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Abstract—The main objective of the Attribute Reduction 

problem in Rough Set Theory is to find and retain the set of 

attributes whose values vary most between objects in an 

Information System or Decision System. Besides, Mining 

Frequent Patterns aims finding items that the number of times 

they appear together in transactions exceeds a given threshold as 

much as possible. Therefore, the two problems have similarities. 

From that, an idea formed is to solve the problem of Attribute 

Reduction from the viewpoint and method of Mining Frequent 

Patterns. The main difficulty of the Attribute Reduction problem 

is the time consuming for execution, NP-hard. This article 

proposes two new algorithms for Attribute Reduction: one has 

linear complexity, and one has global optimum with concepts of 

Maximal Random Prior Set and Maximal Set. 
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I. INTRODUCTION 

Attribute reduction has played an important role in rough 
set applied in many fields, such as data mining, pattern 
recognition, machine learning. In recent years, there are many 
proposed reduction algorithms based on positive-region, 
information entropy and discernibility matrix (Qian et. al. 
2011). 

Attribute reduction methods have been applied by reducing 
inadequate features to discover hidden patterns from high 
dimensional data sets. Meanwhile, the nature of the original 
features still remained and the time consuming for pattern 
recognition has been decreased (Dash et. al. 2010) (Liang et. al. 
2013) (Qian et. al. 2010). The characteristics of the data set are 
remained by keeping the important attributes. Therefore, the 
quality of this data set has been enhanced through the removal 
of redundant attributes (Sadasivam et. al. 2012). Also, rule 
induction can be applied in rough set theory due to attribute 
reduction algorithms (Yao and Zhao 2008) (Ju et. al. 2011). 

One of applications of attribute reduction is gene selection. 
A paper presented a Quick Reduct based Genetic Algorithm 
(Anitha 2012) while a minimal spanning tree based on rough 
set theory for gene selection was introduced (Pati and Das 
2013). Based on cross entropy, the relatively dispensable 
attributes have been omitted in the decision system and the 
optimal attributes set has described the same discriminative 
features for the original data set (Zheng and Yan 2012). In the 

sense of entropies, many discernibility matrixes were 
introduced (Wei et. al. 2013). 

Based on indiscernibility and discernibility, similarities and 
differences of objects have been figured out and hence, 
attribute reduction has been carried out according to these basic 
theories. Attribute set is reduced by generating redacts using 
the indiscernibility relation of Rough Set Theory (Sengupta and 
Das 2012). By transforming discernibility matrix into a 
simplest equivalent matrix, valuable attributes have been 
retained while unimportant attributes will be removed from the 
discernibility matrix (Yao and Zhao 2009). An attribute 
reduction algorithm based on genetic algorithm with improved 
selection operator and discernibility matrix was researched and 
introduced (Zhenjiang et. al. 2012). Some others discussed an 
algorithm on discernibility matrix and Information Gain to 
reduce attributes (Azhagusundari and Thanamani 2013). 

In addition, a proposed hybrid algorithm for large data sets 
was studied to overcome the shortcoming about 
computationally time-consuming and inefficient significance 
measure for more attributes with the same greatest value (Qian 
et. al. 2011). 

Heterogeneous attribute reduction technique can be based 
on neighborhood rough sets by using neighborhood 
dependency to evaluate the discriminating capability of a 
subset of heterogeneous attributes. This neighborhood model 
reduced the attributes according to the thresholds of samples in 
decision positive region (Hu et. al. 2008). 

In incomplete decision systems, attribute reduction 
methods, such as distributive reduction and positive region 
reduction have been given by discernibility function (Jilin et. 
al. 2009). To deal with these systems, a paper proposed a new 
attribute reduction method based on information quantity. This 
approach improved traditional tolerance relationship 
calculation methods using an extension of tolerance 
relationship in rough set theory (Xu et. al. 2012). Another 
research presented a new attribute reduction algorithm based on 
incomplete decision table, which improves the two aspects of 
time and space complexity (Yue et. al. 2012). 

Handling attribute reduction problem in special systems is 
also a challenged issue. There are some researches in attribute 
reduction about dynamic data sets (Wang et. al. 2013), fuzzy 
sets (Chen et. al. 2012), Inconsistent Disjunctive Set-valued 
Ordered Decision Information System (Zhang et. al. 2012) etc. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 4, No. 4, 2013 

131 | P a g e  

www.ijacsa.thesai.org 

Even, the design and implement of rough set processor in 
VHDL have studied on Binary Discernibility matrix and reduct 
calculator block (Tiwari et. al. 2012). Thereby, the speed of the 
operation for a dedicated hardware has been increased. 

The calculation time is always a big issue in attribute 
reduction. A new accelerator for attribute reduction has been 
proposed based on perspective of objects and attributes (Liang 
et. al. 2013). Particle swarm optimization was a new heuristic 
algorithm which has been applied to many optimization 
problems successfully (Ding et. al. 2012). Nowadays, it is often 
used to solve non-deterministic polynomial (NP)-hard problem 
such as attribute reduction problem. Co-PSAR was introduced 
based on this idea to find the minimal reduction set. An 
algorithm based on rough set and Wasp Swarm Optimization 
was also introduced. It utilizes mutual information based 
information entropy to find core attributes, and then utilizes the 
significance of feature as probability information to search 
through the feature space for minimum attributes reduction 
result (Fan and Zhong 2012). A popular method in swarm 
intelligence is Ant Colony Optimization (ACO). A research 
proposed hybrid approach can help in improving classification 
accuracy and also in finding more robust features to improve 
classifier performance based on ACO (Arafat et. al. 2013). 

Genetic algorithm was also researched and applied to 
attribute reduction. The convergence speed of algorithm is 
faster in global optimal solution (Zhenjiang et. al. 2012) (Liu 
et. al. 2013). 

Besides, granular computing has been a new research 
approach studied to reduce the attribute in decision system (Li 
et. al. 2013). A paper presented a novel granularity partition 
model and developed a fast effective feature selection 
algorithm in decision systems (Sun et. al. 2012). 

Some other approaches have been researched recently about 
Nonlinear Great Deluge Algorithm (Jaddi and Abdullah 2013), 
Quantization (Li et. al. 2012), attribute significance (Zhai et. al. 
2012), degree of condition attributes (Qiu et. al. 2012) … They 
are all proved their efficiency in solving attribute reduction 
problem. 

This article introduces an algorithm based on bit-chains and 
maximal random prior set. It finds out a reduction with linear 
time but the result is not global optimization. Therefore, 
another algorithm based on maximal set (a new development of 
maximal random prior set) and the algorithm for Accumulating 
Frequent Pattern (Nguyen TT and Nguyen PK 2013) to find a 
global optimal reduction is also proposed. 

II. FORMULATION MODEL 

Definition 1 (bit-chain): < a1a2 … am > (for ai  {0, 1}) is a 
m-bit-chain. Zero chain is a bit-chain with each bit equals 0. 

Definition 2 (intersection operation  ): The intersection 

operation   is a dyadic operation in bit-chains space. 

< a1a2 … am >   < b1b2 … bm > = < c1c2 … cm >, ai, bi  
{0, 1}, ci = min(ai, bi) 

Definition 3 (cover operation): A bit-chain A is said to 
cover a bit-chain B if and only if with every position having 
bit-1 turned on in B, A has a corresponding bit-1 turned on. 

Let A = < a1a2 ... am >, B = < b1b2 ... bm >, (bi=1..m  (bi = 1) 

 (ai = 1))  A  B 

Consequence 1: A bit-chain the result of an intersection 
operation and differing from zero chain is always covered by 
two bit-chains generating it. 

(A   B = C)  (C  0)  (A  C)  (B  C) 

Definition 4 (maximal random prior form  – S): The 
maximal random prior form of a set S of bit-chains, denoted by 

 – S, is a bit-chain satisfying four criteria: 

 Being covered most by elements in S. 

 Being covered by the first element in S. 

 Having number of bit-1 turned on as much as possible. 

 If there are more than one bit-chain meeting three 
criteria above, the bit-chain chosen to be the maximal 
random prior form of S is one covered by the first 
elements in S. 

For example, consider a set of 4-bit-chains <abcd>: 

     a  b  c  d 

S = { ( 1  0  1  1 ); 

( 0  0  1  1 );  

( 1  1  0  0 ); 
( 1  0  1  0 ) } 

Review three bit-chains: 

<0011>: has two bit-1 turned on but is only covered by the 
first two bit-chains of S. 

<1000>: has one bit-1 turned on and is covered by three bit-
chains of S. 

<0010>: has one bit-1 turned on and is covered by three bit-
chains of S. 

Between <1000> and <0010>, <0010> is covered by the 

first two elements in S, so  – S has to be <0010>. 

Definition 5 (maximal random prior elements): Maximal 
random prior elements of set S of bit-chains have the following 
characteristics: 

The first element (p1) is form  – S 

The second element (p2) is form  – S\{x  S  x  p1} 

The third element (p3) is form  – S\({x  S  x  p1}  {x 

 S  x  p2}) 

… 

The k
th
 element (pk) is form  – S\({x  S  x  p1}  {x  

S  x  p2}  ...  {x  S  x  pk-1}) 

and S = {x  S  x  p1}  {x  S  x  p2}  ...  {x  S  
x  pk} 

Definition 6 (maximal random prior set): A set P 
containing all maximal random prior elements of a set S of bit-
chains is called maximal random prior set of S. 
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Consequence 2: All elements in maximal random prior set 
P do not have any the same position where bit-1 turned on. 

Consequence 3: When the bit-chains set is arranged in 
different orders, it will produce different maximal random prior 
sets. 

Theorem 1: When the intersection operations are made 
between an element in S and elements in P, the results differing 
from zero chain will not cover each other. 

Proof: According to Consequence 2, the results made from 
intersection operations of an element in S and elements in P 
will not have bit-1 turned on at the same position. So that, these 
will not cover each other. 

III. ALGORITHM FOR FINDING MAXIMAL RANDOM PRIOR 

SET 

A. Idea 

Consider a Boolean function f the intersection () of n 

propositions. Each proposition in f is a union () of m variables 
a1, a2, ..., am. According to commutative law of Boolean 
algebra, n propositions of f can be changed into the form: f = A1 

 A2  ...  Am, with: 

A1 = 
1k (a1  …) 

A2 = 
2k (a2  …) A2 does not contain a1 

A3 = 
3k (a3  …) A3 does not contain a1, a2 

… 

Am = 
mk (am  …) Am does not contain a1, a2, …, am-1 

i = 1..m; 0  ki  n  k1 + k2 + ... + km = n; 

kp  0; 1  p  m  Ap = ap  Xp; Xp is a certain proposition. 

So, f =  Ap =  (ap  Xp) = (  ap)  (  Xp) 

Clearly, ( ap) is a reduction of f. 

If n propositions in f are transformed into a set S of m-bit-
chains, the maximal random prior set P will be a reduction of f. 

According to the above analysis, an algorithm is taken 
shape to construct maximal random prior set P of the bit-chains 
set S with the following main ideas: 

Each element in set S will be inspected with the existing 
order in S. At the same time, the set P will be also created or 
modified correspondingly with the number of elements 
inspected in S. 

The initial set P is empty. Obviously, the set S with one first 
element has the corresponding set P also containing only this 
first element. 

Scanning the next element of S, the intersection operations (

 ) made between this element and the existing elements of P 
to find out the new maximal random prior forms. If the new 
form is generated, it will replace the old form in P because this 
new form is covered by elements of S more than the old form, 

evidently. If the new form is not generated, obviously, the next 
element of S is one new maximal random prior form. 

However, a question maybe be brought out. Whenever the 
next element in S is inspected, the elements have to carry out 
intersection operations with the existing elements in P; at that 
time, we have two element groups listed such as: (1) the old 
elements of P, (2) the new elements created by the intersection 
operations. Maybe, the new elements will cover together or 
cover the old elements or be covered by the old elements. 
Therefore, whether the set P is ensured the consistency as 
Consequence 2 stated? The answer is “Yes” since Consequence 
1 and Theorem 1 are generated to ensure this. 

B. Proposed Algorithm 

FIND_MaximalRandomPriorSet 

Input: m-bit-chains set S 

Output: maximal random prior set P 

1.  P = ; 
2.  for each s in S do 

3.    flag = False; 

4.    for each p in P do 

5.      temp = s   p; 

6.      if temp <> 0 then//temp differs  

                         from zero chain 

7.        replace p in P by temp; 

8.        flag = True; 

9.        break; 

10.     end if; 

11.   end for; 

12.   if flag = False then 

13.     P = P  {s};//s becomes ending  
                           element of P 

14.   end if; 

15. end for; 

16. return P; 

C. Accuracy of The Algorithm 

Theorem 2: FIND_MaximalRandomPriorSet algorithm can 
find out the maximal random prior set P of a bit-chains set S 
with a given order. 

Proof by Induction: 

With number of elements in S is 1, the only element in S is 

also form  – S. According to the algorithm, the only element 
in S is inserted into P. Then, the only element in P satisfies the 
definition of maximal random prior set. Since, Theorem 2 is 
correct when S has 1 element. 

Assume that Theorem 2 is correct when S has k elements. 
We need to prove Theorem 2 is correct when S has k + 1 
element, too. 

Because Theorem 2 is correct when S has k elements, we 
have the set P contains all maximal random prior elements of 
this set S. 

When S has k + 1 elements, it means the original set S 
having k elements are added a new element. 

According to FIND_MaximalRandomPriorSet algorithm, 
we make intersection operations between elements in current P 
and the new (k + 1)

th
 element denoted sk+1 in S (line 4 and line 

5): 
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 If the result of the intersection operation between sk+1 
and an element pi in P differs from zero chain (line 6), 

this result is form  – S\({x  S  x  p1}  {x  S  x  

p2}  ...  {x  S  x  pi-1}), with S has k + 1 
elements. Replace pi in P by this new result element 
(line 7). When sk+1, together with pi, create a new 
maximal random prior form, we terminate intersection 
operations between sk+1 and remaining elements in P 
(line 9). 

 If all intersection operations between sk+1 and each 
element in P return zero chain, it means sk+1 does not 

cover any element in P. Thus, the element sk+1 is form  
– {sk+1}, then sk+1 is inserted into P (line 13). 

In both cases, we receive the set P satisfying the properties 
of the maximal random prior set of S. So, Theorem 2 is correct 
when S has k + 1 element. 

In conclusion: FIND_MaximalRandomPriorSet algorithm 
can find out the maximal random prior set P of a bit-chains set 
S with a given order. 

IV. ATTRIBUTE REDUCTION IN ROUGH SET THEORY 

The maximal random prior set P is useful in solving and 
reducing Boolean algebra functions. One of the most important 
applications of the set P is finding out a solution of attribute 
reduction problem in rough set theory. 

A. Rough Set 

In rough set theory, information system is a pair (U, A), 
where U is a non-empty finite set of objects and A is a non-
empty finite set of attributes. A decision system is any 

information system of the form (U; A  {d}), where d  A is 
decision attribute. 

TABLE I.  A DECISION SYSTEM “PLAY SPORT” 

 Wind Temperature Humidity Outlook Play Sport 

x1 Strong Hot Normal Sunny Yes 

x2 Strong Mild Normal Rain No 

x3 Weak Hot Normal Rain No 

x4 Weak Cool High Rain Yes 

 

With |U| denotes cardinal of U, discernibility matrix of a 
decision system is a symmetric |U|x|U| matrix with each entry 

cij = {a  A  a(xi)  a(xj)} if d(xi)  d(xj), otherwise cij = . 

TABLE II.  DISCERNIBILITY MATRIX OF DECISION SYSTEM “PLAY 

SPORT” 

 x1 x2 x3 x4 

x1     
x2 b,d    
x3 a,d    
x4  a,b,c b,c  

 

Table II presents a discernibility matrix of decision system 
“Play Sport” where a, b, c, d denote Wind, Temperature, 
Humidity and Outlook, respectively. 

Discernibility function is a Boolean function retrieved from 

discernibility matrix and can be defined by the formula f =  { 

 cij  cij  }. According to Table II, we have discernibility 

function f = (b  d)  (a  d)  (a  b  c)  (b  c). 

Discernibility function can be simplified by using laws of 
Boolean algebra. All constituents in the minimal disjunctive 
normal form of this function are all reductions of decision 
system (Pawlak 2003). However, simplifying discernibility 
function is a NP-hard problem and attribute reduction is always 
the key problem in rough set theory. 

B. The Maximal Random Prior Set and Attribute Reduction 

Problem 

Consider a discernibility function f retrieved from 
discernibility matrix of a decision system with m attributes has 
n constituents. Each constituent in this function will be 
transformed into an m-bit-chain, with each bit denotes an 
attribute. The function will be converted into a set S has n bit-
chains. The maximal random prior set P of the set S is the 
simplification of discernibility function f. 

Set P shows (some) reduction(s) of function f. With each 
bit-chain in P, the positions where bit-1 is turned on need to be 
noticed. Value 1 of a bit means that the corresponding attribute 
will appear in reduction of f. The collection of all attributes 
retrieved from set P is a simplification of discernibility 
function f. 

Example: According to discernibility function f of decision 
system in Table I, the set S includes: 

S = { ( 0 1 0 1 ); 

 ( 1 0 0 1 ); 

 ( 1 1 1 0 ); 

 ( 0 1 1 0 ) } 

Initialize P = . Scan all elements in S 

S[1] = (0 1 0 1) → insert (0 1 0 1) into P → P = { (0 1 0 1) 
} 

S[2] = (1 0 0 1) → (1 0 0 1)   (0 1 0 1) = (0 0 0 1) → 
replace (0 1 0 1) in P by (0 0 0 1) → P = { (0 0 0 1) } 

S[3] = (1 1 1 0) → (1 1 1 0)   (0 0 0 1) = (0 0 0 0) → 
insert (1 1 1 0) into P → P = { (0 0 0 1); (1 1 1 0) } 

S[4] = (0 1 1 0) → (0 1 1 0)   (0 0 0 1) = (0 0 0 0); (0 1 1 

0)   (1 1 1 0) = (0 1 1 0) → replace (1 1 1 0) in P by (0 1 1 0) 
→ P = { (0 0 0 1); (0 1 1 0) } 

(0 0 0 1) → d and (0 1 1 0) → b  c 

So, minimal function f = d  (b  c). 

In conclusion, (d  b) and (d  c) are two reductions of 
discernibility function f. 

V. EXPERIMENTATION 1 

FIND_MaximalRandomPriorSet algorithm is developed 
and tested on a personal computer with specification: Windows 
7 Ultimate 32-bit, Service Pack 1 Operating System; 4096MB 
RAM; Intel(R) Core(TM)2 Duo, E7400, 2.80GHz; 300GB 
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HDD. Programming language is C#.NET on Visual Studio 
2008. The results of some testing patterns: 

TABLE III.  SOME TESTING PATTERNS OF 

FIND_MAXIMALRANDOMPRIORSET ALGORITHM 

Length of bit-chain Number of bit-chains Time (unit: second) 

10 1,000,000 0.2184004 

10 2,000,000 0.3900007 

10 5,000,000 1.0140017 

10 10,000,000 2.0436036 

25 1,000,000 0.2808005 

25 2,000,000 0.546001 

25 5,000,000 1.123202 

25 10,000,000 2.8236049 

50 1,000,000 0.2496004 

50 2,000,000 0.7176013 

50 5,000,000 1.9032033 

50 10,000,000 3.978007 

60 1,000,000 0.3744007 

60 2,000,000 0.7644014 

60 5,000,000 1.9344034 

60 10,000,000 4.1964073 

 

Attribute Reduction based on bit-chains and maximal 
random prior set has just been introduced. It found a reduction 
with linear time but the result is not global optimization. The 
following example will show this problem clearly: 

a  b  c  d  e  g 

 S = { ( 1  1  0  1  0  0 ); 

 ( 1  1  0  1  0  0 ); 

 ( 1  0  0  0  0  0 ); 

 ( 0  0  1  1  0  0 ); 

 ( 0  0  1  1  0  0 ); 

 ( 0  0  1  0  0  0 ); 

 ( 0  1  0  1  1  1 ); 

 ( 0  1  0  1  1  1 ) } 
When applying FIND_MaximalRandomPriorSet algorithm 

to S, we have: 

P = { (1 0 0 0 0 0); (0 0 1 0 0 0); (0 1 0 1 1 1) } 

(1 0 0 0 0 0) → a; (0 0 1 0 0 0) → c; (0 1 0 1 1 1) → b  d 

 e  g 

So, minimal function f = a  c  (b  d  e  g). Hence, (a 

 c  b), (a  c  d), (a  c  e), and (a  c  g) are four 
reductions of discernibility function f. 

But, if the order of the elements in S is changed as follows: 

  a  b  c  d  e  g 

 S = { ( 1  1  0  1  0  0 ); 

 ( 1  1  0  1  0  0 ); 

 ( 0  0  1  1  0  0 ); 

 ( 0  0  1  1  0  0 ); 

 ( 0  1  0  1  1  1 ); 

 ( 0  1  0  1  1  1 ) 

 ( 1  0  0  0  0  0 ); 

 ( 0  0  1  0  0  0 ); } 
then we have: 

P = { (0 0 0 1 0 0); (1 0 0 0 0 0); (0 0 1 0 0 0) } 

(0 0 0 1 0 0) → d; (1 0 0 0 0 0) → a; (0 0 1 0 0 0) → c 

So, minimal function f = d  a  c. This is also the 
reduction of discernibility function f. Now, we can see that this 
result is better than the above one because it emphasize the 
importance of attribute d (the values of d show the difference 
up to 6 times between the objects), and it also is succinct. 

Obviously, with an arbitrary order of elements in S, 
FIND_MaximalRandomPriorSet algorithm can not find out the 
best result. 

The next section is going to propose a new model which is 
based on maximal set (a new development of maximal random 
prior set) and NewRepresentative, the algorithm for 
Accumulating Frequent Patterns (Nguyen TT and Nguyen PK 
2013) to find a global optimal reduction. 

VI. MAXIMAL SET 

Definition 7 (maximal form  – S): The maximal form of a 

set S of bit-chains, denoted by  – S, is a bit-chain which is 
covered most by elements in S. 

Definition 8 (maximal elements): Maximal elements of set 
S of bit-chains have the following characteristics: 

The first element (q1) is form  – S 

The second element (q2) is form  – S\{x  S | x  q1} 

The third element (q3) is form  – S\{x  S | x  q1}  {x  
S | x  q2} 

… 

The k
th
 element (qk) is form  – S\{x  S | x  q1}  {x  S 

| x  q2} … {x  S | x  qk-1} 

and S = {x  S | x  q1}  {x  S | x  q2} … {x  S | 
x  qk} 

Definition 9 (maximal set): A set Q, which contains all 
maximal elements of a bit-chain set S, is called maximal set of 
S. 

VII. THE ALGORITHM FOR FINDING MAXIMAL SET 

In one of our previous papers, we introduced an algorithm 
to find out all frequent patterns of S set of transactions. Each 
transaction is a bit-chain with bit locations stand for a type of 
items. If bit-1 is turned on, it means customer bought it in 
transaction and otherwise. The algorithm for accumulating 
frequent patterns finds out the representative set P

*
 every time 

when a new bit-chain added to S (Nguyen TT and Nguyen PK 
2013). The below is the full algorithm: 

NewRepresentative 

Input: P  is a representative set of S, 

       z is a bit-chain added to S. 

Output: The new representative set P  of 

S  {z}. 

1.  M =  // M: set of new elements of P
*
 

2.  flag1 = 0 

3.  flag2 = 0 

4.  for each x  P  do 
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5.    q = x  [z; 1] 
6.    if q ≠ 0 // q is not a chain with all bits 0 

7.      if x  q then P  = P  \ x 

8.      if [z; 1]  q then flag1 = 1 

9.      for each y  M do 

10.       if y  q then 

11.         M = M \ y 
12.         break for 

13.       endif 

14.       if q  y then 
15.         flag2 = 1 

16.         break for 

17.       endif 

18.     endfor 

19.   else 

20.     flag2 = 1 

21.   endif 

22.   if flag2 = 0 then M = M  q 
23.   flag2 = 0 

24. endfor 

25. if flag1 = 0 then P  = P   [z; 1] 

26. P  = P   M 
27. return P  

Note (Nguyen TT and Nguyen PK 2013): 

 [z; n] is called a pattern. z is a bit-chain and n is the 

frequency (n  , n  0). 

  is called intersection operation between 2 patterns. 

[a1a2…am; n1]  [b1b2…bm; n2] = [c1c2…cm; n1 + n2]; ai, 

bi  {0, 1}, ci = min(ai, bi) 

  is called contained operation between 2 patterns. [u1; 

n1]  [u2; n2]  (u1 = u2)  (n1 ≤ n2) 

 A pattern [u; k] of S is called maximal pattern – denoted 

[u; k]maxS – if and only if it doesn’t exist k’ such that 

[u; k’]maxS and k’ > k. 

 P
*
 is representative set of S when P

*
 = {[u; n]maxS  

∄[v; m]maxS : (v  u and m > n)}. Each element in P
*
 is 

called a representative pattern of S. 

Consequence 4: The bit-chain of the pattern which has the 
highest frequency in Representative Set of a set S is the 
maximal form of S. 

From Consequence 4, the Definition 8 can be modified to 
become the following definition. 

Definition 10 (maximal elements): Maximal elements of 
set S of bit-chains have the following characteristics: 

The first element (q1) is the element {y0  P
*
 | x  S, x  

y0 and y  P
*
 | x  S, x  y  y0.frequency > y.frequency} 

The second element (q2) is the element {y0  P
*
 | x  S1, x 

 y0 and y  P
*
 | x  S1, x  y  y0.frequency > 

y.frequency}, here S1 = S\{x  S | x  q1} 

The third element (q3) is the element {y0  P
*
 | x  S2, x 

 y0 and y  P
*
 | x  S2, x  y  y0.frequency > 

y.frequency}, here S2 = S1\{x  S1 | x  q2} 

… 

The (k + 1)
th

 element (qk+1) is the element {y0  P
*
 | x  

Sk, x  y0 and y  P
*
 | x  Sk, x  y  y0.frequency > 

y.frequency}, here Sk = Sk-1\{x  Sk-1 | x  qk} 

After Definition 10 is appeared, the algorithm for finding 
Maximal Set is created as follows: 

FIND_MaximalSet 

Input: m-bit-chains set S 

       A representative set P  of S 

Output: the maximal set Q 

1.  while S is not empty do 

2.    z = GetMaximalForm(P ) 

3.    Q = Q  z 

4.    for each x  S do 

5.      if x  z ≠ 0 then 

6.        S  S \ {x} 

7.      endif 

8.    endfor 

9.  endwhile 

10. return Q 

The pseudo-code of GetMaximalForm algorithm is shown 
here: 

GetMaximalForm 

Input: A representative set P  

Output: the maximal form m 

1.  m = P [1]; 

2.  for each x  P  do 

3.    if m.Frequency < x.Frequency then 

4.      m = x; 

5.    endif 

6.  endfor 

7.  for each x  P  do 

8.    if x  m ≠ 0 then 
9.      P  = P \{x} 

10.   endif 

11. endfor 

12. return m; 

Theorem 3: FIND_MaximalSet algorithm can find out the 
maximal set Q of a bit-chains set S. 

Proof: The algorithm FIND_MaximalSet works as follows: 
First we find the element qj, then delete elements in P

*
 and in S 

covering qj. Repeat this until the set S is empty. 

In the above, if we do not delete elements in P
*
 covering qj, 

then we can see that the qj we find is the same as in Definition 
10. Hence to prove the correctness of the FIND_MaximalSet 
algorithm, we need to show that when we delete elements in P

*
 

covering qj then we obtain the same maximal elements as 
defined in Definition 10. 

We show this by induction on j. 

If j = 1, then q1 is determined unambiguously. We define S1 

= S\{x  S | x  q1} and P1 = P
*
\{y  S | y  q1}. 

From Definition 10, q2 is determined as follows: It is the 
element in P

*
 which is covered by at least one element in S1 

and is the one with the most frequency among such. We show 
now that q2 can be determined from P1 by the same criteria. 
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Indeed, if q2 is not an element in P1, then by definition q2 must 
cover q1. Now by the choice of q2, q2 must be covered by one 
element in S1, called that element x2. Since x2  q2 and q2  q1, 
x2 must cover q1. But x2 is an element in S1, and any element in 
S1 cannot cover q1, hence we obtain a contradiction. This shows 
that Theorem 3 is true for j = 2. 

Now assume that Theorem 3 is true for j = j0. We now 
prove it is true for j = j0 + 1. We prove this exactly like the case 
from j = 1 to j = 2 above. (Q.E.D.) 

Similar to the Maximal Random Prior Set, one of the 
applications which can integrate the Maximal Set is reducing 
the discernibility function of rough set. Consider an example of 

discernibility function f = (a  b  d)  (a  b  d)  a  (c  

d)  (c  d)  c  (b  d  e  g)  (b  d  e  g) with a, b, c, 
d, e, g are attributes in a decision system. Change f to a set of 
bit-chains S: 

  a  b  c  d  e  g 

 S = { ( 1  1  0  1  0  0 ); 

 ( 1  1  0  1  0  0 ); 

 ( 1  0  0  0  0  0 ); 

 ( 0  0  1  1  0  0 ); 

 ( 0  0  1  1  0  0 ); 

 ( 0  0  1  0  0  0 ); 

 ( 0  1  0  1  1  1 ); 

 ( 0  1  0  1  1  1 ) } 

Initialize P
*
 = . Scan all elements in S. 

* S[1] = [110100; 1]: P
*
 is empty. Put S[1] into P

*
. P

*
 = 

{[110100; 1]} 

* S[2] = [110100; 1]: 

S[2]  P
*
[1] = [110100; 1]  [110100; 1] = [110100; 2] 

// [110100; 1]  [110100; 2] 

P
*
 = {[110100; 2]} 

* S[3] = [100000; 1]: 

S[3]  P
*
[1] = [100000; 1]  [110100; 2] = [100000; 3] 

// S[3]  [100000; 3] 

P
*
 = {[110100; 2]; [100000; 3]} 

* S[4] = [001100; 1]: 

S[4]  P
*
[1] = [001100; 1]  [110100; 2] = [000100; 3] 

S[4]  P
*
[2] = [001100; 1]  [100000; 3] = 0 (zero chain) 

P
*
 = {[110100; 2]; [100000; 3]; [000100; 3]; [001100; 1]} 

* S[5] = [001100; 1]: 

S[5]  P
*
[1] = [001100; 1]  [110100; 2] = [000100; 3] 

S[5]  P
*
[2] = [001100; 1]  [100000; 3] = 0 (zero chain) 

S[5]  P
*
[3] = [001100; 1]  [000100; 3] = [000100; 4] 

S[5]  P
*
[4] = [001100; 1]  [001100; 1] = [001100; 2] 

// [000100; 3]  [000100; 4] 

// [001100; 1]  [001100; 2] 

P
*
 = {[110100; 2]; [100000; 3]; [000100; 4]; [001100; 2]} 

* S[6] = [001000; 1]: 

S[6]  P
*
[1] = [001000; 1]  [110100; 2] = 0 (zero chain) 

S[6]  P
*
[2] = [001000; 1]  [100000; 3] = 0 (zero chain) 

S[6]  P
*
[3] = [001000; 1]  [000100; 4] = 0 (zero chain) 

S[6]  P
*
[4] = [001000; 1]  [001100; 2] = [001000; 3] 

// S[6]  [001000; 3] 

P
*
 = {[110100; 2]; [100000; 3]; [000100; 4]; [001100; 2]; 

[001000; 3]} 

* S[7] = [010111; 1]: 

S[7]  P
*
[1] = [010111; 1]  [110100; 2] = [010100; 3] 

S[7]  P
*
[2] = [010111; 1]  [100000; 3] = 0 (zero chain) 

S[7]  P
*
[3] = [010111; 1]  [000100; 4] = [000100; 5] 

S[7]  P
*
[4] = [010111; 1]  [001100; 2] = [000100; 3] 

S[7]  P
*
[5] = [010111; 1]  [001000; 3] = 0 (zero chain) 

// [000100; 3], [000100; 4]  [000100; 5] 

P
*
 = {[110100; 2]; [100000; 3]; [001100; 2]; [001000; 3]; 

[010100; 3]; [000100; 5]; [010111; 1]} 

* S[8] = [010111; 1]: 

S[8]  P
*
[1] = [010111; 1]  [110100; 2] = [010100; 3] 

S[8]  P
*
[2] = [010111; 1]  [100000; 3] = 0 (zero chain) 

S[8]  P
*
[3] = [010111; 1]  [001100; 2] = [000100; 3] 

S[8]  P
*
[4] = [010111; 1]  [001000; 3] = 0 (zero chain) 

S[8]  P
*
[5] = [010111; 1]  [010100; 3] = [010100; 4] 

S[8]  P
*
[6] = [010111; 1]  [000100; 5] = [000100; 6] 

S[8]  P
*
[7] = [010111; 1]  [010111; 1] = [010111; 2] 

// [010100; 3]  [010100; 4] 

// [000100; 3], [000100; 5]  [000100; 6] 

// [010111; 1]  [010111; 2] 

P
*
 = {[110100; 2]; [100000; 3]; [001100; 2]; [001000; 3]; 

[010100; 4]; [000100; 6]; [010111; 2]} (Accumulated Frequent 
Patterns) 

* Finding maximal set: 

Initialize Q = . 

P
*
[6] = [000100; 6] has highest frequency. Remove all 

elements in P
*
 and S which cover bit-chain 000100 of P

*
[6]. 

Put it into Q: 

Q = {000100}; 

P
*
 = {[100000; 3]; [001000; 3]}; 
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S = {100000; 001000} 

Now, P
*
[1] = [100000; 3] and P

*
[2] = [001000; 3] have the 

same frequencies. It allows us to select one of them as the next 
maximal form in maximal set. Select P

*
[1]. Remove all 

elements in P
*
 and S which cover bit-chain 100000 of P

*
[1]. 

Put it into Q: 

Q = {000100; 100000}; 

P
*
 = {[001000; 3]}; 

S = {001000} 

Finally, P
*
 has just only one element P

*
[1] = [001000; 3]. 

Remove all elements in P
*
 and S which cover bit-chain 001000 

of P
*
[1]. Put it into Q: 

Q = {000100; 100000; 001000}; 

P
*
 = ; 

S =  

S is empty. The algorithm is terminated. Q is the maximal 
set of the set S. 

Q = {000100; 100000; 001000}; 

(000100) → d; (100000) → a; and (001000) → c 

So, minimal function f = d  a  c 

In conclusion, (d  a  c) is a reduction of discernibility 
function f. 

VIII. EXPERIMENTATION 2 

The experiments of proposed algorithms are conducted on a 
machine with Pentium(R) Dual-Core CPU, E6500 @ 2.93GHz 
(2 CPUs), ~2.1GHz and 2048MB main memory installed. The 
operating system is Windows Server 2008 R2 Enterprise 64-bit 
(6.1, Build 7601) Service Pack 1. Programming language is 
C#.NET. 

Data for experiments are DataFoodMart 2000 and 
T40I10D100K taken from http://fimi.ua.ac.be/data/ and 
http://www.dagira.com/2009/12/23/foodmart-2000-universe-
review-part-i-introduction website, respectively. 

IX. CONCLUSION AND FUTURE WORK 

The result of experimentation 1 reflects the efficiency and 
accuracy of FIND_MaximalRandomPriorSet algorithm. The 
complexity of this algorithm is n.2

m
 where n is the number of 

bit-chains in the set S and m is the length of a bit-chain. In fact, 
m is often unchanged, so that, 2

m
 can be treated as a large 

constant and the complexity of 
FIND_MaximalRandomPriorSet algorithm is linear. 

Mining frequent patterns is applied successfully into 
attribute reduction problem. FIND_MaximalSet algorithm 
maybe takes much time to execute but the result reflects the 
global optimization. 

 

TABLE IV.  THE RESULT FOR RUNNING THE ALGORITHMS 

Data 
No. of 

Records 

No. of 

Attributes 

AFP running 

time 

(second) 

No. of FP 

AR 

running 

time 

(second) 

No. of 

Remaining 

Attributes 

Food 

Mart 

2000 

10,281 18 80.979 7,184 0.140 12 

T40I10 

D100K 
1,452,990 60 74,882.424 558,193 345.774 60 

a. AFP: Accumulating Frequent Patterns 

b. FP: Frequent Patterns 

c. AR: Attribute Reduction 

In future, paralleling the algorithms will be a good 
approach to reduce the calculation time and enhance the 
attribute reduction result. 

Besides, integrating maximal random prior set and maximal 
set into practical applications will help verify their accuracy 
more clearly. 
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