.frequency}, here S1 = S\{x  S | x  q1}

The third element (q3) is the element {y0  P
*
 | x  S2, x

 y0 and y  P
*
 | x  S2, x  y  y0.frequency >

y.frequency}, here S2 = S1\{x  S1 | x  q2}

…

The (k + 1)
th

 element (qk+1) is the element {y0  P
*
 | x 

Sk, x  y0 and y  P
*
 | x  Sk, x  y  y0.frequency >

y.frequency}, here Sk = Sk-1\{x  Sk-1 | x  qk}

After Definition 10 is appeared, the algorithm for finding
Maximal Set is created as follows:

FIND_MaximalSet

Input: m-bit-chains set S

 A representative set P of S

Output: the maximal set Q

1. while S is not empty do

2. z = GetMaximalForm(P)

3. Q = Q  z

4. for each x  S do

5. if x  z ≠ 0 then

6. S  S \ {x}

7. endif

8. endfor

9. endwhile

10. return Q

The pseudo-code of GetMaximalForm algorithm is shown
here:

GetMaximalForm

Input: A representative set P

Output: the maximal form m

1. m = P [1];

2. for each x  P do

3. if m.Frequency < x.Frequency then

4. m = x;

5. endif

6. endfor

7. for each x  P do

8. if x  m ≠ 0 then
9. P = P \{x}

10. endif

11. endfor

12. return m;

Theorem 3: FIND_MaximalSet algorithm can find out the
maximal set Q of a bit-chains set S.

Proof: The algorithm FIND_MaximalSet works as follows:
First we find the element qj, then delete elements in P

*
 and in S

covering qj. Repeat this until the set S is empty.

In the above, if we do not delete elements in P
*
 covering qj,

then we can see that the qj we find is the same as in Definition
10. Hence to prove the correctness of the FIND_MaximalSet
algorithm, we need to show that when we delete elements in P

*

covering qj then we obtain the same maximal elements as
defined in Definition 10.

We show this by induction on j.

If j = 1, then q1 is determined unambiguously. We define S1

= S\{x  S | x  q1} and P1 = P
*
\{y  S | y  q1}.

From Definition 10, q2 is determined as follows: It is the
element in P

*
 which is covered by at least one element in S1

and is the one with the most frequency among such. We show
now that q2 can be determined from P1 by the same criteria.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

136 | P a g e

www.ijacsa.thesai.org

Indeed, if q2 is not an element in P1, then by definition q2 must
cover q1. Now by the choice of q2, q2 must be covered by one
element in S1, called that element x2. Since x2  q2 and q2  q1,
x2 must cover q1. But x2 is an element in S1, and any element in
S1 cannot cover q1, hence we obtain a contradiction. This shows
that Theorem 3 is true for j = 2.

Now assume that Theorem 3 is true for j = j0. We now
prove it is true for j = j0 + 1. We prove this exactly like the case
from j = 1 to j = 2 above. (Q.E.D.)

Similar to the Maximal Random Prior Set, one of the
applications which can integrate the Maximal Set is reducing
the discernibility function of rough set. Consider an example of

discernibility function f = (a  b  d)  (a  b  d)  a  (c 

d)  (c  d)  c  (b  d  e  g)  (b  d  e  g) with a, b, c,
d, e, g are attributes in a decision system. Change f to a set of
bit-chains S:

 a b c d e g

 S = { (1 1 0 1 0 0);

 (1 1 0 1 0 0);

 (1 0 0 0 0 0);

 (0 0 1 1 0 0);

 (0 0 1 1 0 0);

 (0 0 1 0 0 0);

 (0 1 0 1 1 1);

 (0 1 0 1 1 1) }

Initialize P
*
 = . Scan all elements in S.

* S[1] = [110100; 1]: P
*
 is empty. Put S[1] into P

*
. P

*
 =

{[110100; 1]}

* S[2] = [110100; 1]:

S[2]  P
*
[1] = [110100; 1]  [110100; 1] = [110100; 2]

// [110100; 1]  [110100; 2]

P
*
 = {[110100; 2]}

* S[3] = [100000; 1]:

S[3]  P
*
[1] = [100000; 1]  [110100; 2] = [100000; 3]

// S[3]  [100000; 3]

P
*
 = {[110100; 2]; [100000; 3]}

* S[4] = [001100; 1]:

S[4]  P
*
[1] = [001100; 1]  [110100; 2] = [000100; 3]

S[4]  P
*
[2] = [001100; 1]  [100000; 3] = 0 (zero chain)

P
*
 = {[110100; 2]; [100000; 3]; [000100; 3]; [001100; 1]}

* S[5] = [001100; 1]:

S[5]  P
*
[1] = [001100; 1]  [110100; 2] = [000100; 3]

S[5]  P
*
[2] = [001100; 1]  [100000; 3] = 0 (zero chain)

S[5]  P
*
[3] = [001100; 1]  [000100; 3] = [000100; 4]

S[5]  P
*
[4] = [001100; 1]  [001100; 1] = [001100; 2]

// [000100; 3]  [000100; 4]

// [001100; 1]  [001100; 2]

P
*
 = {[110100; 2]; [100000; 3]; [000100; 4]; [001100; 2]}

* S[6] = [001000; 1]:

S[6]  P
*
[1] = [001000; 1]  [110100; 2] = 0 (zero chain)

S[6]  P
*
[2] = [001000; 1]  [100000; 3] = 0 (zero chain)

S[6]  P
*
[3] = [001000; 1]  [000100; 4] = 0 (zero chain)

S[6]  P
*
[4] = [001000; 1]  [001100; 2] = [001000; 3]

// S[6]  [001000; 3]

P
*
 = {[110100; 2]; [100000; 3]; [000100; 4]; [001100; 2];

[001000; 3]}

* S[7] = [010111; 1]:

S[7]  P
*
[1] = [010111; 1]  [110100; 2] = [010100; 3]

S[7]  P
*
[2] = [010111; 1]  [100000; 3] = 0 (zero chain)

S[7]  P
*
[3] = [010111; 1]  [000100; 4] = [000100; 5]

S[7]  P
*
[4] = [010111; 1]  [001100; 2] = [000100; 3]

S[7]  P
*
[5] = [010111; 1]  [001000; 3] = 0 (zero chain)

// [000100; 3], [000100; 4]  [000100; 5]

P
*
 = {[110100; 2]; [100000; 3]; [001100; 2]; [001000; 3];

[010100; 3]; [000100; 5]; [010111; 1]}

* S[8] = [010111; 1]:

S[8]  P
*
[1] = [010111; 1]  [110100; 2] = [010100; 3]

S[8]  P
*
[2] = [010111; 1]  [100000; 3] = 0 (zero chain)

S[8]  P
*
[3] = [010111; 1]  [001100; 2] = [000100; 3]

S[8]  P
*
[4] = [010111; 1]  [001000; 3] = 0 (zero chain)

S[8]  P
*
[5] = [010111; 1]  [010100; 3] = [010100; 4]

S[8]  P
*
[6] = [010111; 1]  [000100; 5] = [000100; 6]

S[8]  P
*
[7] = [010111; 1]  [010111; 1] = [010111; 2]

// [010100; 3]  [010100; 4]

// [000100; 3], [000100; 5]  [000100; 6]

// [010111; 1]  [010111; 2]

P
*
 = {[110100; 2]; [100000; 3]; [001100; 2]; [001000; 3];

[010100; 4]; [000100; 6]; [010111; 2]} (Accumulated Frequent
Patterns)

* Finding maximal set:

Initialize Q = .

P
*
[6] = [000100; 6] has highest frequency. Remove all

elements in P
*
 and S which cover bit-chain 000100 of P

*
[6].

Put it into Q:

Q = {000100};

P
*
 = {[100000; 3]; [001000; 3]};

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

137 | P a g e

www.ijacsa.thesai.org

S = {100000; 001000}

Now, P
*
[1] = [100000; 3] and P

*
[2] = [001000; 3] have the

same frequencies. It allows us to select one of them as the next
maximal form in maximal set. Select P

*
[1]. Remove all

elements in P
*
 and S which cover bit-chain 100000 of P

*
[1].

Put it into Q:

Q = {000100; 100000};

P
*
 = {[001000; 3]};

S = {001000}

Finally, P
*
 has just only one element P

*
[1] = [001000; 3].

Remove all elements in P
*
 and S which cover bit-chain 001000

of P
*
[1]. Put it into Q:

Q = {000100; 100000; 001000};

P
*
 = ;

S = 

S is empty. The algorithm is terminated. Q is the maximal
set of the set S.

Q = {000100; 100000; 001000};

(000100) → d; (100000) → a; and (001000) → c

So, minimal function f = d  a  c

In conclusion, (d  a  c) is a reduction of discernibility
function f.

VIII. EXPERIMENTATION 2

The experiments of proposed algorithms are conducted on a
machine with Pentium(R) Dual-Core CPU, E6500 @ 2.93GHz
(2 CPUs), ~2.1GHz and 2048MB main memory installed. The
operating system is Windows Server 2008 R2 Enterprise 64-bit
(6.1, Build 7601) Service Pack 1. Programming language is
C#.NET.

Data for experiments are DataFoodMart 2000 and
T40I10D100K taken from http://fimi.ua.ac.be/data/ and
http://www.dagira.com/2009/12/23/foodmart-2000-universe-
review-part-i-introduction website, respectively.

IX. CONCLUSION AND FUTURE WORK

The result of experimentation 1 reflects the efficiency and
accuracy of FIND_MaximalRandomPriorSet algorithm. The
complexity of this algorithm is n.2

m
 where n is the number of

bit-chains in the set S and m is the length of a bit-chain. In fact,
m is often unchanged, so that, 2

m
 can be treated as a large

constant and the complexity of
FIND_MaximalRandomPriorSet algorithm is linear.

Mining frequent patterns is applied successfully into
attribute reduction problem. FIND_MaximalSet algorithm
maybe takes much time to execute but the result reflects the
global optimization.

TABLE IV. THE RESULT FOR RUNNING THE ALGORITHMS

Data
No. of

Records

No. of

Attributes

AFP running

time

(second)

No. of FP

AR

running

time

(second)

No. of

Remaining

Attributes

Food

Mart

2000

10,281 18 80.979 7,184 0.140 12

T40I10

D100K
1,452,990 60 74,882.424 558,193 345.774 60

a. AFP: Accumulating Frequent Patterns

b. FP: Frequent Patterns

c. AR: Attribute Reduction

In future, paralleling the algorithms will be a good
approach to reduce the calculation time and enhance the
attribute reduction result.

Besides, integrating maximal random prior set and maximal
set into practical applications will help verify their accuracy
more clearly.

REFERENCES

[1] K. Anitha, “Gene selection based on rough set: applications of rough set
on computational biology,” International Journal of Computing
Algorithm Volume 01, Issue 02, December 2012.

[2] H. Arafat, R. M. Elawady, S. Barakat, and N. M. Elrashidy, “Using
rough set and ant colony optimization in feature selection,” International
Journal of Emerging Trends & Technology in Computer Science
(IJETTCS), Volume 2, Issue 1, January - February 2013.

[3] B. Azhagusundari and A. S. Thanamani, “Feature selection based on
information gain,” International Journal of Innovative Technology and
Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-2,
January 2013.

[4] D. Chen, L. Zhang, S. Zhao, Q. Hu, and P. Zhu, “A novel algorithm for
finding reducts with fuzzy rough sets,” IEEE Transactions On Fuzzy
Systems, Vol.20, No.2, April 2012.

[5] Rajashree Dash, Rasmita Dash, and D. Mishra, “A hybridized rough-
PCA approach of attribute reduction for high dimensional data set,”
European Journal of Scientific Research ISSN 1450-216X Vol.44 No.1
(2010), pp.29-38.

[6] W. Ding, J. Wang, and Z. Guan, “Cooperative extended rough attribute
reduction algorithm based on improved PSO,” Journal of Systems
Engineering and Electronics Vol.23, No.1, February 2012, pp.160–166.

[7] H. Fan and Y. Zhong, “A rough set approach to feature selection based
on wasp swarm optimization,” Journal of Computational Information
Systems 8: 3 (2012) 1037–1045.

[8] Q. Hu, D. Yu, J. Liu, and C. Wu, “Neighborhood rough set based
heterogeneous feature subset selection,” Elsevier, Information Sciences
178 (2008) 3577-3594.

[9] N. S. Jaddi and S. Abdullah, “Nonlinear great deluge algorithm for
rough set attribute reduction,” Journal Of Information Science And
Engineering 29, 49-62 (2013).

[10] Y. Jilin, Q. Keyun, and D. Weifeng, “Attribute reduction based on
generalized similarity relation in incomplete decision system,”
Proceedings of the 2009 International Symposium on Information
Processing (ISIP’09).

[11] L. Ju, X. Wenbin, and Z. Bei, “Construction of customer classification
model based on inconsistent decision table,” International Journal of e-
Education, e-Business, e-Management and e-Learning, Vol.1, No.3,
August 2011.

[12] B. Li, P. Tang, and T. W. S. Chow, “Quantization of rough set based
attribute reduction,” A Journal of Software Engineering and
Applications, 2012, 5, 117-123.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 4, 2013

138 | P a g e

www.ijacsa.thesai.org

[13] D. Li, Z. Chen, and J. Yin, “A new attribute reduction recursive
algorithm based on granular computing,” Journal Of Computers, Vol.8,
No.3, March 2013.

[14] J. Liang, J. Mi, W. Wei, and F. Wang, “An accelerator for attribute
reduction based on perspective of objects and attributes,” Knowledge-
Based Systems 9 February 2013.

[15] J. Liu, F. Min, S. Liao, and W. Zhu, “Test cost constraint attribute
reduction through a genetic approach,” Journal of Information &
Computational Science 10: 3 (2013) 839–849.

[16] T. T. Nguyen and P. K. Nguyen, “A new viewpoint for mining frequent
patterns,” International Journal of Advanced Computer Science and
Application (IJACSA), Vol.4, No.3, March 2013.

[17] S. K. Pati and A. K. Das, “Constructing minimal spanning tree based on
rough set theory for gene selection,” International Journal of Artificial
Intelligence & Applications (IJAIA), Vol.4, No.1, January 2013.

[18] Z. Pawlak, “Rough sets,” The Tarragona University seminar on Formal
Languages and Rough Sets in August 2003.

[19] J. Qian, D. Q. Miao, Z. H. Zhang, and W. Li, “Hybrid approaches to
attribute reduction based on indiscernibility and discernibility relation,”
Elsevier, International Journal of Approximate Reasoning 52 (2011)
212- 230.

[20] Y. Qian, J. Liang, W. Pedrycz, and C. Dang, “Positive approximation:
an accelerator for attribute reduction in rough set theory,” Elsevier,
Artificial Intelligence 174 (2010) 597-618.

[21] T. Qiu, Y. Lin, X. Bai, “The difference degree of condition attributes
and its application in the reduction of attributes,” Journal Of Computers,
Vol.7, No.5, May 2012.

[22] G. S. Sadasivam, S. Sangeetha, and K. S. Priya, “Privacy preservation
with attribute reduction in quantitative association rules using PSO and
DSR,” Special Issue of International Journal of Computer Application
(0975-8887) on Information Processing and Remote Computing – IPRC,
August 2012.

[23] S. Sengupta and A. K. Das, “Single reduct generation based on relative
indiscernibility of rough set theory,” International Journal on Soft
Computing (IJSC) Vol.3, No.1, February 2012.

[24] L. Sun, J. Xu, J. Ren, T. Xu, and Q. Zhang, “Granularity partition-based
feature selection and its application in decision systems,” Journal of
Information & Computational Science 9: 12 (2012) 3487–3500.

[25] K. S. Tiwari, A. G. Kothari, and A. G. Keskar, “Reduct generation from
binary discernibility matrix: an hardware approach,” International
Journal of Future Computer and Communication, Vol.1, No.3, October
2012.

[26] E. Xu, Y. Yang, and Y. Ren, “A new method of attribute reduction
based on information quantity in an incomplete system,” Journal Of
Software, Vol.7, No.8, August 2012.

[27] Y. Yao, and Y. Zhao, “Attribute reduction in decision - theoretic rough
set models,” Information Sciences, 178(17), 3356-3373, Elsevier B.V.,
2008.

[28] Y. Yao and Y. Zhao, “Discernibility matrix simplification for
constructing attribute reducts,” Information Sciences, Vol.179, No.5,
867-882, 2009.

[29] D. Yue, W. Jian, and Z. Xu, “Attribute reduction algorithm based on
incomplete decision table,” National Conference on Information
Technology and Computer Science (CITCS 2012).

[30] Y. Zhai, C. Zhou, and Y. Sun, “Approach of rule extracting based on
attribute significance and decision classification,” Journal Of
Computers, Vol.7, No.2, February 2012.

[31] Q. Zhang, W. Shen, and Q. Yang, “Attribute reduction in inconsistent
disjunctive set-valued ordered decision information system,” Journal of
Computational Information Systems 8: 12 (2012) 5161-5167.

[32] J. Zheng and R. Yan, “Attribute reduction based on cross entropy in
rough set theory,” Journal of Information & Computational Science 9: 3
(2012).

[33] W. Zhengjiang, Z. Jingmin, and G. Yan, “An attribute reduction
algorithm based on genetic algorithm and discernibility matrix,” Journal
Of Software, Vol.7, No.11, November 2012.

[34] F. Wang, J. Liang, C. Dang, and Y. Qian, “Attribute reduction for
dynamic data sets,” Journal Applied Soft Computing Volume 13, Issue
1, January 2013, Pages 676-689.

[35] W. Wei, J. Liang, J. Wang, and Y. Qian, “Decision-relative
discernibility matrixes in the sense of entropies,” International Journal of
General Systems 2013.

