
Revisit of Logistic Regression:
Efficient Optimization and Kernel Extensions

Takumi Kobayashi
National Institute of Advanced Industrial Science and Technology

Umezono 1-1-1, Tsukuba, 305-8568, Japan
Email: takumi.kobayashi@aist.go.jp

Kenji Watanabe
Wakayama University

Sakaedani 930, Wakayama, 640-8510, Japan
Email: k-watanabe@vrl.sys.wakayama-u.ac.jp

Nobuyuki Otsu
National Institute of Advanced Industrial Science and Technology

Umezono 1-1-1, Tsukuba, 305-8568, Japan
Email: otsu.n@aist.go.jp

Abstract—Logistic regression (LR) is widely applied as a
powerful classification method in various fields, and a variety
of optimization methods have been developed. To cope with
large-scale problems, an efficient optimization method for LR
is required in terms of computational cost and memory usage.
In this paper, we propose an efficient optimization method
using non-linear conjugate gradient (CG) descent. In each CG
iteration, the proposed method employs the optimized step size
without exhaustive line search, which significantly reduces the
number of iterations, making the whole optimization process
fast. In addition, on the basis of such CG-based optimization
scheme, a novel optimization method for kernel logistic regression
(KLR) is proposed. Unlike the ordinary KLR methods, the
proposed method optimizes the kernel-based classifier, which
is naturally formulated as the linear combination of sample
kernel functions, directly in the reproducing kernel Hilbert
space (RKHS), not the linear coefficients. Subsequently, we also
propose the multiple-kernel logistic regression (MKLR) along
with the optimization of KLR. The MKLR effectively combines
the multiple types of kernels with optimizing the weights for
the kernels in the framework of the logistic regression. These
proposed methods are all based on CG-based optimization and
matrix-matrix computation which is easily parallelized such as
by using multi-thread programming. In the experimental results
on multi-class classifications using various datasets, the proposed
methods exhibit favorable performances in terms of classification
accuracies and computation times.

I. INTRODUCTION

A classification problem is an intensive research topic in
the pattern recognition field. Especially, classifying the feature
vectors extracted from input data plays an important role; e.g.,
for image (object) recognition [1] and detection [2], motion
recognition [3], natural language processing [4]. Nowadays,
we can collect a large amount of data such as via internet, and
thus large-scale problems have being frequently addressed in
those fields to improve classification performances.

In the last decade, the classification problems have been
often addressed in the large margin framework [5] as rep-
resented by support vector machine (SVM) [6]. While those
methods are basically formulated for linear classification, they
are also extended to kernel-based methods by employing kernel
functions and produce promising performances. However, they
are mainly intended for binary (two) class problems and it

is generally difficult to extend the method toward the multi-
class problems without heuristics such as a one-versus-rest
approach. Several methods, however, are proposed to cope
with the multi-class problems, e.g., in [7]. Another drawback
is that the optimization in those methods has difficulty in
parallelization. The SVM-based methods are formulated in
quadratic programming (QP). Some successful optimization
methods to solve the QP, such as sequential minimal opti-
mization (SMO) [8], are based on a sequential optimization
approach which can not be easily parallelized. Parallel com-
puting currently developed such as by using GPGPU would
be a key tool to effectively treat large-scale data.

On the other hand, logistic regression has also been suc-
cessfully applied in various classification tasks. Apart from the
margin-based criterion for the classifiers, the logistic regression
is formulated in the probabilistic framework. Therefore, it is
advantageous in that 1) the classifier outputs (class) posterior
probabilities and 2) the method is naturally generalized to the
multi-class classifiers by employing a multi-nominal logistic
function which takes into account the correlations among
classes. While the optimization problem, i.e., objective cost
function, for logistic regression is well-defined, there is still
room to argue about its optimization method in terms of
computational cost and memory usage, especially to cope with
large-scale problems. A popular method, iterative reweighted
least squares, is based on the Newton-Raphson method [9]
requiring significant computation cost due to the Hessian.

In this paper, we propose an efficient optimization method
for the logistic regression. The proposed method is based
on non-linear conjugate gradient (CG) descent [10] which is
directly applied to minimize the objective cost. The non-linear
CG is widely applied to unconstrained optimization problems,
though requiring an exhaustive line search to determine a step
size in each iteration. In the proposed method, we employ
the optimum step size without the line search, which makes
the whole optimization process more efficient by significantly
reducing the number of iterations. In addition, we propose a
novel optimization method for kernel logistic regression (KLR)
on the basis of the CG-based optimization scheme. Unlike the
ordinary KLR methods, the proposed method optimizes the
kernel-based classifier, which is naturally formulated as the
linear combination of sample kernel functions as in SVM, di-

138 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

TABLE I. NOTATIONS
N Number of samples
C Number of classes
xi Feature vector of the i-th sample (∈ R

L)
yi Class indicator vector of the i-th sample (∈ {0, 1}C)

in which only the assigned class component is 1 and the others 0
X Matrix containing feature vectors xi in its columns (∈ R

L×N)
Y Matrix containing class vectors yi in its columns (∈ {0, 1}C×N)
H Reproducing kernel Hilbert space (RKHS)
k(·, ·) Kernel function in RKHS H
K Kernel Gram matrix of [k(xi, xj)]

j=1,..,N
i=1,..,N (∈ R

N×N)
�·�1:C−1 Operator extracting the 1∼C−1-th rows of a matrix/vector
[·ij]

j=1,..,W
i=1,..,H Operator constructing the matrix of the size R

H×W

where the lower/upper index is for the row/column.
·� Transpose of a matrix/vector
〈·, ·〉 Frobenius inner product of matrices, i.e., 〈A, B〉 = trace(A�B)

rectly in the reproducing kernel Hilbert space (RKHS), not the
linear coefficients of samples. Subsequently, multiple-kernel
logistic regression (MKLR) is also proposed as multiple-kernel
learning (MKL). The MKL combines the multiple types of
kernels with optimizing the weights for the kernels, and it has
been addressed mainly in the large margin framework [11].
The proposed MKLR is formulated as a convex form in the
framework of logistic regression. In the proposed formulation,
by resorting to the optimization method in the KLR, we
optimize the kernel-based classifier in sum of multiple RKHSs
and consequently the linear weights for the multiple kernels.
In summary, the contributions of this paper are as follows;

• Non-linear CG in combination with the optimum step size
for optimizing logistic regression.

• Novel method for kernel logistic regression to directly
optimize the classifier in RKHS.

• Novel method of multiple-kernel logistic regression.

Note that all the proposed methods are based on the CG-based
optimization and the computation cost is dominated by matrix-
matrix computation which is easily parallelized.

The rest of this paper is organized as follows: the next
section briefly reviews the related works of optimization for
logistic regression. In Section III, we describe the details of the
proposed method using non-linear CG. And then in Section IV
and Section V we propose the novel optimization methods
for kernel logistic regression and for multiple-kernel logistic
regression. In Section VI, we mention the parallel computing
in the proposed methods. The experimental results on various
types of multi-class classification are shown in Section VII.
Finally, Section VIII contains our concluding remarks.

This paper contains substantial improvements over the
preliminary version [12] in that we develop the kernel-based
methods including MKL and give new experimental results.

A. Notations

We use the notations shown in Table I. Basically, the big
bold letter, e.g., X , indicates a matrix, its small bold letter
with the index, e.g., xi, denotes the i-th column vector, and
the small letter with two indexes, e.g., xic, indicates the c-th
component of the i-th column vector xi, corresponding to the
c-th row and i-th column element of X .

To cope with multi-class problems, we apply the following
multi-nominal logistic function for the input z ∈ R

C−1:

σc(z)=

{ exp(zc)

1+
PC−1

k=1 exp(zk)
(c < C)

1
1+

PC−1
k=1 exp(zk)

(c = C)
, σ(z)=

⎡
⎣σ1(z)

...
σC(z)

⎤
⎦∈R

C ,

where σc(z) outputs a posterior probability on the c-th class
and σ(z) produces the probabilities over the whole C classes.

II. RELATED WORKS

The (multi-class) logistic regression is also mentioned in
the context of the maximum entropy model [13] and the
conditional random field [14]. We first describe the formulation
of linear logistic regression. The linear logistic regression
estimates the class posterior probabilities ŷ from the input
feature vector x ∈ R

L by using the above logistic function:
ŷ = σ(W�x) ∈ R

C ,

where W ∈R
L×C−1 is the classifier weight matrix. To optimize

W , the following objective cost is minimized:

J(W) = −
N∑
i

C∑
c

yic log σc(W�xi) → min
W

. (1)

There exists various methods for optimizing the logistic re-
gression, as described below. Comparative studies on those
optimization methods are shown in [13], [15].

A. Newton-Raphson method

For simplicity, we unfold the weight matrix W into the
long vector w = [w�

1 , · · · ,w�
C−1]

� ∈ R
L(C−1). The deriva-

tives of the cost function (1) is given by

∇wc
J =

N∑
i

xi(ŷic−yic) ∈ R
L, ∇wJ =

⎡
⎣ ∇w1J

...
∇wC−1J

⎤
⎦ ∈ R

L(C−1),

where ŷic = σc(W�xi), and the Hessian of J is obtained as

Hc,k = ∇wc
∇�

wk
J =

N∑
i

yic(δck − yik)xix
�
i ∈ R

L×L,

H =

⎛
⎝ H1,1 · · · H1,C−1

... . . .
...

HC−1,1· · ·HC−1,C−1

⎞
⎠=[Hck]k=1,..,C−1

c=1,..,C−1 ∈ R
L(C−1)×L(C−1),

where δck is the Kronecker delta. This Hessian matrix is
positive definite, and thus the optimization problem in (1) is
convex. For the optimization, the Newton-Raphson update is
described by
wnew = wold−H−1∇wJ = H−1(Hwold−∇wJ) = H−1z,

(2)
where z � Hwold −∇wJ . This update procedure, which
can be regarded as reweighted least squares, is repeated until
convergence. Such a method based on Newton-Raphson, called
iterative reweighted least squares (IRLS) [16], is one of the
commonly used optimization methods.

This updating of w in (2) requires the inverse matrix
computation for the Hessian. In the case of large-dimensional
feature vectors and large number of classes, it requires much
computational cost to compute the inverse of the large Hessian
matrix. To cope with such difficulty in large-scale data, various
optimization methods have been proposed by making the
update (2) efficient. Komarek and Moore [17] regarded (2) as
the solution of the following linear equations, Hwnew = z,
and they apply Cholesky decomposition to efficiently solve
it. On the other hand, Komarek and Moore [18] applied
linear conjugate-gradient (CG) descent to solve these linear
equations [19]. The CG method is applicable even to large-
dimensional Hessian H . Recently, Lin et al. [20] employed

139 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

trust-region method [9] to increase the efficiency of the
Newton-Raphson update using the linear CG. Note that the
method in [20] deals with multi-class problems in a slightly
different way from ordinary multi-class LR by considering
one-against-rest approach.

B. Quasi Newton method

As described above, it is inefficient to explicitly compute
the Hessian for multi-class large dimensional data. To remedy
it, Malouf [13] and Daumé III [21] presented the optimization
method using limited memory BFGS [22]. In the limited
memory BFGS, the Hessian is approximately estimated in a
computationally efficient manner and the weight W is updated
by using the approximated Hessian H̃ .

C. Other optimization methods

Besides those Newton-based methods, the other opti-
mization methods are also applied. For example, Pietra et
al. [23] proposed the method of improved iterative scaling, and
Minka [15] and Daumé III [21] presented the method using
non-linear CG [10] with an exhaustive line search.

In this study, we focus on the non-linear CG based opti-
mization due to its favorable performance reported in [15] and
its simple formulation which facilitates the extensions to the
kernel-based methods.

D. Kernel logistic regression

Kernel logistic regression [24], [25], [26] is an extension
of the linear logistic regression by using kernel function. By
considering the classifier function fc(·), c ∈ {1, · · · , C−1},
the class posterior probabilities are estimated from x by

ŷ = σ
(
[fc(x)]c=1,..,C−1

) ∈ R
C .

As in the other kernel-based methods [27], fc(·) is represented
by the linear combinations of sample kernel functions k(xi, ·)
in the reproducing kernel Hilbert space (RKHS) H:

fc(·) =
N∑
i

wcik(xi, ·) ⇒ σ
(
[fc(x)]c=1,..,C−1

)
= σ

(
W�k(x)

)
,

where W = [wci]
c=1,..,C−1
i=1,..,N ∈ R

N×C−1 indicates the (linear)
coefficients of the samples for the classifier and k(x) =
[k(xi,x)]i=1,..,N ∈ R

N is a kernel feature vector. Ordinary
kernel logistic regression is formulated in the following opti-
mization problem;

J(W) = −
N∑
i

C∑
c

yic log
{
σc

(
W�k(xi)

)}→ min
W

.

This corresponds to the linear logistic regression in (1) except
that the feature vectors are replaced by the kernel feature
vectors xi �→k(xi) and the classifier weights W ∈ R

N×C−1

are formulated as the coefficients for the samples.

III. EFFICIENT OPTIMIZATION FOR LINEAR LOGISTIC
REGRESSION

In this section, we propose the optimization method for
linear logistic regression which efficiently minimizes the cost
even for the large-scale data. The proposed method is based
on non-linear CG method [10] directly applicable to the
optimization as in [15], [21]. Our contribution is that the step

size required in CG updates is optimized without an exhaustive
line search employed in an ordinary non-linear CG method,
in order to significantly reduce the number of iterations and
speed-up the optimization. The non-linear CG can also save
memory usage without relying on the Hessian matrix. The
proposed method described in this section serves as a basis
for kernel-based extensions in Section IV and V.

A. Non-linear CG optimization for linear logistic regression

We minimize the following objective cost with the regular-
ization term, L2-norm of the classifier weights W ∈ R

L×C−1:

J(W) =
λ

2
‖W ‖2

F −
N∑
i

C∑
c

yic log
{
σc(W�xi)

}→ min
W

,

(3)
where ‖W ‖2

F = 〈W ,W 〉 and λ is a regularization parameter.
The gradient of J with respect to W is given by

∇W J = λW + X
Ŷ − Y ��1:C−1 ∈ R
L×C−1,

where Ŷ = [ŷi = σ(W�xi)]i=1,..,N ∈ R
C×N .

The non-linear CG method utilizes the gradient ∇W J to
construct the conjugate gradient, and the cost (3) is minimized
iteratively. At the l-th iteration, letting G(l) � ∇W J(W (l)),
the conjugate gradient D(l) ∈ R

L×C−1 is provided by
D(l) = −G(l) + βD(l−1), D(0) = −G(0),

where β is a CG update parameter. There are various choices
for β [10]; we employ the update parameter in [28]:

β = max
{ 〈G(l),G(l)−G(l−1)〉
〈D(l−1),G(l)−G(l−1)〉 , 0

}
−θ

〈G(l),W (l)−W (l−1)〉
〈D(l−1),G(l)−G(l−1)〉 ,

(4)
where we set θ = 0.5 in this study. Then, the classifier weight
W is updated by using the conjugate gradient:

W (l+1) = W (l) + αD(l), (5)
where α is a step size, the determination of which is described
in the next section. These non-linear CG iterations are repeated
until convergence.

B. Optimum step size α

The step size α in (5) is critical for efficiency in the
optimization, and it is usually determined by an exhaustive
line search satisfying Wolfe condition in an ordinary non-linear
CG [10]. We optimize the step size α so as to minimize the
cost function:
α = arg min

α
J(W + αD), (6)

J(W + αD)

=
λ

2
‖W + αD‖2

F −
N∑
i

C∑
c

yic log
{
σc

(
W�xi + αD�xi

)}
.

Here, we introduce auxiliary variables, P =W�X∈R
C−1×N ,

Q=D�X ∈R
C−1×N and Ŷ =

[
ŷi = σ((W + αD)�xi) =

σ(pi +αqi)
]i=1,..,N

, and thereby the gradient and Hessian of
J with respect to α are written by

dJ

dα
=λ
{
α〈D,D〉+〈W ,D〉}+

N∑
i

q�
i
ŷi − yi�1:C−1 � g(α),

d2J

dα2
=λ〈D,D〉+

N∑
i

C−1∑
c

ŷicqic

(
qic−

C−1∑
k

ŷikqik

)
� h(α).

140 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

Algorithm 1 : Logistic Regression by non-linear CG
Input: X = [xi]

i=1,..,N ∈ R
L×N , Y = [yi]

i=1,..,N ∈ {0, 1}C×N

1: Initialize W (0) = 0 ∈ R
L×C−1, Ŷ =

ˆ
1
C

˜ ∈ R
C×N

G(0) = X�Ŷ − Y ��1:C−1 ∈ R
L×C−1,

D(0) = −G(0) ∈ R
L×C−1

P = W (0)�X = 0 ∈ R
C−1×N , l = 1

2: repeat
3: Q = D(l−1)�X ∈ R

C−1×N

4: α = arg minα J(W (l−1) + αD(l−1)): see Section III-B
5: W (l) = W (l−1) + αD(l−1), P ← P + αQ
6: Ŷ = [ŷi = ff(pi)]

i=1,..,N

J(l) = J(W (l)) = λ
2
‖W (l)‖2F −

PN
i

PC
c yic log ŷic

7: G(l) = X�Ŷ − Y ��1:C−1

8: β = max

j
〈G(l),G(l)−G(l−1)〉

〈D(l−1),G(l)−G(l−1)〉 , 0

ff
− θ

〈G(l),W (l)−W (l−1)〉
〈D(l−1),G(l)−G(l−1)〉

9: D(l) = −G(l) + βD(l−1), l← l + 1
10: until convergence
Output: W = W (l)

Since this Hessian is non-negative, the optimization problem
in (6) is convex. Based on these quantities, we apply Newton-
Raphson method to (6),

αnew = αold − g(αold)
h(αold)

. (7)

This is a one-dimensional optimization and it terminates in
only a few iterations in most cases. By employing so optimized
step size α, the number of CG iterations is significantly
reduced compared to the ordinary non-linear CG method using
a line search [15], [21].

The overall algorithm is shown in Algorithm 1. In this
algorithm, the number of matrix multiplication which requires
large computation time is reduced via updating the quantities
P ,Q; as a result, the matrix multiplication is required only
two times (line 3 and 7 in Algorithm 1) per iteration.

IV. NOVEL OPTIMIZATION FOR KERNEL LOGISTIC
REGRESSION

As reviewed in Section II-D, the kernel logistic regression
has been formulated in the optimization problem with respect
to the coefficients W ∈ R

N×C−1 over the samples by simply
substituting the kernel features k(xi) for the feature vectors
xi. It optimizes the classifier in the subspace spanned by the
kernel functions of samples, which tends to cause numerically
unfavorable issues such as plateau. We will discuss these
issues in the experiments. In contrast to the ordinary method,
we propose a novel method for kernel logistic regression
that directly optimizes the classifier fc in RKHS H, not the
coefficients of the samples, by employing the scheme of the
non-linear CG-based optimization described in Section III.

By introducing regularization on the classifier fc, c ∈
{1, · · · , C−1}, the kernel logistic regression is optimized by
J({fc}c=1,..,C−1)

=
λ

2

C−1∑
c

‖fc‖2
H−

N∑
i

C∑
c

yic log
{

σc

(
[fc(xi)]c=1,..,C−1

)}→min
{fc}

,

and the gradient of J with respect to fc is given by

gc(·) = λfc(·) +
N∑
i

(ŷic − yic)k(xi, ·), (8)

where ŷic = σc

(
[fc(xi)]c=1,..,C−1

)
and we use fc(x) =

〈fc(·), k(x, ·)〉H. The conjugate gradient is obtained as
d(l)

c (·) = −g(l)
c (·) + βd(l−1)

c (·)

=−λf(l)c (·)−
N∑
i

(ŷ(l)
ic −yic)k(xi, ·)+βd(l−1)

c (·), (9)

d(0)
c (·) = −g(0)

c (·) = −λf(0)c (·) −
N∑
i

(ŷ(0)
ic − yic)k(xi, ·),

and the classifier fc is updated by
f(l)c (·) = f(l−1)

c (·) + αd(l−1)
c (·). (10)

Based on these update formula, if the initial classifier f
(0)
c (·)

is a linear combination of the sample kernel functions k(xi, ·),
it is recursively ensured that all of the functions f

(l)
c (·), g

(l)
c (·)

and d
(l)
c (·) can also be represented by such linear combinations

as well. In addition, at the optimum, the classifier function
eventually takes the following form,

λfc(·)+
N∑
i

(ŷic−yic)k(xi, ·)=0,∴ fc(·)=
1
λ

N∑
i

(yic−ŷic)k(xi, ·).
Thus, the above-mentioned linear combination is actually
essential to represent f

(l)
c . In this study, by initializing the

classifier f
(0)
c = 0, such representations are realized; we

denote fc(·) =
∑N

i wcik(xi, ·), gc(·) =
∑N

i gcik(xi, ·) and
dc(·) =

∑N
i dcik(xi, ·). Consequently, the updates (8), (9)

and (10) are applied only to those coefficients:
G(l) = λW (l) +
Ŷ − Y ��1:C−1 ∈ R

N×C−1, (11)
D(l+1) = −G(l) + βD(l), D(0) = −G(0) ∈ R

N×C−1, (12)
W (l+1) = W (l) + αD(l) ∈ R

N×C−1, (13)

where Ŷ =
[
ŷi = σ(W (l)�ki)

]i=1,..,N ∈ R
C×N , α is a

step size and the CG update parameter β is given in a manner
similar to (4) by
β =

max
{ 〈KG(l),G(l)−G(l−1)〉
〈KD(l−1),G(l)−G(l−1)〉 , 0

}
−θ

〈KG(l),W (l)−W (l−1)〉
〈KD(l−1),G(l)−G(l−1)〉 .

A. Optimum step size α

As in Section III-B, the step size α is determined so as to
minimize the cost:

α = arg min
α

J
({fc + αdc}c=1,..,C−1

)
.

Let P =
[
fc(xi)

]i=1,..,N

c=1,..,C−1
= W�K ∈ R

C−1×N , Q =[
dc(xi)

]i=1,..,N

c=1,..,C−1
= D�K ∈ R

C−1×N and Ŷ =
[
ŷi =

σ(pi + αqi)
]i=1,..,N ∈ R

C×N , and the gradient and Hessian
of J with respect to α are written by
J
({fc + αdc}c=1,..,C−1

)
=

λ

2
(α2〈Q�,D〉+2α〈Q�,W 〉+〈P�,W 〉)−

N∑
i

C∑
c

yic log ŷic,

dJ

dα
=λ
{
α〈Q�,W 〉+〈Q�,D〉}+〈Q,
Ŷ −Y �1:C−1〉 � g(α),

d2J

dα2
= λ〈Q�,D〉+

N∑
i

C−1∑
c

ŷicqic

(
qic−

C−1∑
k

ŷikqik

)
� h(α).

The step size α is optimized by Newton-Raphson in (7).

The overall algorithm is shown in Algorithm 2. Although

141 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

Algorithm 2 : Kernel Logistic Regression by non-linear CG
Input: K ∈ R

N×N , Y = [yi]
i=1,..,N ∈ {0, 1}C×N

1: Initialize W (0) = 0 ∈ R
N×C−1, Ŷ =

ˆ
1
C

˜ ∈ R
C×N

G(0) = �Ŷ − Y ��1:C−1 ∈ R
N×C−1,

D(0) = −G(0) ∈ R
N×C−1

P = W (0)�K = 0 ∈ R
C−1×N ,

Q = D(0)�K ∈ R
C−1×N , l = 1,

2: repeat
3: α = arg minα J({f(l−1)

c + αd
(l−1)
c }c=1,..,C−1): see Section IV-A

4: W (l) = W (l−1) + αD(l−1), P ← P + αQ
5: Ŷ =

ˆ
ŷi = ff(pi)

˜i=1,..,N
,

J(l) =J
`{f(l)c }c=1,..,C−1

´
= λ

2
〈P , W (l)〉−PN

i

PC
c yic log ŷic

6: G(l) = �Ŷ (l) − Y ��1:C−1

7: R = G(l)�K

8: β = max

j
〈R�,G(l)−G(l−1)〉
〈Q�,G(l)−G(l−1)〉 , 0

ff
− θ

〈R�,W (l)−W (l−1)〉
〈Q�,G(l)−G(l−1)〉

9: D(l) = −G(l) + βD(l−1)

10: Q← −R + βQ, l← l + 1
11: until convergence
Output: fc =

PN
i w

(l)
ci k(xi, ·)

only the coefficients are updated, the proposed method directly
optimizes the classifier fc itself by minimizing J with respect
to fc. In that point, the method differs from the ordinary
optimization in kernel logistic regression.

V. MULTIPLE KERNEL LOGISTIC REGRESSION

In recent years, such a method that integrates different
kernel functions with the optimized weights for a novel kernel
has attracted keen attentions, which is called multiple kernel
learning (MKL). By combining multiple types of kernels,
the heterogeneous information, which is complementary to
each other, can be effectively incorporated to improve the
performance. The MKL has been mainly addressed in the
framework of large margin classifiers [11]. In this section,
we formulate MKL in the proposed scheme of kernel logistic
regression described in Section IV.

For MKL, we first consider combined RKHS as in [29].
Suppose we have M types of kernel functions, k1, · · · , kM ,
and corresponding RKHS’s H1, · · · ,HM each of which is
endowed with an inner product 〈·, ·〉Hm

. We further introduce
the slightly modified Hilbert space H′

m in which the following
inner product with a scalar value vm ≥ 0 is embedded:

H′
m =

{
f|f ∈ Hm,

‖f‖Hm

vm
< ∞

}
, 〈f, g〉H′

m
=

〈f, g〉Hm

vm
.

This Hilbert space H′
m is a RKHS with the kernel k′m(x, ·) =

vmkm(x, ·) since

f(x) =
〈f(·), vmkm(x, ·)〉m

vm
= 〈f(·), vmkm(x, ·)〉H′

m
.

Finally, we define the RKHS H̄ as direct sum of H′
m: H̄ =⊕M

m H′
m, in which the associated kernel function is given by

k̄(x, ·) =
M∑
m

k′m(x, ·) =
M∑
m

vmkm(x, ·).

Based on the H̄, we estimate the class posterior probabil-
ities as

ŷ = σ
(
[̄fc(x)]c=1,..,C−1

)
,

where f̄c ∈ H̄ is the classifier function in the combined RKHS.
We formulate the multiple-kernel logistic regression (MKLR)

in
J
({f̄c ∈ H̄}c=1,..,C−1,v

)
(14)

=
λ

2

C−1∑
c

‖f̄c‖2
H̄−

N∑
i

C∑
c

yic log
[
σc

(
[̄fc(xi)]c=1,..,C−1

)]→ min
{f̄c},v

⇔ J
({fmc ∈ Hm}m=1,..,M

c=1,..,C−1,v
)

(15)

=
λ

2

M∑
m

1
vm

C−1∑
c

‖fmc‖2
Hm

−
N∑
i

C∑
c

yic log
[
σc

([∑M
m fmc(xi)

]
c=1,..,C−1

)}
→ min

{fmc},v

s.t.,

M∑
m

vm = 1, vm ≥ 0, ∀m

where f̄c(x) =
∑M

m fmc(x) and fmc belongs to each RKHS
Hm. The derivative of the cost J in (15) with respect to fmc

is given by

∂J

∂fmc
=

λ

vm
fmc +

N∑
i

(ŷic − yic)km(xi, ·),

where ŷi = σ
([∑M

m fmc(xi)
]
c=1,..,C−1

)
and we use fmc(x) =

〈fmc(·), km(x, ·)〉Hm
. At the optimum ∂J

∂fmc
= 0, the classifier

eventually takes the following form;

f̄c =
M∑
m

fmc =
1
λ

N∑
i

(yic − ŷic)
M∑
m

vmkm(xi, ·).
Multiple kernels are linearly combined with the weight vm.
Thus, the above-defined MKLR enables us to effectively
combine multiple kernels, which can be regarded as multiple
kernel learning (MKL).

The regularization term in the costs (14) and (15) is an
upper bound of the mixed norm as follows.

λ

2

C−1∑
c

‖f̄c‖2
H̄=

λ

2

M∑
m

1
vm

C∑
c

‖fmc‖2
Hm

≥ λ

2

(
M∑
m

√∑C
c ‖fmc‖2

Hm

)2

where the equality holds for vm =

qPC
c ‖fmc‖2

Hm
PM

m

qPC
c ‖fmc‖2

Hm

. The

right-hand-side is similar to group LASSO, and such reg-
ularization induces sparseness on the multiple kernels [30];
namely, we can obtain the sparse kernel weights in MKLR. It
is noteworthy that the proposed MKLR in (14) and (15) is a
convex optimization problem since the regularization term as
well as the second term are convex (ref. Appendix in [29]).

We alternately minimize the objective cost (14) with re-
spect to two variables {f̄c}c=1,..,C−1 and v = [vm]m=1,..,M .

A. Optimization for f̄

The gradients of the cost J in (14) with respect to f̄c in
the RKHS H̄ is given by

∂J

∂ f̄c
= λf̄c(·) +

N∑
i

{ŷic − yic}k̄(xi, ·),

where we use f̄c(x) = 〈̄fc(·), k̄(x, ·)〉H̄. This is the same form
as in the kernel logistic regression in (8) by replacing kernel
function k(x, ·) �→ k̄(x, ·) and K �→ K̄ =

∑M
m vmK [m]

where K [m] ∈ R
N×N is the Gram matrix of the m-th type

of kernel km. Therefore, the optimization procedure described

142 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

in Section IV is also applicable to this optimization. The
classifiers f̄c and the conjugate gradients dc are represented
by linear combinations of kernel functions k̄(xi, ·);

f̄(l)c =
N∑
i

w
(l)
ci k̄(xi, ·) =

N∑
i

w
(l)
ci

M∑
m

vmkm(xi, ·), (16)

d(l)
c =

N∑
i

d
(l)
ci k̄(xi, ·),

and the update for f̄ is performed by
f̄(l)c (·) = f̄(l−1)

c (·) + αd(l−1)
c (·).

Note that only the coefficients W (l) = [w(l)
ci]c=1,..,C−1

i=1,..,N , D(l) =
[d(l)

ci]c=1,..,C−1
i=1,..,N are updated by (11)∼(13).

B. Optimization for v

To update the kernel weights v, the following cost using
the updated f̄c in (16) is minimized with respect to v:

J(v)=
λ

2

M∑
m

vm〈P [m]�,W (l)〉−
N∑
i

C∑
c

yiclog
{
σc

(∑M
m vmp

[m]
i

)}
,

where P [m] = W (l)�K [m] ∈ R
C−1×N . The derivative of this

cost function with respect to v is
∂J

∂vm
=

λ

2
〈P [m]�,W (l)〉 + 〈P [m],
Ŷ − Y �1:C−1〉,

s.t.,
M∑
m

vm = 1, vm ≥ 0, (17)

where Ŷ =
[
ŷi = σ(

∑M
m vmW (l)�k

[m]
i)
]i=1,..,N

. We apply
reduced gradient descent method [31] to minimize the cost
while ensuring the constraints (17). The descent direction
denoted by e is computed in a manner similar to [29] as
follows.

μ = arg max
m

{C−1∑
c

‖fmc‖2
Hm

= v2
m〈P [m]�,W 〉

}
,

em =

⎧⎪⎨
⎪⎩

0 (vm = 0 ∧ ∂J
∂vm

− ∂J
∂vμ

> 0)
− ∂J

∂vm
+ ∂J

∂vμ
(vm > 0 ∧ m �= μ)∑

ν �=μ,vν>0
∂J
∂vν

− ∂J
∂vμ

(m = μ)
.

After computing the descent direction e first, we then check
whether the maximal admissible step size (to set a certain com-
ponent, say vν , to 0 in that direction) decreases the objective
cost value. In that case, vν is updated by setting vν = 0 and e
is normalized to meet the equality constraint. By repeating this
procedure until the objective cost stops decreasing, we obtain
both the modified v′ and the final descent direction e. Then,
the kernel weights are updated by vnew = v′ + αe, where α
is the step size.

The optimal step size is also computed in a manner
similar to the method in linear logistic regression (Sec-
tion III-B). Let P [m] = W (l)�K [m] ∈ R

C−1×N , P =∑M
m v′

mW (l)�K [m] =
∑M

m v′
mP [m], Q =

∑M
m emP [m] and

Ŷ =
[
ŷi = σ(pi + αqi)

]i=1,..,N
, and the step size α is

optimized by (7) using the following derivatives,
dJ

dα
=

λ

2
〈P�,W (l)〉 + 〈Q,
Ŷ − Y �1:C−1〉 � g(α),

d2J

dα2
=

N∑
i

C−1∑
c

ŷicqic

(
qic −

C−1∑
k

ŷikqik

)
� h(α).

Algorithm 3 : Multiple Kernel Logistic Regression by non-
linear CG
Input: K[m] ∈ R

N×N , m ∈ {1, · · · , M},
Y = [yi]

i=1,..,N ∈ {0, 1}C×N

1: Initialize v = [1
M

] ∈ R
M , K̄ =

PM
m vmK[m],

W (0) = 0 ∈ R
N×C−1, Ŷ =

ˆ
1
C

˜ ∈ R
C×N ,

G(0) = �Ŷ − Y ��1:C−1 ∈ R
N×C−1,

D(0) = −G(0) ∈ R
N×C−1,

P = W (0)�K̄ = 0 ∈ R
C−1×N ,

Q = D(0)�K̄ ∈ R
C−1×N , l = 1

2: repeat
3: α = arg minα J

`{f̄(l−1)
c + αd

(l−1)
c }c=1,..,C−1

´
: see Section V-A

4: W (l) = W (l−1) + αD(l−1), P ← P + αQ
5: if l mod τ = 0 then
6: /* Optimization for v */
7: P [m] = W (l)�K[m], ∀m
8: Calculate reduced gradient e and v′: see Section V-B
9: α = arg minα J

`{fmc ∈ Hm}m=1,..,M
c=1,..,C−1, v′ + αe

´

10: v = v′ + αe
11: K̄ =

PM
m vmK[m], P =

PM
m vmP [m]

12: Ŷ =
ˆ
ŷi = ff(pi)

˜i=1,..,N
,

J(l)=J({f̄(l)c }c=1,..,C−1,v)= λ
2
〈P , W (l)〉−PN

i

PC
c yiclogŷic

13: G(l) = �Ŷ − Y ��1:C−1, D(l) = −G(l)

14: Q = D(l)�K̄
15: else
16: /* Optimization for f̄ */
17: Ŷ = [ŷi = ff(pi)]

i=1,..,N ,

J(l)=J({f̄(l)c }c=1,..,C−1,v)= λ
2
〈P , W (l)〉−PN

i

PC
c yiclogŷic

18: G(l) = �Ŷ − Y ��1:C−1

19: R = G(l)�K̄

20: β = max

j
〈R�,G(l)−G(l−1)〉
〈Q�,G(l)−G(l−1)〉 , 0

ff
− θ

〈R�,W (l)−W (l−1)〉
〈Q�,G(l)−G(l−1)〉

21: D(l) = −G(l) + βD(l−1)

22: Q← −R + βQ
23: end if
24: l← l + 1
25: until convergence
Output: f̄c =

PN
i w

(l)
ci

PM
m vmkm(xi, ·)

The overall algorithm is shown in Algorithm 3. Since the
dimensionality of f̄ is larger than that of v, the optimization
for v is performed every τ iterations; we set τ = 5 in this
study. It should be noted that the optimizations both of f̄ and
v are ensured to monotonically decrease the objective cost J
via iterations.

VI. PARALLEL COMPUTING

Although the non-linear CG sequentially minimizes the
objective cost in an iterative manner, each step of iteration can
be easily parallelized. The computational cost per iteration is
dominated by the (large) matrix multiplications: lines 3 and
7 in Algorithm 1, line 7 in Algorithm 2, and lines 7, 14 and
19 in Algorithm 3. Those multiplications are parallelized such
as by multi-thread programming especially in GPGPU, which
effectively scales up the whole optimization procedure.

VII. EXPERIMENTAL RESULTS

We conducted various experiments on multi-class classi-
fication by using linear logistic regression (LR), kernel LR
(KLR) and multiple-kernel LR (MKLR). The proposed meth-
ods were compared to the other related methods in terms of
the classification accuracy and computation time.

143 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

TABLE II. DATASETS OF DENSE FEATURES. WE APPLY FIVE-FOLD

CROSS VALIDATION ON THE DATASETS MARKED BY ∗ , WHILE USING

GIVEN TRAINING/TEST SPLITS ON THE OTHER DATASETS.

Dataset #class #feature #training sample #test sample
SENSIT-VEHICLE 3 100 78,823 19,705

SEMEION∗ 10 256 1,275 318
ISOLET 26 617 6,238 1,559
MNIST 10 784 60,000 10,000
P53∗ 2 5,408 13,274 3,318

0

2

4

6

8

10

12

14

16

18

20

SensIT
(3)

100x78823

semeion*
(10)

256x1275

isolet
(26)

617x6238

mnist
(10)

784x60000

p53*
(2)

5408x13274

E
rr

or
 R

at
e

(%
)

MC−SVM
LR (IRLS−chol)
LR (TRIRLS)
LR (TRON)
LR (LBFGS)
LR (ours)

Fig. 1. Error rates on linear classification for dense features. The numbers of
classes are indicated in parentheses and the sizes of X (#feature×#sample)
are shown in the bottom.

A. Linear classification

As a preliminary experiment to the subsequent kernel-based
methods, we applied linear classification methods.

For comparison, we applied multi-class support vector
machine (MC-SVM) [7] and for LR, four types of optimization
methods other than the proposed method in Section III:

• IRLS with Cholesky decomposition (IRLS-chol) [17]
• IRLS with CG (TRIRLS) [18]
• IRLS with trust region newton method (TRON) [20]
• limited memory BFGS method (LBFGS) [13] and [21].

All of these methods introduce regularization with respect
to classifier norm in a similar form to (3), of which the
regularization parameter is determined by three-fold cross
validation on training samples (λ ∈ {1, 10−2, 10−4}). We
implemented all the methods by using MATLAB with C-mex
on Xeon 3GHz (12 threading) PC; we used LIBLINEAR [32]
for MC-SVM and TRON, and the code1 provided by Liu and
Nocedal [22] for LBFGS.

We first used the datasets2 of the dense feature vectors,
the details of which are shown in Table II. For evaluation, we
used the given training/test splits on some datasets and applied
five-fold cross validation on the others. The classification per-
formances (error rates) and the computation times for training
the classifier are shown in Fig. 1 and Fig. 2, respectively. The
computation times are measured in two ways; Fig. 2(a) shows
the computation time only for learning the final classifier and
Fig. 2(b) is for ‘whole’ training process including both the
final learning and three-fold cross validations to determine the
regularization parameter. The proposed method is favorably
compared to the other methods in terms of error rates and
computation time; the method of LR with IRLS-chol which is
quite close to the ordinary IRLS requires more training time.

1The code is available at http://www.ece.northwestern.edu/∼nocedal.
2SEMEION, ISOLET and P53 are downloded from UCI-repository

http://archive.ics.uci.edu/ml/datasets.html, and SENSIT-VEHICLE [33] and
MNIST [34] are from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

10
−2

10
−1

10
0

10
1

10
2

10
3

SensIT
(3)

100x78823

semeion*
(10)

256x1275

isolet
(26)

617x6238

mnist
(10)

784x60000

p53*
(2)

5408x13274

T
ra

in
in

g
T

im
e

(s
ec

)

MC−SVM
LR (IRLS−chol)
LR (TRIRLS)
LR (TRON)
LR (LBFGS)
LR (ours)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

SensIT
(3)

100x78823

semeion*
(10)

256x1275

isolet
(26)

617x6238

mnist
(10)

784x60000

p53*
(2)

5408x13274

W
ho

le
 T

ra
in

in
g

T
im

e
(s

ec
)

MC−SVM
LR (IRLS−chol)
LR (TRIRLS)
LR (TRON)
LR (LBFGS)
LR (ours)

(a) On final learning (b) On whole learning

Fig. 2. Computation times (log-scale) on linear classification for dense
features. The computation time for learning final classifier is shown in (a),
while that for whole training including 3-CV to determine λ is in (b).

0 100 200 300 400 500 600 700 800 900
10

2

10
3

10
4

10
5

Iteration

C
os

t

Ours (optimized α)
Line search (Wolf condition)

Fig. 3. Comparison to the method using an exhaustive line search. The plot
shows the objective cost values through iterations on ISOLET.

We then investigated the effectiveness of the optimized
step size α (Section III-B) which is one of our contributions
in this paper. Fig. 3 shows how the proposed optimization
method works, compared to that using an exhaustive line
search. By employing the optimized step size, the objective
cost drastically decreases in the fist few steps and reaches
convergence in a smaller number of iterations.

In the same experimental protocol, we also applied the
methods to datasets which contain sparse feature vectors. The
details of the datasets3 are shown in Table III. Note that the
method of LR with IRLS-chol can not deal with such a huge
feature vectors since the Hessian matrix is quite large, making
it difficult to solve linear equations by Cholesky decomposition
in a realistic time. As shown in Fig. 4 and Fig. 5, the
computation times of the methods are all comparable (around
10 seconds) with similar classification accuracies.

Though the performances of the proposed method are
favorably compared to the others as a whole, they are different
from those of IRLS-based methods (TRIRLS and TRON). The
reason is as follows. The objective costs of those methods4

are shown in Table IV. The proposed method produces lower
objective costs than those by TRIRLS, and thus we can say
that the IRLS-based method does not fully converge to global
minimum. Although the objective cost function is convex,
there would exist plateau [38] which stop the optimization
in the IRLS-based methods before converging to the global
minimum. Thus, from the viewpoint of optimization, the
proposed method produces favorable results.

3REUTERS21578 (UCI KDD Archive) and TDT2 (Nist Topic Detection
and Tracking corpus) are downloaded from http://www.zjucadcg.cn/dengcai/
Data/TextData.html, and RCV1 [35], SECTOR [36] and NEWS20 [37] are from
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

4We do not show the cost of TRON [20] whose formulation is slightly
different as described in Section II-A.

144 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

TABLE III. DATASETS OF SPARSE FEATURES. WE APPLY FIVE-FOLD

CROSS VALIDATION ON THE DATASETS MARKED BY ∗ , WHILE USING

GIVEN TRAINING/TEST SPLITS ON THE OTHER DATASETS.

Dataset #class #feature #training sample #non zeros #test sample
REUTERS21578 51 18,933 5,926 283,531 2,334

TDT2∗ 77 36,771 8,140 1,056,166 2,035
RCV1 51 47,236 15,564 1,028,284 518,571

SECTOR 105 55,197 6,412 1,045,412 3,207
NEWS20 20 62,060 15,935 1,272,568 3,993

0

2

4

6

8

10

12

14

16

18

Reuters215780
(51)

18933x5926

TDT2*
(77)

36771x8140

rcv1
(51)

47236x15564

sector
(105)

55197x6412

news20
(20)

62060x15935

E
rr

or
 R

at
e

(%
)

MC−SVM
LR (TRIRLS)
LR (TRON)
LR (LBFGS)
LR (ours)

Fig. 4. Error rates on linear classification for sparse features.

B. Kernel-based classification

Next, we conducted the experiments on kernel-based clas-
sifications. We applied the proposed kernel logistic regression
(KLR) in Section IV and the kernelized methods of the above-
mentioned linear classifiers;

• multi-class kernel support vector machine (MC-KSVM) [7]
• KLR using IRLS with CG (TRIRLS) [18]
• KLR using IRLS with trust region newton method (TRON)

by [20]
• KLR using limited memory BFGS method (LBFGS) [13],

[21].

Note that the KLR methods of TRIRLS, TRON and LBFGS
are kernelized in the way described in Section II-D. Table V
shows the details of the datasets5 that we use, and in this ex-
periment, we employed RBF kernel k(x, ξ) = exp(−‖x−ξ‖2

2σ2)
where σ2 is determined as the sample variance. The experi-
mental protocol is the same as in Section VII-A.

As shown in Fig. 6, the classification performances of the
proposed method are superior to the other KLR methods and
are comparable to MC-KSVM, while the computation times
of the proposed method are faster than that of MC-KSVM
on most datasets (Fig. 7). As discussed in Section VI, we can
employ GPGPU (NVIDIA Tesla C2050) to efficiently compute
the matrix multiplications in our method on the datasets except
for the huge dataset of SHUTTLE, and the computation time
is significantly reduced as shown in Fig. 7.

While the proposed method optimizes the classifier in
RKHS, the optimization in the other KLR methods is per-
formed in the subspace spanned by the sample kernel functions
(Section IV), possibly causing numerically unfavorable issues
such as plateau [38], and the optimizations would terminate
before fully converging to the global minimum. The objective
costs shown in Table VI illustrates it; the proposed method
provides lower costs than those of the other KLR methods.
In addition, the obtained classifiers, i.e., coefficients W for

5USPS [39], LETTER (Statlog), PROTEIN [40] and SHUTTLE (Statlog) are
downloaded from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/, and
POKER is from UCI repository http://archive.ics.uci.edu/ml/datasets/.

10
−1

10
0

10
1

10
2

Reuters215780
(51)

18933x5926

TDT2*
(77)

36771x8140

rcv1
(51)

47236x15564

sector
(105)

55197x6412

news20
(20)

62060x15935

T
ra

in
in

g
T

im
e

(s
ec

)

MC−SVM
LR (TRIRLS)
LR (TRON)
LR (LBFGS)
LR (ours)

10
0

10
1

10
2

10
3

10
4

Reuters215780
(51)

18933x5926

TDT2*
(77)

36771x8140

rcv1
(51)

47236x15564

sector
(105)

55197x6412

news20
(20)

62060x15935

W
ho

le
 T

ra
in

in
g

T
im

e
(s

ec
)

MC−SVM
LR (TRIRLS)
LR (TRON)
LR (LBFGS)
LR (ours)

(a) On final learning (b) On whole learning

Fig. 5. Computation times on linear classification for sparse features.

TABLE IV. OBJECTIVE COST VALUES OF LR METHODS WITH

λ = 10−2 ON SPARSE DATASETS.

Dataset Ours TRIRLS LBFGS
REUTERS21578 9.98 389.26 10.32

TDT2 12.13 387.58 13.65
RCV1 906.49 15687.17 969.07

SECTOR 1102.08 29841.19 1167.35
NEWS20 1949.60 7139.07 2000.64

samples, are shown in Fig. 8. The proposed method produces
near sparse weights compared to those of the other methods
and contribute to improve the performance similarly to MC-
KSVM, even though any constraints to enhance sparseness are
not imposed in the proposed method.

C. Multiple-kernel learning

Finally, we conducted the experiment on multiple-kernel
learning. We applied the proposed multiple-kernel logistic re-
gression (MKLR) described in Section V and simpleMKL [29]
for comparison. For simpleMKL, we used the code6 provided
by the author with LIBSVM [41]. The details of the datasets7

are shown in Table VII; for multi-class classification, in the
dataset of PASCAL-VOC2007, we removed the samples to
which multiple labels are assigned. In the datasets of PSORT-,
NONPLANT and PASCAL-VOC2007, we used the precomputed
kernel matrices provided in the authors’ web sites. The dataset
of PEN-DIGITS contains four types of feature vectors and
correspondingly we constructed four types of RBF kernel in
the same way as in Section VII-B.

The classification performances are shown in Fig. 9. As
a reference, we also show the performances of KLR with
the (single) averaged kernel matrix and the (single) best
kernel matrix which produces the best performance among the
multiple kernel matrices. The MKL methods produce superior
performances compared to those of KLR with single kernel,
and the proposed method is comparable to simpleMKL. The
obtained kernel weights are also shown in Fig. 10. The weights
by the proposed method are sparse similarly to those by
simpleMKL, due to the formulation based on the combined
RKHS H̄ in (14) and its efficient optimization using non-linear
CG.

As shown in Fig. 11, the computation time of the pro-
posed method is significantly (102 ∼ 104 times) faster than

6The code is available at http://asi.insa-rouen.fr/enseignants/∼arakotom/
code/mklindex.html

7PASCAL-VOC2007 [42] is downloaded from http://lear.inrialpes.fr/people/
guillaumin/data.php, PEN-DIGITS [43] is from http://mkl.ucsd.edu/dataset/
pendigits, and PSORT-, NONPLANT [44] are from http://www.fml.tuebingen.
mpg.de/raetsch/suppl/protsubloc.

145 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

TABLE V. DATASETS FOR KERNEL-BASED CLASSIFICATION.

Dataset #class #feature #training sample #test sample
USPS 10 256 7,291 2,007

LETTER 26 16 15,000 5,000
PROTEIN 3 357 17,766 6,621
POKER 10 10 25,010 1,000,000

SHUTTLE 7 9 43,500 14,500

0

5

10

15

20

25

30

35

40

45

50

usps
(10)

7291x7291

letter
(26)

15000x15000

protein
(3)

17766x17766

poker
(10)

25010x25010

shuttle
(7)

43500x43500

E
rr

or
 R

at
e

(%
)

MC−KSVM
KLR (TRIRLS)
KLR (TRON)
KLR (LBFGS)
KLR (ours)

Fig. 6. Error rates on kernel-based classification.

that of simpleMKL. Thus, as is the case with kernel-based
classification (Section VII-B), we can say that the proposed
method produces comparable performances to simpleMKL
with a significantly faster training time.

VIII. CONCLUDING REMARKS

In this paper, we have proposed an efficient optimization
method using non-linear conjugate gradient (CG) descent for
logistic regression. The proposed method efficiently minimizes
the cost through CG iterations by using the optimized step size
without an exhaustive line search. On the basis of the non-
linear CG based optimization scheme, a novel optimization
method for kernel logistic regression (KLR) is also proposed.
Unlike the ordinary KLR methods, the proposed method
naturally formulates the classifier as the linear combination
of sample kernel functions and directly optimizes the kernel-
based classifier in the reproducing kernel Hilbert space, not
the linear coefficients for the samples. Thus, the optimization
effectively performs while possibly avoiding the numerical
issues such as plateau. We have further developed the KLR
using single kernel to multiple-kernel LR (MKLR). The pro-
posed MKLR, which is also optimized in the scheme of non-
linear CG, produces the kernel-based classifier with optimized
weights for multiple kernels. In the experiments on various
multi-class classification tasks, the proposed methods produced
favorable results in terms of classification performance and
computation time, compared to the other methods.

REFERENCES

[1] G. Wang, D. Hoiem, and D. Forsyth, “Building text features for object
image classification,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 1367–1374.

[2] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert, “An
empirical study of context in object detection,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 1271–1278.

[3] I. Laptev, M. Marszaek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2008.

[4] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale bayesian logistic
regression for text categorization,” Technometrics, vol. 49, no. 3, pp.
291–304, 2007.

[5] P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, Eds.,
Advances in Large-Margin Classifiers. MIT Press, 2000.

10
0

10
1

10
2

10
3

10
4

10
5

usps
(10)

7291x7291

letter
(26)

15000x15000

protein
(3)

17766x17766

poker
(10)

25010x25010

shuttle
(7)

43500x43500

T
ra

in
in

g
T

im
e

(s
ec

)

MC−KSVM
KLR (TRIRLS)
KLR (TRON)
KLR (LBFGS)
KLR (ours)
KLR (ours−gpu)

10
1

10
2

10
3

10
4

10
5

10
6

usps
(10)

7291x7291

letter
(26)

15000x15000

protein
(3)

17766x17766

poker
(10)

25010x25010

shuttle
(7)

43500x43500

W
ho

le
 T

ra
in

in
g

T
im

e
(s

ec
)

MC−KSVM
KLR (TRIRLS)
KLR (TRON)
KLR (LBFGS)
KLR (ours)
KLR (ours−gpu)

(a) On final learning (b) On whole learning

Fig. 7. Computation times on kernel-based classification.

TABLE VI. OBJECTIVE COST VALUES OF KLR METHODS WITH

λ = 10−2 ON KERNEL DATASETS.

Dataset Ours TRIRLS LBFGS
USPS 446.37 914.88 501.15

LETTER 4746.13 12476.41 5789.30
PROTEIN 5866.16 12576.97 10650.96
POKER 22186.19 30168.74 23345.94

SHUTTLE 759.99 1100.07 811.91

[6] V. Vapnik, Statistical Learning Theory. Wiley, 1998.

[7] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” Journal of Machine Learning
Research, vol. 2, pp. 265–292, 2001.

[8] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods - Support Vector
Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge,
MA, USA: MIT Press, 1999, pp. 185–208.

[9] J. Nocedal and S. Wright, Numerical Optimization. Springer, 1999.

[10] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient
methods,” Pacific Journal of Optimization, vol. 2, pp. 35–58, 2006.

[11] G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan,
“Learning the kernel matrix with semidefinite programming,” Journal
of Machine Learning Research, vol. 5, pp. 27–72, 2004.

[12] K. Watanabe, T. Kobayashi, and N. Otsu, “Efficient optimization of
logistic regression by direct cg method,” in International Conference
on Machine Learning and Applications, 2011.

[13] R. Malouf, “A comparison of algorithms for maximum entropy parame-
ter estimation,” in The Sixth Conference on Natural Language Learning,
2002, pp. 49–55.

[14] C. Sutton and A. McCallum, An introduction to conditional random
fields for relational learning, L. Getoor and B. Taskar, Eds. MIT
Press, 2006.

[15] T. Minka, “A comparison of numerical optimizers for logistic regres-
sion,” Carnegie Mellon University, Technical report, 2003.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2007.

[17] P. Komarek and A. Moore, “Fast robust logistic regression for large
sparse datasets with binary outputs,” in The 9th International Workshop
on Artificial Intelligence and Statistics, 2003, pp. 3–6.

[18] ——, “Making logistic regression a core data mining tool,” in Interna-
tional Conference on Data Mining, 2005, pp. 685–688.

[19] M. R. Hestenes and E. L. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of Research of the National Bureau of
Standards, vol. 49, no. 6, pp. 409–436, 1952.

[20] C.-J. Lin, R. Weng, and S. Keerthi, “Trust region newton methods for
large-scale logistic regression,” in International Conference on Machine
Learning, 2007, pp. 561–568.

[21] H. Daumé III, “Notes on CG and LM-BFGS optimization of
logistic regression,” Technical report, 2004. [Online]. Available:
http://www.umiacs.umd.edu/∼hal/docs/daume04cg-bfgs.pdf

[22] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large
scale optimization,” Mathematical Programming, vol. 45, pp. 503–528,
1989.

[23] S. D. Pietra, V. D. Pietra, and J. Lafferty, “Inducing features of

146 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Samples

W

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Samples

W

0 1000 2000 3000 4000 5000 6000 7000 8000
−4

−2

0

2

4

6

8

Samples

W

(a) TRIRLS (b) TRON (c) LBFGS

0 1000 2000 3000 4000 5000 6000 7000 8000
−30

−20

−10

0

10

20

30

40

50

Samples

W

0 1000 2000 3000 4000 5000 6000 7000 8000
−25

−20

−15

−10

−5

0

5

10

15

20

25

Samples

W

(d) ours (e) MC-KSVM

Fig. 8. Classifiers (coefficients w1 across samples) of class 1 on USPS.

TABLE VII. DATASETS FOR MULTIPLE-KERNEL LEARNING. WE APPLY

FIVE-FOLD CROSS VALIDATION ON THE DATASETS MARKED BY ∗ , WHILE

USING GIVEN TRAINING/TEST SPLITS ON THE OTHER DATASETS.

Dataset #class #kernel #training sample #test sample
PSORT-∗ 5 69 1,155 289

NONPLANT∗ 3 69 2,186 546
PASCAL-VOC2007 20 15 2,954 3,192

PEN-DIGITS 10 4 7,494 3,498

random fields,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 4, pp. 380–393, 1997.

[24] J. Zhu and T. Hastie, “Kernal logistic regression and the import vector
machine,” Journal of Computational and Graphical Statistics, vol. 14,
no. 1, pp. 185–205, 2005.

[25] G. Wahba, C. Gu, Y. Wang, and R. Chappell, “Soft classification,
a.k.a. risk estimation, via penalized log likelihood and smoothing
spline analysis of variance,” in The Mathematics of Generalization,
D. Wolpert, Ed. Reading, MA, USA: Addison-Wesley, 1995, pp. 329–
360.

[26] T. Hastie and R. Tibshirani, Generalized Additive Models. Chapman
and Hall, 1990.

[27] B. Schölkopf and A. Smola, Learning with Kernels. MIT Press, 2001.

[28] Y. Dai and L. Liao, “New conjugacy conditions and related nonlinear
conjugate gradient methods,” Applied Mathmatics and Optimization,
vol. 43, pp. 87–101, 2001.

[29] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, “Sim-
plemkl,” Journal of Machine Learning Research, vol. 9, pp. 2491–2521,
2008.

[30] F. Bach, “Consistency of the group lasso and multiple kernel learning,”
Journal of Machine Learning Research, vol. 9, pp. 1179–1225, 2008.

[31] J. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal, Numerical
Optimization: Theoritical and Practical Aspects. Springer, 2006.

[32] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “Liblinear: A library
for large linear classificatio,” Journal of Machine Learning Research,
vol. 9, pp. 1871–1874, 2008, Software available at http://www.csie.ntu.
edu.tw/∼cjlin/liblinear.

[33] M. Duarte and Y. H. Hu, “Vehicle classification in distributed sensor
networks,” Journal of Parallel and Distributed Computing, vol. 64,
no. 7, pp. 826–838, 2004.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[35] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new bench-
mark collection for text categorization research,” Journal of Machine
Learning Research, vol. 5, pp. 361–397, 2004.

[36] A. McCallum and K. Nigam, “A comparison of event models for naive
bayes text classification,” in AAAI’98 Workshop on Learning for Text
categorization, 1998.

[37] K. Lang, “Newsweeder: Learning to filter netnews,” in International
Conference on Machine Learning, 1995, pp. 331–339.

[38] K. Fukumizu and S. Amari, “Local minima and plateaus in hierarchical

0

10

20

30

40

50

60

psort−*
(5)

1156x1156x69

nonplant*
(3)

2186x2186x69

PASCAL2007
(20)

2954x2954x15

pendigits
(10)

7494x7494x4

E
rr

or
 R

at
e

(%
)

KLR (best)
KLR (average)
simpleMKL
MKLR (ours)

Fig. 9. Error rates and computation times on multiple-kernel learning.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Kernels

v

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Kernels

v

(a) simpleMKL [29] (b) MKLR (ours)

Fig. 10. The obtained kernel weights v on PASCAL-VOC2007.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

psort−*
(5)

1156x1156x69

nonplant*
(3)

2186x2186x69

PASCAL2007
(20)

2954x2954x15

pendigits
(10)

7494x7494x4

T
ra

in
in

g
T

im
e

(s
ec

)

simpleMKL
MKLR (ours)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

psort−*
(5)

1156x1156x69

nonplant*
(3)

2186x2186x69

PASCAL2007
(20)

2954x2954x15

pendigits
(10)

7494x7494x4

W
ho

le
 T

ra
in

in
g

T
im

e
(s

ec
)

simpleMKL
MKLR (ours)

(a) On final learning (b) On whole learning

Fig. 11. Computation times on multiple-kernel learning.

structures of multilayer perceptrons,” Neural Networks, vol. 13, no. 3,
pp. 317–327, 2000.

[39] J. Hull, “A database for handwritten text recognition research,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16,
no. 5, pp. 550–554, 1994.

[40] J.-Y. Wang, “Application of support vector machines in bioinformatics,”
Master’s thesis, Department of Computer Science and Information
Engineering, National Taiwan University, 2002.

[41] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, software available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm.

[42] M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodal semi-
supervised learning for image classification,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2010, pp. 902–909.

[43] F. Alimoglu and E. Alpaydin, “Combining multiple representations and
classifiers for pen-based handwritten digit recognition,” in International
Conference on Document Analysis and Recognition, 1997, pp. 637–640.

[44] A. Zien and C. S. Ong, “An automated combination of kernels for
predicting protein subcellular localization,” in Proceedings of the 8th
Workshop on Algorithms in Bioinformatics, 2008, pp. 179–186.

147 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 5, 2013

