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Abstract—The classification of remote sensing images has 

done great forward taking into account the image’s availability 

with different resolutions, as well as an abundance of very 

efficient classification algorithms. A number of works have 

shown promising results by the fusion of spatial and spectral 

information using Support Vector Machines (SVM) which are a 

group of supervised classification algorithms that have been 

recently used in the remote sensing field, however the addition of 

contour information to both spectral and spatial information still 

less explored. 

For this purpose we propose a methodology exploiting the 

properties of Mercer’s kernels to construct a family of composite 

kernels that easily combine multi-spectral features and Haralick 

texture features as data source. The composite kernel that gives 

the best results will be used to introduce contour information in 

the classification process.   

The proposed approach was tested on common scenes of 

urban imagery. The three different kernels tested allow a 

significant improvement of the classification performances and a 

flexibility to balance between the spatial and spectral information 

in the classifier. The experimental results indicate a global 

accuracy value of 93.52%, the addition of contour information, 

described by the Fourier descriptors, Hough transform and 

Zernike moments, allows increasing the obtained global accuracy 

by 1.61% which is very promising. 

Keywords—SVM; Contour information; Composite Kernels; 
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I.  INTRODUCTION 

The rich spectral information available in remotely sensed 
images allows the possibility to distinguish between spectrally 
similar materials [1]. However, supervised classification of 
satellite images (which assumes prior knowledge in the form of 
class labels for some spectral signatures) is a very challenging 
task due to the generally unfavourable ratio between the (large) 
number of spectral bands and the (limited) number of training 
samples available a priori, which results in the Hughes 
phenomenon.  

The application of originally developed methods for the 
classification of lower dimensional data sets (such as 
multispectral images) generally provides poor results when 

applied to satellite images, particularly in the case of small 
training sets [2]. 

The classification of such images is similar to that of other 
image types, it follows the same principle, and it is a method of 
analysis of data that aims to separate the image into several 
classes in order to gather the data in homogeneous subsets, 
which show common characteristics. It aims to assign to each 
pixel of the image a label which represents a theme in the real 
study area (e.g. vegetation, water, built, etc) [3]. 

Several classification algorithms have been developed since 
the first satellite image was acquired in 1972 [4-6]. Among the 
most popular and widely used is the maximum likelihood 
classifier [7]. It is a parametric approach that assumes the class 
signature in normal distribution. Although this assumption is 
generally valid, it is invalid for classes consisting of several 
subclasses or classes that have different spectral features [8]. 
To overcome this problem, some non-parametric classification 
techniques such as artificial neural networks, decision trees and 
Support Vector Machines (SVM) have been recently 
introduced. 

SVM is a group of advanced machine learning algorithms 
that have seen increased use in land cover studies [9, 10]. One 
of the theoretical advantages of the SVM over other algorithms 
(decision trees and neural networks) is that it is designed to 
search for an optimal solution to a classification problem 
whereas decision trees and neural networks are designed to find 
a solution, which may or may not be optimal.  

This theoretical advantage has been demonstrated in a 
number studies where SVM generally produced more accurate 
results than decision trees and neural networks [7, 11]. SVMs 
have been used recently to map urban areas at different scales 
with different remotely sensed data.  High or medium spatial 
resolution images (e.g., IKONOS, QUICKBIRD, LANDSAT 
(TM)/ (ETM+), SPOT) have been widely employed on urban 
land use classification for individual cities, building extraction, 
road extraction and other man-made objects extraction [12, 13]. 

On the other hand, the consideration of the spatial aspect in 
classification remains very important. For this case, Haralick 
has described methods for measuring texture in gray-scale 
images, and statistics for quantifying those textures. It is the 
hypothesis of this research that Haralick’s Texture Features and 
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statistics as defined for gray-scale images can be modified to 
incorporate spectral information, and that these Spectral 
Texture Features will provide useful information about the 
image. It is shown that texture features can be used to classify 
general classes of materials, and that Spectral Texture Features 
in particular provide a clearer classification of land cover types 
than purely spectral methods alone. 

As well as the contour information is concerned, survey 
approaches were developed for pattern recognition. The three 
most used methods are the Fourier descriptors (FD) classically 
used to shape recognition and template matching; the Hough 
transform (HT) which has become a standard tool in computer 
vision field. It allows the detection of lines, circles or ellipses in 
a traditional way; it can also be extended to the description of 
more complex object cases. The third method is the Zernike 
Moments (ZM) used to extract invariant shapes descriptors to 
some general linear transformations for the images 
classification. 

This work presents the way adopted in our experiments to 
incorporate contour information into classification process. We 
have found that the use of this contour information with both 
spectral and spatial information allows increasing the accuracy 
obtained using only spectral and spatial information. 

The proposed method consists into combining spatial, 
spectral and contour information to obtain a better 
classification. So we have started with the extraction of spatial 
information (Haralick texture features) [14], and the contour 
information (Fourier descriptors, Hough transform and Zernike 
moments). Then, we have used these descriptors combined 
with spectral values as entry of the SVM classifier. We have 
exploited the properties of Mercer’s kernels to construct a 
family of composite kernels that easily combine spatial and 
spectral information. The three different composite kernels 
tested demonstrate enhanced classification accuracy compared 
to approaches that take into account only the spectral 
information, and a flexibility to balance between the spatial and 
spectral information in the classifier. 

An extended version of the composite kernel that gives the 
best results will be used to introduce contour information in the 
classification process. The result obtained is compared with the 
same composite kernel using only spectral and spatial 
information to measure the contribution of contour information 
in the classification’s overall accuracies. 

This paper is organized as follows. In the second section, 
we will discuss the extraction of spectral, spatial and contour 
information especially the Grey-Level Co-occurrence Matrix 
(GLCM), Haralick texture features, Hough transform and 
Zernike moments used in experimentations. In section 3, we 
will give outlines on the used classifier: Support Vector 
Machines (SVM). Section 4 will describe the three different 
composite kernels used in experimentations. In section 5, the 
experimentations and results would be presented as well as the 
numerical evaluation. Finally, conclusions and future research 
lines would be provided in section 6. 

II. EXTRACTION OF INFORMATION 

A. Spectral Information 

The most used classification methods for the remote-
sensing data consider especially the spectral dimension. First 
attempts to analyze urban area used existing methodologies and 
techniques developed for land remote sensing, based on signal 
modeling. Each pixel-vector is regarded as a vector of 
attributes which will be directly employed as an entry of the 
classifier.  

The traditional approach for classifying remote-sensing data 
may be summed up as: from the original data set, a feature 
reduction/selection step is performed according to the classes in 
consideration, and then classification is carried out using these 
extracted features. In our work, the step of a feature 
reduction/selection can be skipped considering that we have 
used multispectral images such as IKONOS, QUICKBIRD. 

According to Fauvel [15] this allows a good classification 
based on the spectral signature of each area. However, this does 
not take in account the spatial information represented by the 
various structures in the image. 

B. Spatial Information 

Information in a remote sensed image can be deduced based 
on their textures. A human analyst is able to distinguish man-
made features from natural features in an image based on the 
‘regularity’ of the data. Straight lines and regular repetitions of 
features hint at man-made objects. This spatial information is 
useful in distinguishing the different field in the remote sensed 
image. 

Many approaches were developed for texture analysis. 
According to the processing algorithms, three major categories, 
namely, structural, spectral, and statistical methods are 
common ways for texture analysis. 

Many researches have been conducted on the use of Gabor 
filter banks [16] and co-occurrence matrices [17] for the 
spatial/spectral classification of multispectral data. Other 
researches have been conducted with mathematical 
morphology concepts. Palmason et al. [18] and Fauvel et al. 
[15] suggest an extraction method of morphological profiles. 
These profiles are computed on the first principal components 
of hyperspectral images. Plaza [19] uses also mathematical 
morphology to extract the endmembers of a hyperspectral 
image. Some other works [20] combine spectral classification 
with spatial segmentation based on watershed method.  

In [21-23], the authors compare different spatial features in 
unsupervised classification of hyperspectral images; the studies 
used Gabor filter banks, co-occurrence matrices, Texture 
spectra and morphological profiles. The results obtained 
showed that the haralick features extracted from the co-
occurrence matrices give the best performance in classification 
accuracies. 

The GLCM method, proposed by Haralick [24, 25], 
involves two steps to generate spatial features.  
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First, the spatial information of a digital image is extracted 
by a co-occurrence matrix calculated on a pixel neighbourhood 
(pixel window) defined by a moving window of a given size. 
Such a matrix contains frequencies of any combination of gray 
levels occurring between pixel pairs separated by a specific 
distance and angular relationship within the window. The 
second step is to compute statistics from the gray level co-
occurrence matrix to describe the spatial information according 
to the relative position of the matrix elements.  

Even small, a co-occurrence matrix represents a substantial 
amount of data that is not easy to handle. This is why Haralick 
uses these matrices to develop a number of spatial indices that 
are easier to interpret. 

Haralick assumed that the texture information is contained 
in the co-occurrence matrix, and texture features are calculated 
from it. A large number of textural features have been 

proposed starting with the original fourteen features described 
by Haralick et al [25], however only some of these features are 
in wide use. Wezska et al [26] used four of Haralick features. 
Conners and Harlow [27] use five features. Peng Gong and al. 
[28] show that these features are much correlated with each 
other. The authors have used the FORTRAN package 
TEXTRAN for the spatial feature extraction. The analysis was 
made on the near-infrared band (0.79-0.89/µm) with a 
quantization level of 16.  

The interpixel distance was kept constant to 1, and the four 
main orientations were averaged. The window sizes used were 
3x3, 5x5, and 7x7 pixels. Preliminary tests made with larger 
window sizes did not give satisfactory results. Ten texture 
features were first generated on a 5x5 pixel window. The three 
less correlated features were then selected to complete the 
study. The Fig.1. Represents the Correlation Matrix of the 16 
Spatial Features. 

 

Fig. 1. The Correlation Matrix of the 16 Spatial Features. 

In this work, we have chosen the five features used by 
Conners and Harlow, which are some of the most commonly 
used spatial measures and the three less correlated (Fig.1.); we 
have found that these five sufficed to give good results in 
classification [29].  

These five features are: homogeneity (E), contrast (C), 
correlation (Cor), entropy (H) and local homogeneity (LH), and 
co-occurrence matrices are calculated for four directions: 0°, 
45°, 90°and 135° degrees.   

Let us recall their definitions considering a co-occurrence 
matrix M:  
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Each texture measure can create a new band that can be 
incorporated with spectral features for classification purposes. 

C. Contour Information 

Fourier descriptors are classical methods to shape 
recognition and they have grown into a general method to 
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encode various shape signatures. Previous experiments have 
used Fourier descriptors to smooth out fine details of a shape. 
Also, using the portion of Fourier descriptors to reconstruct an 
image that smooths out the sharp edges and fine details found 
in the original shape. Filtering an image with Fourier 
descriptors provides a simple technique of contour smoothing. 

Fourier description of an edge is also used for template 
matching. Since all the Fourier descriptors except the first one 
do not depend on the location of the edge within the plane, this 
provides a convenient method of classifying objects using 
template matching of an object’s contour. A set of Fourier 
descriptors is computed for a known object. Ignoring the first 
component of the descriptors, the other Fourier descriptors are 
compared against the Fourier descriptors of unknown objects. 
The known object, whose Fourier descriptors are the most 
similar to the unknown object’s Fourier descriptors, is the 
object the unknown object is classified to. They can also be 
used for calculation of region area, location of centroid, and 
computation of second-order moments. 

On the other hand, in the detection of specific elements, 
There are algorithms that, so as to identify these basic forms, 
attempt to follow the contours to finally bind criteria more or 
less complex to trace the desired shape. Another approach to 
this problem is to try to accumulate evidences on a particular 
form existence, such as a line, a circle or an ellipse. It is this 
approach that has been adopted in the Hough transform. In 
recent decades, it has become a standard tool in computer 
vision field. It allows the detection of lines, circles or ellipses in 
a traditional way. It can also be extended to description of more 
complex objects cases. 

Moreover, the methods of images representation by 
moments are among the first to have been applied in pattern 
recognition. The main motivation is to extract invariant shapes 
descriptors to some general linear transformations for the 
images classification. Since the initial work of H. Ming-Kuel 
[30] in 1962 on invariants derived from the image geometric 
moments, several approaches have been proposed. Most of 
these defined moments are expressed as radial moments of the 
image’s circular harmonic functions. The image’s Zernike 
Moments (MZ) were introduced by M.R. Teague [31]. He 
proposed to use complex polynomials of Zernike orthogonal 
within the unit circle. These methods are distinguished by the 
used radial kernel form, which is more or less appropriate to 
the extraction of invariant descriptors to flat similarities. 

In the following we will introduce briefly the Fourier 
descriptors, the Hough transform and Zernike moments used in 
experiment to describe the contour information. 

1) Fourier Descriptors 
The Fourier Descriptors (FD) have been frequently used as 

features for image processing, remote sensing, shape 
recognition and classification. 

The use of FDs for pattern recognition tasks started in the 
early sixties by Cosgriff [32] and Fritzsche [33]. A set of 
orthogonal FDs represent each pattern for the purpose of 
classification. The recognition system was independent of the 
character size and orientation. Furthermore, FDs were used as 
features for recognition systems for both handwritten characters 

[34] and numerals [35]. Granlund [34] used a small number of 
lower-order descriptors for the classification system. Those 
descriptors were insensitive to translation, rotation and dilation. 
Because of the small computational power available at that 
time the system could not be examined to give the suitable 
number of descriptors. The classification system was applied to 
a small number of characters. Nevertheless the system was able 
to produce a very good recognition rate of 98%. 

Zhan and Roskies [35] started computing the FDs by 
translating the contour of handwritten numeral into a change of 
angle curve. A large number of Fourier coefficients are 
produced. For each coefficient two kinds of FDs are computed, 
the harmonic amplitude and the phase angle. Those pair of FDs 
is invariant under translation, rotation and change of size of the 
original handwritten numeral. All the FDs pairs fully describe 
the original signature.  

Fourier descriptors were also used to describe open curves 
in an online character recognition system [36]. The one pixel 
thick strokes were taken online using a tablet. Then twenty FDs 
were computed and used for classification.  

In remote sensing field the FDs were applied to the feature 
of the regions on the data for geometrical matching of the 
remote sensing images. It makes possible to monitor natural 
and artificial changes in land cover precisely. 

The discreet Fourier function for a periodic polynomial 
function f(t)  is, 
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The Fourier coefficients are 
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As said before the commonly used FDs are the harmonic 

amplitude Ak and the phase angle k of the Fourier coefficients 
ak and bk above,  
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The harmonic amplitude Ak is a pure shape feature and 
doesn’t contain information about the position or the 
orientation of the numeral but on the other hand the phase angle 

k has those two features. 

The fixed length feature vector would be 
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Where M is a fixed integer number.   

The original polynomial could be reconstructed from its 
FDs by using the following equation 
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Where, Ao is the DC component of the function, and has no 

effect on the shape description. 

2) Hough Transform 
The Hough Transform (HT) is considered as a very 

powerful tool for detecting predefined features (i.e. lines, 
ellipses…) in images and has been used for more than three 
decades in the areas of image processing, pattern recognition 
and computer vision. Its main advantages are its insensitivity to 
noise and its capability to extract lines even in areas with pixel 
absence (pixel gaps) [37-39].  

The Hough technique is particularly useful for computing a 
global description of a feature(s) (where the number of solution 
classes need not to be known a priori), given (possibly noisy) 
local measurements. The motivating idea behind the Hough 
technique for line detection is that each input measurement 
(e.g. coordinate point) indicates its contribution to a globally 
consistent solution (e.g. the physical line which gave rise to 
that image point). 

As a simple example, consider the common problem of 
fitting a set of line segments to a set of discrete image points 
(e.g. pixel locations output from an edge detector). Fig.2. 
shows some possible solutions to this problem. Here the lack 
of a priori knowledge about the number of desired line 
segments (and the ambiguity about what constitutes a line 
segment) render this problem under-constrained. 

 

 (a) (b) (c)  

Fig. 2. (a) Coordinate points, when (b) and (c) Possible straight line fittings. 

We can analytically describe a line segment in a number of 
forms. However, a convenient equation for describing a set of 
lines uses parametric or normal notion as follow: 

 ρ = x cos θ + y sin θ  
Where ρ is the length of a normal from the origin to this 

line and θ is the orientation of ρ with respect to the X-axis. 
(Fig.3.) For any point (x,y) on this line, ρ and θ are constant. 

 

Fig. 3. Parametric description of a straight line  (ρ ,θ ) 

In an image analysis context, the coordinates of the point(s) 
of edge segments (i.e. (xi,yi)  ) in the image are known and 
therefore serve as constants in the parametric line equation, 
while ρ and θ  are the unknown variables we seek. We plot the 
possible (ρ ,θ ) values defined by each (xi,yi)  points in 
Cartesian image space map to curves (i.e. sinusoids) in the 
polar Hough parameter space.  

This point-to-curve transformation is the Hough 
transformation for straight lines. When viewed in Hough 
parameter space, points which are collinear in the cartesian 
image space become readily apparent as they yield curves 
which intersect at a common (ρ ,θ ) point. 

The transform is implemented by quantizing the Hough 
parameter space into finite intervals or accumulator cells. As 
the algorithm runs, each (xi,yi)  is transformed into a discretized 
 (ρ ,θ ) curve and the accumulator cells which lie along this 
curve are incremented. Resulting peaks in the accumulator 
array represent strong evidence that a corresponding straight 
line exists in the image. 

3) Zernike Moments 
The extraction of features from an image by the method of 

moments is one of the techniques commonly used. It obviously 
gives the amount of information which is encoded in the image 
[40]. A moment is an overall description of the distribution of 
pixels within an image. Each time a given order gives different 
information of other times on the image [41, 42]. The central 
moments of order p, q are given by the following expressions:  
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Where I (x, y) is the gray level of the pixel x, y. The central 
moments are given as following [39, 40]:   
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Hu moments are defined as a set of moment invariants [43], 
but are not orthogonal. The most interesting moments are 
orthogonal that can be obtained through the Zernike 
polynomials.  The Zernike moments do not change the 
orientation, the scale and the translation. They remain robust to 
noise and to minor variations of the forms [44].   There is no 
redundant information because their bases are orthogonal. An 
image is best described by a small set of Zernike moments than 
any other type of moments such as geometric moments, 
Legendre, rotational or complex moments [45]. The Zernike 
moments are build using a set of complex polynomials which 
form a complete orthogonal set on the unit disk. For an image f, 
the Zernike moments are defined as follows [45]: 
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Where m and n define the order of the moment.  Knowing 
that 
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Where n and m are integers (their values are even integers). 
These moments can be used as a tool for comparing two classes 
by calculating the distance denoted by d between the vectors of 
Zernike moments of each class. If we are interested in 
comparing one class to multiple classes, the most similar image 
corresponds to that which is characterized by a smallest 
distance d.  

III. SVM CLASSIFICATION 

In this section we will briefly describe the general 
mathematical formulation of SVMs introduced by Vapnik [46, 
47]. Starting from the linearly separable case in which the 
optimal hyperplanes are introduced. Then, the classification 
problem is modified to handle non-linearly separable data. At 
the end of this section, a brief description of multiclass 
strategies would be given.  

A. Linear SVM 

For a two-class problem in a n-dimensional space R
n
, we 

assume that l training samples xi R
n
, are available with their 

corresponding labels yi = ±1, S = {(xi, yi) | i[1, l]}.  

The SVM method consists of finding the hyperplane that 
maximizes the margin, i.e., the distance to the closest training 
data points for both classes [48]. Noting wR

n
 as the normal 

vector of the hyperplane and b R as the bias, the hyperplane 
Hp is defined as: 

pHxbxw  ,0,   

Where xw,  is the inner product between w and x. If x
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f corresponds to decision function y = sgn (f(x)).  

Finally, the optimal hyperplane has to maximize the 

margin: w2 . This is equivalent to minimize 2w  and leads 

to the following quadratic optimization problem: 
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For non-linearly separable data, the optimal parameters 

),( bw  are found by solving:  
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Where the constant C control the amount of penalty and i
are slack variables which are introduced to deal with 
misclassified samples (Fig.4.). This optimization task can be 
solved through its Lagrangian dual problem: 
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Finally: 
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The solution vector is a linear combination of some samples 
of the training set, whose 

i  is non-zero, called Support 

Vectors. The hyperplane decision function can thus be written 
as: 
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Where xu is an unseen sample. 
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Fig. 4. Classification of a non-linearly separable case by SVMs. There is one 
non separable feature vector in each class. 

B. Non-Linear SVM 

Using the Kernel Method, we can generalize SVMs to non-
linear decision functions. By this technique, the classification 
capability is improved. The idea is as following. Via a non-
linear mapping , data are mapped onto a higher dimensional 
space F (Fig.5.): 


)(      

:

xx

FRn






 

The SVM algorithm can now be simply considered with the 
following training samples:   ],1[/),()( liyxS ii  . It 

leads to a new version of the hyperplane decision function 

where the scalar product is now: )(),( ji xx  . Hopefully, for 

some kernels function k, the extra computational cost is 
reduced to: 

 ),()(),( jiji xxkxx   

The kernel function k should fulfill Mercers’ conditions.  

 

Fig. 5. Mapping the Input Space into a High Dimensional Feature Space with 

a kernel function 

With the use of kernels, it is possible to work implicitly in 
F while all the computations are done in the input space. The 
classical kernels used in remote sensing are the polynomial 
kernel and the Gaussian radial basis function: 

  pjijipoly xxxxk 1)(),(   

 ]exp[),(
2

jijigauss xxxxk    

C. Multiclass SVMs 

SVMs are designed to solve binary problems where the 
class labels can only take two values: ±1. For a remote sensing 
application, several classes are usually of interest. Various 
approaches have been proposed to address this problem [49]. 
They usually combine a set of binary classifiers. Two main 
approaches were originally proposed for a k-classes problem. 

 One versus the Rest: k binary classifiers are applied on 
each class against the others. Each sample is assigned to 
the class with the maximum output. 

 Pairwise Classification: 2)1( kk binary classifiers are 

applied on each pair of classes. Each sample is assigned 
to the class getting the highest number of votes. A vote 
for a given class is defined as a classifier assigning the 
pattern to that class. 

IV. COMPOSITE KERNELS 

In the following section, we will be dealing with three 
different kernel approaches that not only allow joining spectral 
and textural information for multispectral image classification, 
but also introducing the contour information by using an 
extended kernel version [50, 51]. 

A. The Stacked Features Approach 

The most commonly adopted approach in multispectral 
image classification is to exploit the spectral content of a pixel 
(xi). However, performance can be improved by including both 
spectral and spatial information in the classifier. This is usually 
done by means of the ‘stacked’ approach, in which feature 
vectors are built from the concatenation of spectral and spatial 
features.  

Note that if the chosen mapping   is a transformation of 

the concatenation xi ≡ {xi-spect, xi-spa}, then the corresponding 

‘stacked’ kernel matrix is: 


  )(),(),(, jijiSpaSpect xxxxkk   

Which does not include explicit cross relations between    
xi-spa and xi-spect. 

Including the contour information is also possible by means 
of the ‘stacked’ approach; the feature vectors will be built from 
the concatenation of spectral, spatial and contour features:  

xi ≡ {xi-spect, xi-spa, xi-cont}.  

The corresponding ‘stacked’ kernel matrix
 ContSpaSpectk ,,

 

remains the same in (29).  
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B. The Direct Summation Kernel 

A simple composite kernel combining spectral and textural 
information naturally comes from the concatenation of 
nonlinear transformations of xi-spa and xi-spect. Let us assume two 
nonlinear transformations  .1  and  .2 into Hilbert spaces H1 

and H2, respectively. Then, the following transformation can be 
constructed: 

     
spaispectii xxx  21 ,)(   

And the corresponding dot product can be easily computed as 
follows: 
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2121 
 

In the same way, we can exploit the Mercer’s properties to 
generalize this formulation in order to have a summation of 
multiple kernels: 

  



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m

m

j

m

imji xxkxxk
1

,),(  

So to use spectral, spatial and contour information we take 
the case of p=3, then we will have: 


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ContjContiCont

spajspaispaspectjspectispectji

xxk

xxkxxkxxk



 

,                

,,),(
 

C. The Weighted Summation Kernel 

By exploiting properties of Mercer’s kernels, a composite 
kernel that balances the spatial and spectral content in (28) can 
also be created, as follows: 

    spajspaispaspectjspectispectji xxkxxkxxk   ,)1(,),(   

Where μ is a positive real-valued free parameter (0 < μ < 1), 
which is tuned in the training process and constitutes a tradeoff 
between the spatial and spectral information to classify a given 
pixel.  

This composite kernel allows us to introduce a priori 
knowledge in the classifier by designing specific μ profiles per 
class, and also allows us to extract some information from the 
best tuned μ parameter. 

A generalization of the weighted summation to multiple 
kernels is possible by using “Linear combination methods”, 
and we can linearly parameterize the combination function: 
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Where μ denotes the kernel weights. Different versions of 
this approach differ in the way they put restrictions on μ: the 

linear sum ).,.( pei  , the conic sum ).,.( pei  , or the 

convex sum )1 and .,.(
p

m

m    pei . As can be seen, the conic 

sum is a special case of the linear sum and the convex sum is a 
special case of the conic sum. The conic and convex sums have 
two advantages over the linear sum in terms of interpretability.  

First, when we have positive kernel weights, we can extract 
the relative importance of the combined kernels by looking at 
them. Second, when we restrict the kernel weights to be 
nonnegative, this corresponds to scaling the feature spaces and 
using the concatenation of them as the combined feature 
representation: 
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And the dot product in the combined feature space gives the 
combined kernel: 
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The combination parameters can also be restricted using 
extra constraints, such as the lp-norm on the kernel weights or 
trace restriction on the combined kernel matrix, in addition to 
their domain definitions. For example, the l1-norm promotes 
sparsity on the kernel level, which can be interpreted as feature 
selection when the kernels use different feature subsets. 

So to use spectral, spatial and contour information we take 
the case of p=3, then we will have: 
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D. The Computational Complexity 

The computational complexity of a multiple kernel learning 
(MKL) algorithm mainly depends on its training method (i.e., 
whether it is one-step or two-step) and the computational 
complexity of its base learner. 
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One-step methods using fixed rules and heuristics generally 
do not spend much time to find the combination function 
parameters, and the overall complexity is determined by the 
complexity of the base learner to a large extent. One-step 
methods that use optimization approaches to learn combination 
parameters have high computational complexity, due to the fact 
that they are generally modeled as a semi-definite 
programming (SDP) problem, a quadratically constrained 
quadratic programming (QCQP) problem, or a second-order 
cone programming (SOCP) problem. These problems are much 
harder to solve than a quadratic programming (QP) problem 
used in the case of the canonical SVM. 

Two-step methods update the combination function 
parameters and the base learner parameters in an alternating 
manner. The combination function parameters are generally 
updated by solving an optimization problem or using a closed-
form update rule. Updating the base learner parameters usually 
requires training a kernel-based learner using the combined 
kernel. For example, they can be modeled as a semi-infinite 
linear programming (SILP) problem, which uses a generic 
linear programming (LP) solver and a canonical SVM solver in 
the inner loop. 

Note that solving the minimization problem in all kinds of 
composite kernels requires the same number of constraints as 
in the conventional SVM algorithm, and thus no additional 
computational efforts are induced in the presented approaches. 

V. EXPERIMANTAL RESULTS 

In this section, we are going to evaluate the proposed 
approach by using two high resolution satellite images with 
different resolutions representing the scene of urban areas. 

A. Data 

The first image used in classification is a subset of high 
resolution QUICKBIRD satellite image, with a high spatial 
resolution of 2.4 m per pixel. It represents urban scene areas. 
We dispose of four spectral bands: blue, green, red and near 
infrared. We can see in Fig.7. (a) a representation of this subset. 

The second image is a subset of high resolution IKONOS 
satellite image. It has also four spectral bands: red, blue, green 
and near infrared, with a high spatial resolution of 4.1 m per 
pixel. This subset of the image is represented in Fig.8. (a). 

We will have two files containing the extracted features for 
each image, “TrainFile.dat” and “TestFile.dat” respectively for 
learning and for classification, and divided on six classes as 
described in the following Table I. 

B. Comparing Composite Kernels 

Our experiments are divided on two stages (Fig.6. and 
Fig.9.). The first one concerns the studies of composite kernels 
proposed in section 4 using only spectral and spatial 
information. In the second stage we will use an extended 
version of the composite kernel that gave the best performance 
in the first stage, to introduce contour information in addition to 
spectral and spatial information.  

TABLE I.  DIFFERENTS CLASSES 

Class N° Class name 
Train samples 

Image 1 Image 2 

1 Asphalt 1 592 1 386 

2 Green area 2 252 480 

3 Tree 880 196 

4 Soil 176 813 

5 Building 4 217 920 

6 Shadow 1 280 336 

Total 10 397 4 131 

So as we can see in Fig.6., that represents the first 
experience, we have developed a two step classification 
process: the first one is the extraction of the spatial and spectral 
features, so we compute Grey Level Co-occurrence Matrix 
(GLCM) to extract Haralick texture features that we have 
added to spectral information. The second step is the SVM 
classification; a supervised kernel learning algorithm widely 
used. We have selected SVMlight with composite kernels, 
which is an implementation of Support Vector Machines 
(SVMs) in C language [52]. 

 

Fig. 6. A representative illustration of the first stage of the proposed 

workflow 
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To join spatial and spectral information, we have used three 
different kernel approaches as presented in section 4; named 
the stacked features approach in (29), the direct summation 
kernel in (31) and the weighted summation kernel in (34). 

 In the case of the weighted summation kernel, μ was varied 
with a step of 0.1 in the range [0, 1]. For simplicity and for 
illustrative purposes, μ was the same for all classes in our 
experiments. The penalization factor in the SVM was tuned in 
the range C = {10

−1
… 10

7
}. 

 We have used the Gaussian RBF kernel (28) (with σ = 

{10
−1

… 10
3
}) for the two kernels.

spectk  uses a spectral 

information while 
spak  uses Haralick features. 

 The classification map presented on (b) in Fig.7. and Fig.8., 
is obtained when the classification is performed using the 
stacked features approach (29). When the classification is 
performed using the direct summation kernel (31), we obtain 
the corresponding classification map which is presented on (c) 
in Fig.7. and Fig.8.. A visual analysis of classification maps 
shows those areas more homogeneous for the maps obtained 
using the direct summation kernel than those obtained by using 
the stacked features approach. 

 The fusion of the spectral and the spatial features using the 
weighted summation kernel give us the classification map 

presented on (d) in Fig.7. and Fig.8.. We can see that the 
classes are more connected and also we have got less 
misclassified pixels in the result compared to the other 
approaches. 

 Table II lists the accuracy estimates and kappa coefficient 
of the classification results, all models are compared 
numerically (overall accuracy, kappa coefficient).  

 Table III and Table IV presents respectively the confusion 
matrix results for SVM classification using the weighted 
summation kernel (34) based on spectral and spatial 
information, for both images used in experiments. 

TABLE II.  OVERALL ACCURACY (%) AND KAPPA COEFFICIENT OF 

CLASSIFIED IMAGES 

Methods 
Image 1 Image 2 

Overall 

accuracy 

Kappa 

coefficient 

Overall 

accuracy 

Kappa 

coefficient 

SVM using only 
spectral information  

87.56% 0.87 88.79% 0.88 

The stacked features 

approach 
94.13% 0.93 92.13% 0.91 

The direct summation 

kernel 
94.26% 0.93 92.38 % 0.92 

The weighted 
summation kernel 

94.48% 0.93 92.55% 0.92 

 

 

TABLE III.  CONFUSION MATRIX RESULTS (%) FOR SVM CLASSIFICATION USING THE WEIGHTED SUMMATION KERNEL FOR IMAGE 1. 
 GLOBAL ACCURACY = 94.48%  

Class name Asphalt  Green area Tree  Soil  Building  Shadow  

Asphalt  93,66 1,41 1,91 1,01 1,63 0,38 

Green area 1,13 94,99 0,00 1,08 1,54 1,26 

Tree  0,28 1,07 92,82 2,50 0,82 2,51 

Soil  4,84 0,95 0,00 93,87 0,34 0,00 

Building  0,01 1,16 2,69 0,47 95,67 0,00 

Shadow  0,08 0,42 2,58 1,07 0,00 95,85 

 

             
 (a)    (b)  (c)  (d) 

Fig. 7.  (a) Original image 1, (b) Classification Map obtained using the stacked features approach, (c) Classification Map obtained using the direct summation 

kernel , (d) Classification Map obtained using the weighted summation kernel.  
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TABLE IV.  CONFUSION MATRIX RESULTS (%) FOR SVM CLASSIFICATION USING THE WEIGHTED SUMMATION KERNEL FOR IMAGE 2. 
 GLOBAL ACCURACY = 92.55% 

Class name Asphalt  Green area Tree  Soil  Building  Shadow  

Asphalt  89,36 2,04 1,92 1,50 3,32 1,86 

Green area 5,13 92,21 0,00 1,03 1,54 0,09 

Tree  1,18 1,52 93,15 1,92 0,03 2,20 

Soil  1,75 1,13 0,64 93,04 3,44 0,00 

Building  1,96 2,78 2,72 0,87 91,67 0,00 

Shadow  0,62 0,32 1,57 1,64 0,00 95,85 
 

       
 (a)    (b)  (c)    (d) 

Fig. 8.  (a) Original image 2, (b) Classification Map obtained using the stacked features approach, (c) Classification Map obtained using the direct summation 

kernel , (d) Classification Map obtained using the weighted summation kernel.  

 

Fig. 9. A representative illustration of  the second stage of the proposed workflow 

C. Introducing Contour Information 

 In the second stage (represented by Fig.9.) we have started, 
like the first stage, with the extraction of the spectral and 

spatial features, so we have computed Grey Level Co-
occurrence Matrix (GLCM) to extract Haralick texture features 
that we have added to spectral information. But, before the 
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SVM classification, we have an additional step that consists on 
building a reliable contour map from which we have extracted 
contour descriptors specially Hough transform and Zernike 
moments, while Fourier descriptors are extracted directly from 
the original image. 

1) Edge Detector Choice 
Generally the edge detectors can be grouped into three 

major categories: the first one is the Early vision edge detectors 
(Gradient operators, e.g. the detectors of Sobel and Kirsch). 
The second category is Optimal detectors (e.g. the Canny 
algorithm, etc.). The third category is the Operators using 
parametric fitting models (e.g. the detectors of Haralick, 
Nalwa-Binford, Nayar, Meer and Georgescu, etc) [53].  

The edge detection process is greatly eased if, instead the 
original images, «edge enhanced» ones are used. This 
inevitably leads to the use of some edge detectors from the 
second category.  

In the present work, we have chosen to use Canny edge 
detector. John Canny has treated edge detection as signal 
processing problem and aimed to design the «optimal» edge 
detector. He formally has specified an objective function to be 
optimized and used this to design the operator. 

 The objective function was designed to achieve the 
following optimization constrains [54]: 

 Maximize the signal to noise ratio in order to provide 
good detection. 

 Achieve good localization to accurately mark edges. 

 Minimize the number of responses to a single edge 
(non-edges are not marked). 

2) Building a Reliable Contour Map 
The Canny method finds edges by looking for local maxima 

of the gradient of the image. The gradient is calculated using 
the derivative of a Gaussian filter. The method uses two 
thresholds, to detect strong and weak edges, and includes the 
weak edges in the output only if they are connected to strong 
edges. This method is therefore less likely than the others to be 
fooled by noise, and more likely to detect true weak edges. 

For simplicity and for illustrative purposes, we have used 
edge function in Matlab to extract contour map with the Canny 
method, and we have specified a scalar for thresh, this scalar 
value is used for the high threshold and 0.4*thresh is used for 
the low threshold. This scalar was varied with a step of 0.1 in 
the range [0, 1]. The Fig.10. Represents two values of threshold 
used for the first image. 

For the choice of thresholds of the image contours that 
gives us a reliable contour map which will be used later in the 
classification process, we have adopted two measures proposed 
by Wiedemann [55], which are used for the evaluation of 
extraction methods roads from satellite images, these two 
measures are defined as follows: 

Completeness = length of the reference contour in 
accordance with the extracted contour / length of the reference 
contour 

Exactness = length of the extracted contour in accordance 
with the reference contour / length of the extracted contour. 

   
 High threshold=0.2 High  threshold=0.8 

Fig. 10. exemple of contour map for image 1 

The principle is to compare the contours of each threshold 
with the reference contours which are the contours of the SVM 
classification using the spectral and spatial information 
(Fig.11.).  

 
Fig. 11. Selecting reliable contour map 

The comparison is made through the calculation of these 
measures. The constraint is that the selected threshold map is 
the one in which the extracted contours are the closest to the 
classification reference contours. The assessment method 
implemented in our study has a tolerance of a width of three 
pixels along the edges. The Fig.12. Represents a threshold 
evaluation for both images. The choice of thresholds of the 
image contours that gives us a reliable contour map that we 
have taken the one with a good both Completeness and 
Exactness, so we have chosen threshold 0.3 for image 1 and 0.4 
for image 2 as we can see in Fig.12.   
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Fig. 12. threshold evalation for the two images 

3) Results   
To combine spectral, spatial and contour information, we 

have used the extended weighted summation kernel in (38) that 
gave the best performance at the first stage of our experiments. 

Where the 
m  are varied in the range [0, 1] to satisfy the 

condition 1 
3

1m

m 


 . For simplicity and for illustrative purposes, 

all 
m were the same for all classes in our experiments. The 

penalization factor in the SVM was tuned in the range C = 
{10

−1
… 10

7
}. 

In this work, we have computed the participation of contour 
information in function of spectral and spatial information: 

)(1 213     and we have varied 
21      and  with a step of 

0.1 in the range [0, 1] to satisfy the condition 1 
3

1m

m 


 .   

 We have used the 
Gaussian RBF kernel (28) (with σ = {10

−1
… 10

3
}) for all 

kernels.
spectk  uses a spectral information, 

spak  uses Haralick 

features while 
contk  uses Fourier descriptors, Hough transform 

and Zernike moments. 

The image (c) in Fig.13. and Fig.14. represent the reliable 
contour map used to compute contour descriptors’ (Hough 
transform and Zernike moments); while (d) in Fig.13. and 
Fig.14. represent the classification map resulting by introducing 
contour (Fourier descriptors, Hough transform and Zernike 
moments) information with both spectral and spatial 
information. 

 

A visual analysis of classification maps shows that it is less 
noisy and the classification performances are increased globally 
as well as almost all the classes. It matches well with an urban 
land cover map in terms of smoothness of the classes; and it 
also represents more connected classes. 

Table V lists the accuracy estimates and kappa coefficient 
of the classification results, we can find different combination 
of descriptors used to characterize the contour information all 
models are compared numerically (overall accuracy, kappa 
coefficient).  

Table VI and Table VII present respectively the confusion 
matrix results for SVM classification using the extended 
weighted summation kernel (38) based on spectral, spatial and 
contour information for both images used in experiments.  

TABLE V.  OVERALL ACCURACY (%) AND KAPPA COEFFICIENT OF 

CLASSIFIED IMAGES USING THE EXTENDED WEIGHTED SUMMATION KERNEL 

Used Descriptors 

Image 1 Image 2 

Overall 

accuracy 

Kappa 

coefficient 

Overall 

accuracy 

Kappa 

coefficient 

Spectral + haralick 

features 
94.48% 0.93 92.55% 0.92 

Spectral + haralick 

features + FD 
94.91% 0.93 92.88% 0.92 

Spectral + haralick 
features + ZM 

94.59% 0.93 92.68% 0.92 

Spectral + haralick 

features + HT 
94.49% 0.93 92.56% 0.92 

Spectral + haralick 

features + FD +HT 
95.06% 0.93 93.13% 0.92 

Spectral + haralick 
features + FD + ZM 

95.94% 0.94 93.98% 0.93 

Spectral + haralick 

features + HT + ZM 
95.81% 0.94 93.72% 0.93 

Spectral + haralick 

features + FD + HT + 
ZM 

96.17% 0.95 94.08% 0.93 

The composite kernels offer excellent performance for the 
classification of multispectral satellite images by 
simultaneously exploiting both the spatial and spectral 
information. The weighted summation kernel allows a 
significant improvement of the classification performances 
when compared with the two other approaches. So the extended 
weighted summation kernel has been selected to introduce 
contour information.  

The experimental results indicate a global accuracy value of 
93.52%, the addition of contour information, described by the 
Fourier descriptors, Hough transform and Zernike moments, 
allows increasing the obtained global accuracy by 1.61% (using 
all descriptors) which is very promising. Although the Hough 
transform don't give a remarkable increasing of the overall 
accuracy, it preserves the edges in the obtained classification 
map. 
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TABLE VI.  CONFUSION MATRIX RESULTS (%) FOR SVM CLASSIFICATION USING THE EXTENCED  WEIGHTED SUMMATION KERNEL WITH ALL DESCRIPTORS 

FOR IMAGE 1.  GLOBAL ACCURACY = 96.17 % 

Class name Asphalt  Green area Tree  Soil  Building  Shadow  

Asphalt  96,52 0,34 1,92 0,00 0,62 0,60 

Green area 1,03 96,78 0,00 0,03 0,87 1,29 

Tree  0,18 1,36 95,42 0,38 0,00 2,66 

Soil  0,00 0,34 0,13 96,94 2,49 0,10 

Building  1,94 1,16 0,81 0,08 96,01 0,00 

Shadow  0,33 0,02 1,72 2,57 0,01 95,35 

TABLE VII.  CONFUSION MATRIX RESULTS (%) FOR SVM CLASSIFICATION USING THE EXTENDED WEIGHTED SUMMATION KERNEL WITH ALL DESCRIPTORS 

FOR IMAGE 2.  GLOBAL ACCURACY = 94.08% 

Class name Asphalt  Green area Tree  Soil  Building  Shadow  

Asphalt  93,23 1,00 3,21 0,00 0,64 1,92 

Green area 1,04 95,18 0,00 1,08 1,44 1,26 

Tree  0,28 1,08 93,91 1,40 0,82 2,51 

Soil  3,33 1,26 0,00 93,07 2,34 0,00 

Building  1,41 1,06 0,41 2,36 94,76 0,00 

Shadow  0,71 0,42 2,47 2,09 0,00 94,31 

 

          
 (a)    (b)    (c)  (d) 

Fig. 13.  (a) Original image 1, (b) Classification Map obtained using the weighted summation kernel, (c) A reliable contour map and (d)  Classification Map 

obtained using the extended weighted summation kernel  

        
 (a)    (b)  (c)  (d) 

Fig. 14.  (a) Original image 2, (b) Classification Map obtained using the weighted summation kernel, (c) the reliable contour map and (d)  Classification Map 

obtained using the extended weighted summation kernel 
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VI. CONCLUSION AND FUTURE RESEARCH LINES 

Addressing the classification of high resolution satellite 
images from urban areas, we have presented three different 
kernel approaches taking simultaneously the spectral and the 
spatial information into account (the spectral values and the 
Haralick features).  

The weighted summation kernel allows a significant 
improvement of the classification performances when 
compared with the two other approaches. So an extended 
version of this kernel has been selected to introduce contour 
information (Fourier descriptors, Hough transform and Zernike 
moments). This approach exhibits flexibility to balance 
between the spectral, spatial and contour information as well as 
computational efficiency. 

The proposed method is computationally expensive in 
comparison with a single kernel-based approach. In order to 
address this issue, we are planning on exploring the impact of 
reducing the original data set dimensionality before applying 
the proposed approach. 

We are also planning to explore nonlinear combination 
methods, and the data-dependent combination methods which 
assign specific kernel weights for each data instance, to identify 
local distributions in the data and learn proper kernel 
combination rules for each region. 
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