
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

144 | P a g e
www.ijacsa.thesai.org

Format SPARQL Query Results into HTML Report

Dr Sunitha Abburu,

 Professor & Director, Dept of Computer Applications,

Adhiyamaan College of Engineering

Hosur,Tamilnadu,India

G.Suresh Babu

JRF, Dept of M.C.A

Adhiyamaan College of Engineering

Hosur, Tamilnadu, India

Abstract—SPARQL is one of the powerful query languages

for querying semantic data. It is recognized by the W3C as a

query language for RDF. As an efficient query language for RDF,

it has defined several query result formats such as CSV, TSV and

XML etc. These formats are not attractive, understandable and

readable. The results need to be converted in an appropriate

format so that user can easily understand. The above formats

require additional transformations or tool support to represent

the query result in user readable format. The main aim of this

paper is to propose a method to build HTML report dynamically

for SPARQL query results. This enables SPARQL query result

display, in HTML report format easily, in an attractive

understandable format without the support of any additional or
external tools or transformation.

Keywords—SPARQL query; Oracle database 11g semantic

store; Jena adapter; HTML report.

I. INTRODUCTION

The goal of semantic web [1] is to extend the current web
standards and technology so that machine understands the web
content. The knowledge representation technology used in the
semantic web is ontology. An ontology is a common, shared
and formal description of important concepts in specific
domain [2]. Researchers have developed several ontology
languages such as RDF, RDFS, and OWL etc. There are
several query languages based on the ontology data format [3].
For example XPath and XQuery query languages for XML
format, RDQL [4] and SPARQL [5] for RDF format and
OWL-QL for OWL format of ontologies. Among the ontology
query languages, SPARQL is one of the most efficient query
languages for the Semantic Web [6] and it is recommend by
W3C.

The SPARQL query language for RDF has several query
result forms such as CSV, TSV [7] and XML etc. These
formats are not clear to the user to realize and analyze query
results. There is a need to represent SPARQL query result in
an attractive format so that user can easily understand the
SPARQL query results. The above SPARQL query result
formats require additional conversions or tool support to
represent query results in user readable format. This paper
proposed a method to represent SPARQL query results in
more attractive and user graspable format.

The rest of the paper is organized as follows. Section II
describes survey on SPARQL query result formats. Section III
defines the problem statement and over view of the proposed
system architecture. Section IV describes the implementation

details of the proposed system. Section V shows results of the
proposed method. Finally section VI concludes.

II. RELATED RESEARCH WORK

Most RDF stores use one of the common RDF query
languages like RDQL [4] or SPARQL [5]. Among them
SPARQL is efficient query language for semantic web and it
has W3C recommendation. Basically the SPARQL language
for RDF defines several query result forms such as CSV, TSV
[7], and XML etc. The SPARQL binds the variables of query
results into XML notation. The conversion process of
SPARQL query results into XML format is described by RDF
data access working group (DAWG). DAWG has described
four implementations. Among them two implementations
produce SPARQL result in XML format and other two
implementations, consumes the query results that are in XML
format. The producer implementations are Joseki [8] and
AllegroGraph [9]. The producer implementations produce
SPARQL query results in XML format. The two consumers
are python [10] and XSL Transform (XSLT). Python parses
the format into an internal graph to check for correctness.
XSLT consumes SPARQL query results XML format and
generates an HTML document [11].

SPARQL 1.1 query results CSV (comma separated values)
and TSV (tab separated values) formats provide simple and
easy to process formats for the transmission of tabular data.
These formats are supported as input to many tools like
spreadsheets. SPARQL 1.1 query results in JSON format [12]
is designed to represent the query results in an array object.
The results of a SELECT query are serilialized as an array,
where each array element is one "row" of the query results.
BIRT [13], an open source Eclipse-based reporting system that
can be used to generate charts and other reports from input
data. BIRT takes input from relational databases or
spreadsheets. TopBraid Composer [14] integrates with BIRT
to generate reports for SPARQL query results [15]. TopBraid
Composer's Maestro Edition provides an interface between
any OWL/RDF data source and BIRT.

The SPARQL query result formats CSV, TSV, JSON and
XML require additional transformations or tool support to
represent query result in an appropriate format. BIRT is not
developed specifically for SPARQL query results. To use
BIRT SPARQL query result needs to be converted into any
BIRT specific input format. Our approach enables the user to
build HTML document dynamically for variable binding
SPARQL query results and browse the constructed HTML
document automatically to view the report.

http://www.eclipse.org/birt/phoenix/
http://www.topbraidcomposer.com/tbc-me.html

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

145 | P a g e
www.ijacsa.thesai.org

Fig. 1. Proposed System Architecture

Fig.2. User interface to write SPARQL query

III. PROPOSED SYSTEM ARCHITECTURE

From the literature study, the conclusion is that, there is no
direct method to represent SPARQL query result in user
understandable format.All the existing formats require

additional conversions or tool support to represent query
results in user understandable format. The problem is to design
and implement a method to represent results of a SPARQL
SELECT query that is executed on semantic data which is
stored in the oracle database 11g semantic store using Jena
adapter [16].

The method should enable the user to build HTML
document dynamically for variable binding SPARQL query

results and browse the constructed HTML document
automatically to view the query result.

The architecture describes generation of HTML page for
variable binding SPARQL query results. Fig1 shows the

system architecture. The user interface allows user to write
SPARQL SELECT query. The query is executed on semantic
data stored in the oracle database using the oracle Jena
adapter. The HTML file construction section lists the variables
involved in the query and extracts the variable binding values.
A HTML Document is constructed with the variables and
query results. Finally the constructed HTML document is
displayed to view the report using any web browser like
internet explorer, etc.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

146 | P a g e
www.ijacsa.thesai.org

Fig.3. Execution process of SPARQL query and construction of

HTML

IV. IMPLEMENTATION

The proposed architecture is implemented using Java
NetBeans IDE and Jena API. A simple user interface is
designed for writing SPARQL query using Java NetBeans
IDE. Fig2 shows the interface for writing SPARQL query.
Implementation of the proposed method has two phases. First
phase consist query execution process using the Oracle Jena
adapter and the second phase describes generation of HTML
document for SPARQL query results. The entire process is
described in fig3

Phase1: SPARQL query execution

Executing SPARQL query using Jena adapter has the
following steps.

a) Create model for the ontology store

b) Model

model=ModelOracleSem.createOracleSemModel(oracle,"RD

F Model");

c) Take SPARQL query string from the interface

d) String q=txtQuery.getText();

e) Create query using QueryFactory.

f) Query query=QueryFactory.create(q,

Syntax.syntaxARQ);

g) Pass query and model to the QueryExecutionFactory

and execute the query

QueryExecution
exec=QueryExecutionFactory.create(query, model);

Phase2: HTML document construction for SPARQL query
results

Constructing HTML document from the variable binding
SPARQL query result has the following steps.

a) List out the variables involved in the query

ResultSet rs=exec.execSelect();
List l=rs.getResultVars();

b) Extract variable binding values (it is an iterative

process)

QuerySolution qs=rs.nextSolution();
String val=qs.get(l.get(i).toString()).toString();

c) Constructing HTML document with the listed

variables and binding values. The following code shown in

fig4 constructs HTML document dynamically.

d) Pass the constructed HTML document to a web

browser to display the result

Desktop dt=Desktop.getDesktop();
dt.browse(new URI("result.html"));

V. RESULTS

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

147 | P a g e
www.ijacsa.thesai.org

PrintWriter pw=new PrintWriter(new File("result.html"));

pw.print("<html><body bgcolor=\"#EAE6F5\">");

pw.print("<h2 align=center>SPARQL

RESULT</h2>");

pw.print("<table border=1 align=\"center\">");

pw.print("<tr>");

for(int i=0;i<l.size();i++)

 pw.print("<th bgcolor=\"#FFA500\"><font

size=6>"+l.get(i)+"</th>");

pw.write("</tr>");

pw.print("<tbody bgcolor=\"#C0C0C0\">");

while(rs.hasNext())

{

 QuerySolution qs=rs.nextSolution();

 pw.print("<tr>");

 for(int i=0;i<l.size();i++)

 {

 val=qs.get(l.get(i).toString()).toString();

 pw.print("<td>"+val+"</td>");

 }

 pw.print("</tr>");

 }

 pw.print("</tbody></table>");

 pw.print("</body></html>");

 pw.close();

Fig.4. Code to generate HTML document for SPARQL query result

(?Funding_Body = "DRDO") (?Cost_in_Lakhs = "4.85600014E1"^^xsd:float) (?Title = "Rooting System") (?Status = "On going") (?ID =

<http://www.Project.org/project#P0002>) (?StartDate = "2011-05-12T00:00:00"^^xsd:dateTime) (?Administartive_Authority = "Prof. K. Lakshmi") (?PI =

"Prof. M. R. Naidu") (?Duriation = "3 Years")

(?Funding_Body = "DRDO") (?Cost_in_Lakhs = "4.05600014E1"^^xsd:float) (?Title = "Knowledge Representation System") (?Status = "Completed") (

?ID = <http://www.Project.org/project#P0004>) (?StartDate = "2006-05-26T00:00:00"^^xsd:dateTime) (?Administartive_Authority = "Dr. Gurdeep") (?PI =

"Prof. Mohanlal") (?Duriation = "2 Years")

(?Funding_Body = "ISRO") (?Cost_in_Lakhs = "7.52600021E1"^^xsd:float) (?Title = "Resource Management System") (?Status = "Completed") (?ID =

<http://www.Project.org/project#P0005>) (?StartDate = "2007-01-24T00:00:00"^^xsd:dateTime) (?Administartive_Authority = "Dr. M. Jawahar") (?PI =

"Dr. A. Usha Rani") (?Duriation = "3 Years")

(?Funding_Body = "MOES") (?Cost_in_Lakhs = "1.05E1"^^xsd:float) (?Title = "Managing Cloud in the Internet") (?Status = "Completed") (?ID =

<http://www.Project.org/project#P0001>) (?StartDate = "2009-03-24T00:00:00"^^xsd:dateTime) (?Administartive_Authority = "Dr. Ajaipal") (?PI = "Dr. L.

Kanhaiya Lal") (?Duriation = "2 Years")

(?Funding_Body = "MOES") (?Cost_in_Lakhs = "3.03999996E1"^^xsd:float) (?Title = "Knowledge Managment System") (?Status = "On going") (?ID =

<http://www.Project.org/project#P0003>) (?StartDate = "2011-06-25T00:00:00"^^xsd:dateTime) (?Administartive_Authority = "Prof. M K Naidu") (?PI =

"Prof. Dimpu Rani") (?Duriation = "3 Years")

Fig. 5. SPARQL query result actual format

Fig. 6. Variable binding SPARQL query result using proposed method

To evaluate the proposed method, OWL ontology for R&D
projects is constructed using NeOn toolkit [17] and loaded into
the oracle database 11g semantic store. This section describes
the difference between actual SPARQL query result format
and the proposed method output.

To show the difference, a sample SPARQL SELECT
query is taken to print all the principal investigators involved
in various research projects.

SPARQL SELECT Query: To print various R&D project
details

SELECT ?ID ?Title ?Funding_Body ?PI
?Administartive_Authority ?Duriation ?Cost_in_Lakhs
?StartDate ?Status where {?ID rdf:type :Project; :hasTitle
?Title; :hasPI ?p; :hasAA ?a; :sponsorBy ?f. ?f
organization:hasName ?Funding_Body. ?p people:hasName
?PI. ?a people:hasName ?Administartive_Authority. ?ID
:hasDuration ?Duriation; :hasCost ?Cost_in_Lakhs;
:hasStartDate ?StartDate; :hasStatus ?Status. }

The query is executed and fig5 shows actual format of
SPARQL query result. The format has unnecessary data and
query results are combined with variables. It is not effective,
difficult to read and understand.

Fig6 shows output of the above SPARQL query using
proposed method. The resulting format is effective
understandable and readable.

VI. CONCLUSION

This paper presents a method to represent results of
SPARQL query executed on semantic data stored in the oracle
11g database. This method uses the Oracle Jena adapter to
execute SPARQL query. The proposed method is
implemented using Java code and HTML elements to render
the query results in presentable format. Compared to other
approaches, this approach does not require intermediate

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

148 | P a g e
www.ijacsa.thesai.org

transformations to present query results in readable format and
user need not to take much effort to view the result. The
proposed method is examined with R&D project OWL
ontology loaded in the oracle 11g database. As shown in the
results, the proposed method constructs an HTML report
dynamically for SPARQL query results and displays
automatically using a web browser to view the result.

ACKNOWLEDGMENT

The work presented in this paper is done as part of a
sponsored project founded by government of India, Ministry
of Defence, DRDO (ER&IPR), and done in the labs of
Adhiyamaan College of Engineering where the author is
working as a Professor& Director in the department of Master
of Computer Applications. The author would like to express
her sincere thanks to DRDO for providing the support.

REFERENCES

[1] N. Shadbolt, W. Hall and T. Berners-Lee, “The Semantic Web

Revisited”, Intelligent Systems, IEEE, 2006, vol. 21, no. 3, pp. 96–101.

[2] O. Lassila, F. van Harmelen, I. Horrocks, J. Hendler, D.L. Mcguinness,

“The Semantic Web and its Languages”, Intelligent Systems and their
Applications, IEEE, 2000, Vol. 15, Issue 6, pp. 67-73.

[3] J. Bailey, F. Bry, T. Furche, S. Schaffert, “Semantic Web Query

Languages”, Encyclopedia of Database Systems, Springer, 2009, pp.
2583-2586.

[4] Seaborne A, “RDQL – A query language for RDF W3C Member

Submission”.Available at http://www.w3.org/Submission /2004/SUBM-
RDQL-20040109.

[5] E. Prud’hommeaux and A. Seaborne, “SPARQL query language for

RDF”, Technical report, W3C Recommendation, 2008. Available on
http://www.w3.org/TR/rdf-sparql-query/

[6] S. M. Patil and D. M. Jadhav, “ Semantic Search using Ontology and
RDBMS for Cricket”, International Journal of Computer Applications,

May 2012, Vol. 4, No.14, pp.26-31.

[7] Andy Seaborne, “SPARQL 1.1 Query Results CSV and TSV Formats”,
2012, available at http://www.w3.org/TR/2012/WD-sparql11-results-

csv-tsv-20120501/

[8] http://www.joseki.org/

[9] http://www.franz.com/agraph/allegrograph/

[10] http://www.franz.com/agraph/support/documentation/current/python-
tutorial/python-tutorial-40.html.

[11] Dave Beckett and Jeen Broekstra, “Format SPARQL Query Results

XML Format into xhtml (XSLT)”, 2013, available at
http://www.w3.org/TR/rdf-sparql-XMLres/

[12] Andy Seaborne, “SPARQL 1.1 Query Results JSON Format”, 2013, The
Apache Software Foundation, available at

http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/

[13] BIRT Tutorial, version 8.2, May 2011; available at
http://www.eclipse.org/birt/phoenix/tutorial/

[14] www.topbraidcomposer.org.

[15] Moritz Weiten, “OntoSTUDIO as a Ontology Engineering

Environment”, Semantic Knowledge Management, Springer Book,
Chapter 5, 2009, pp.51-60.

[16] Chuck Murray, “Oracle Database Semantic Technologies Developer's

Guide”, 11g Release 2 (11.2), may 2012.

[17] NeOn toolkit: http://neon-toolkit.org/wiki/Main_Page.

http://www.w3.org/Submission%20/2004/SUBM-RDQL-20040109
http://www.w3.org/Submission%20/2004/SUBM-RDQL-20040109
http://www.topbraidcomposer.org/

