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Abstract—For context-based recommendation systems, it is 

necessary to detect affirmative and negative intentions from 

answers. However, traditional studies cannot determine these 
intentions from indirect speech acts. 

In order to determine these intentions from indirect speech 

acts, this paper defines a recommendation tree and proposes an 

algorithm of deriving intentions of indirect speech acts by the 

tree. In the proposed method, a recommendation condition (RC) 

is introduced and it is classified into a required RC, a selectable 

RC, and a not-selectable RC. The recommendation tree is 

constructed by nodes and edges corresponding to these three 

conditions. The deriving algorithm determines affirmative and 
negative intentions of indirect speech acts by tracing the trees.  

From experimental results, it is verified that the accuracy of 

the proposed method is about 40 points higher than the 
traditional method. 
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affirmative intention; negative intention  

I. INTRODUCTION 

As recommendation systems [1] assist users to select 
commodities, services, and information, it is necessary to 
elicit users’ requirements in conversational contexts. There are 
many studies of context-based recommendation systems [2-9]. 
In these systems with proactive recommendations, affirmative 
and negative intentions of answers are important in order to 
decide items [5,6,8,9]. For example, items are commodities 
in e-commerce sites. 

In answers with affirmative and negative intentions, there 
are direct speech acts and indirect speech acts. The direct 
speech acts represent these intentions by the following two 
approaches for a recommendation “How about having a cake 
today?”: the first is fixed phrases such as “O.K.” and ”No, 
thank you.” without “cakes”. The second is sentences 
representing acceptance and rejection intentions such as “I like 
cakes.” and “I don’t want to have cakes.” with “cakes”, 
respectively. 

In the indirect speech acts, there are two patterns for the 
recommendation: the first is the affirmative answers that select 
other cakes excluding chocolate cakes such as “I don’t want to 
have chocolate cakes.”. The second is the negative answers 

that select other foods excluding cakes such as “I want to have 
Japanese noodles”.  

In order to determine intentions from sentences, there are 
two methods: the first uses machine learning such as SVM or 
HMM, the second uses meaning of words and grammars. 

For the machine learning methods which classify 
sentences into intentions or tag-sets with affirmative and 
negative ones, Fernandez and Picard [10] divided sentences of 
Spanish CallHome database (telephone conversations) into 
eight kinds of dialog act tags [11] by SVM. Surendran and 
Levow [12] classified sentences of HCRC MapTask corpus 
[13] into twelve kinds of dialog act tags [14] by SVM and 
HMM. Stolcke et al. [15] proposed methods of a domain-
independent framework for tagging the Discourse Annotation 
and Markup System of Labeling (DAMSL) tag-set [16] to 
sentences of conversational speeches. Ravi and Kim [17] 
classified sentences on discussion boards into six speech act 
categories by N-gram features and linear SVM. Mera, 
Ichimura, and Yamashita [18] recognized affirmative and 
negative intentions from answers of questions by the fuzzy 
theory. 

These methods have the advantage that classification 
models are constructed automatically, but they expend 
considerable efforts to collect a large learning data. 

For the second classifications by meanings of words and 
grammars, Kitamura, Watanabe, Sekiguchi, and Suzuki [19] 
estimated negative intentions by combinations of the 
following five grammatical features: words, auxiliaries, verbs, 
adjectives, and superordinate concepts of words in previous 
sentences. Mera [20] and Yoshie et al. [21] calculated 
affirmative values of sentences by combining these values of 
words and formulas of grammars (including modality). These 
values indicate the strength of affirmative intentions and are 
defined by questionnaires within [0.0-1.0] scales. For 
example, affirmative values, “Yes” and “No”, are defined as 
0.94 and 0.06, respectively. Affirmative formulas reflect 
effects of modalities in affirmative values. The examples of 
modalities are adverbs such as “very” and “a little”, negative 
modalities, and double negative modalities. 

These methods have the merit that their rules have broad 
utilities for sentences of many domains, but they can not 
classify answers of indirect speech acts. 
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In order to determine affirmative and negative intentions 
from indirect speech acts, this paper defines a new 
recommendation tree and proposes a new algorithm of 
deriving intentions of indirect speech acts by the tree. The tree 
has a root node which indicates a recommendation. The root 
node has child nodes corresponding to the following three 
kinds of recommendation conditions (RC): 

1) R_RC is the required RC. In a recommendation, “How 

about having a cake today?”, there are R_RCs, “you”, 

“have”, “cake”, and “today”. In RC “cake”, there are 

R_RCs “sweet” and “sweets”. 

2) S_RC is the selectable RC. In RC “cake”, there are 

S_RCs of kinds of cakes such as “chocolate cake”, “short 

cake”, and “Mont Blanc”. 

3) NS_RC is the non-selectable RC such as “tomorrow”, 

“Japanese noodle” for the recommendation. 
The deriving algorithm determines the intention to the root 

node from the intention to RCs by tracing the trees. From the 
indirect speech act “I don’t like chocolate cakes.” for the 
above recommendation, the algorithm derives the affirmative 
intention of the root node from the rejection intention of the 
S_RC “chocolate cake”. 

Sections 2 and 3 propose the recommendation tree and the 
algorithm of deriving intentions, respectively. Section 4 
evaluates the proposed method by three kinds of open tests. 
Section 5 concludes the proposed method. 

II. A RECOMMENDATION TREE  

In this paper, recommendations include four necessary 
concepts of RC: “WHO”, “WHEN”, “WHAT”, and “VERB”. 
These concepts have RCs related to persons, schedules, 
objects, and actions, respectively. Table 1 shows examples of 
RCs of these concepts. 

TABLE I.  EXAMPLES OF RCS OF FOUR CONCEPTS 

Concepts RCs 

WHO you 

he 

WHEN today 

tomorrow 

WHAT cake 

curry 

VERB go 

have 

Fig. 1 shows a part of the recommendation tree by using 
RCs in Table 1. In figures of this paper, node labeled by x 
corresponding to string x.  

In Fig. 1, root node “REC” indicates the recommendation. 
The root node has four child nodes corresponding to concepts 
(concept nodes): “WHO”, “WHEN”, “WHAT”, and “VERB”. 
These nodes have child nodes of RCs (RC nodes). For 
example, concept node “WHO” has RC nodes “you” and “he”. 
There are three kinds of edges (R_edges, S_edges, and 
NS_edges) for R_RC, S_RC, and NS_RC, respectively. Root 
node and concept nodes are connected by R_edges as shown 
by double lines. Concept nodes and RC nodes are connected 
by S_edges as shown by single lines. These kinds of edges are 
changed by each recommendation. For the recommendation 
“How about having a cake today?”, the recommendation tree 
in Fig. 1 is modified (Fig. 2). In Fig. 2, edges of nodes “you”, 
“today”, “cake”, and “have” are modified to R_edges. Edges 
of nodes “he”, “tomorrow”, “curry”, and “go” are set to 
NS_edges as shown by dotted lines.  

The recommendation tree can be extended by expanding 
terminal nodes. Considering an example in Fig. 3, RC node 
“cake” in Fig. 1 constructs the subtree as the root node. RC 
node “cake” has RC nodes “taste” and “kind” with R_edge as 
child nodes. RC node “taste” has RC node “sweet” with 
R_edge as a child node. RC node “kind” has RC nodes “Mont 
Blanc”, “short cake”, and “chocolate cake” with S_edge as 
child nodes. 
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Fig. 1. A part of the recommendation tree 
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III. AN ALGORITHM OF DERIVING INTENTIONS 

An algorithm to be proposed here derives the intention of 
node “REC” from intentions of RC nodes by tracing a 
recommendation tree. Suppose that there is the acceptance 
intention of RC node “curry” for a recommendation “How 
about having a cake today?” in Fig. 2. Then, the intention of 
node “REC” is derived to the negative intention. Before 
proposing the algorithm, the following definitions are 
prepared. 

 Definition 

Suppose that NODE[x] is a node for string x. Let 
EDGE[NODE[x],NODE[y]] be the kind of edges (NC-edge, 
S_edge, and NS_edge) between NODE[x] and NODE[y]. Let 
INTENTION[NODE[x]] be the intention of NODE[x] which 
has one of three kinds intentions: acceptance, rejection, and 
no_information in this algorithm. No_information means that 
a node doesn’t have any intentions. All intentions of nodes are 
initialized to no_information. PARENT(NODE[x]) represents 
the parent node of NODE[x]. SIBLING(NODE[x]) returns the 
set of sibling nodes of NODE[x].  

 Rejection intentions of PARENT(NODE[x])  

   INTENTION[PARENT[NODE[x]]] is rejection if 
REJECTION(NODE[x]) is true. It is computed by (1)-(4), 
where “ ” and “  ” means logical disjunction and logical 
conjunction, respectively. 

 

 

REJECTION(NODE[x]) = REJECTION1(NODE[x]) 

REJECTION2(NODE[x])  

REJECTION3(NODE[x]) 
(1)  

 REJECTION1(NODE[x]) =  (2)  

 x(INTENTION[NODE[x]] = rejection 

  EDGE[NODE[x], PARENT(NODE[x])] = 

R_edge) 

 

REJECTION2(NODE[x]) =  x(
SIBLING(NODE[x])(INTENTION[SIBLING(NODE

[x])] = rejection 

  EDGE[PARENT(NODE[x]), 

SIBLING(NODE[x])] = S_edge) 

  (INTENTION[NODE[x]] = rejection   

EDGE[PARENT(NODE[x]), NODE[x]] = S_edge)) 

(3)  

 

REJECTION3(NODE[x]) =  
 x(INTENTION[NODE[x]] = acceptance 

  EDGE[NODE[x], PARENT(NODE[x])] = 

NS_edge) 

(4)  

 

   Suppose that users refuse NODE[“cake”], and then 

INTENTION[NODE[“cake”]] is rejection. In Fig. 2, 

PARENT(NODE[“cake”]) is NODE[“WHAT”], and 

EDGE[NODE[“cake”],NODE[“WHAT”]] is equal to R_edge. 

For REJECTION 1, INTENTION[NODE[“WHAT”]] is  

rejection. 

   Next, suppose that users refuse NODE[x] for all x such that 

x is “chocolate cake”, “short cake”, and “Mont Blanc”. Then, 

INTENTION[NODE[x]] is rejection. In Figs. 2 and 3, 

PARENT(NODE[x]) is NODE[“kind”], and 

EDGE[NODE[“kind”],NODE[x]] is S_edge. For REJECTION 

2, INTENTION[NODE[“kind”]] is rejection. 

Finally, suppose that users accept NODE[“curry”], and 

then INTENTION[NODE[“curry”]] is acceptance. In Fig. 2, 

PARENT[NODE[“curry”]] is NODE[“WHAT”], and 

cake 

 taste 

  sweet 

  kind 

  Short cake   Chocolate cake   Mont Blanc 

R_edge 

S_edge 

Fig. 3. The subtree of node “cake” 
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Fig. 2. A part of the recommendation tree of “How about having a cake today?” 
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EDGE[NODE[“curry”],NODE[“WHAT”]] is equal to 

NS_edge. For REJECTION 3, 

INTENTION[NODE[“WHAT”]] is rejection. 

 

 Acceptance intentions of PARENT(NODE[x])  

INTENTION[PARENT(NODE[x])] is acceptance if 
ACCEPTANCE(NODE[x]) is true. It is computed by (5)-(7). 

 

 

ACCEPTANCE(NODE[x]) = 

ACCEPTANCE1(NODE[x])  

  ACCEPTANCE2(NODE[x]) 
(5)  

 

ACCEPTANCE1(NODE[x]) =   

 x(INTENTION[NODE[x]] = acceptance  

  EDGE[NODE[x], PARENT(NODE[x])] = 

(R_edge   S_edge)) 

(6)  

 

ACCEPTANCE2(NODE[x]) =  

 x(INTENTION[NODE[x] = rejection  

  EDGE[PARENT(NODE[x]), NODE[x]] = S_edge  

 SIBLING(NODE[x]) 
(INTENTION[SIBLING(NODE[x])]   rejection 

  EDGE[PARENT(NODE[x]), 

SIBLING(NODE[x])] = S_edge)) 

(7)  

Suppose that users accept NODE[“cake”], and then 
INTENTION[NODE[“cake”]] is acceptance. In Fig. 2, 
PARENT(NODE[“cake”]) is NODE[“WHAT”], and 
EDGE[NODE[“cake”],NODE[“WHAT”]] is equal to R_edge. 
For ACCEPTANCE 1, INTENTION[NODE[“WHAT”]] is 
acceptance. 

Next, suppose that users accept NODE[“chocolate cake”], 
and then INTENTION[NODE[“chocolate cake”]] is 
acceptance. In Fig. 2, PARENT(NODE[“chocolate cake”]) is 
NODE[“WHAT”], and EDGE[NODE[“chocolate 
cake”],NODE[“WHAT”]] is equal to S_edge. For 
ACCEPTANCE 1, INTENTION[NODE[“WHAT”]] is 
acceptance. 

Finally, suppose that users reject NODE[“chocolate cake”] 
and don’t reject NODE[“short cake”]. Then, 
INTENTION[NODE[“chocolate cake”]] is rejection, and 
INTENTION[NODE[“short cake”]] is no_information or 
acceptance. In Fig. 3, PARENT(NODE[x]) for x=”chocolate 
cake” and x=“short cake” is NODE[“kind”], and 
EDGE[NODE[“kind”],NODE[x]] is S_edge. For 

ACCEPTANCE 2, INTENTION[NODE[“kind”]] is 
acceptance. 

By using above definitions, the proposed algorithm is 
defined as below. 

 An algorithm of deriving intentions 

Input: ANSWER_NODE[] and ANSWER_INTENTION[]  

ANSWER_NODE[] is a list of strings for nodes accepted 

or rejected by answers. ANSWER_INTENTION[] is a list of 

intentions for elements in ANSWER_NODE[]. Indexes of 

ANSWER_INTENTION[] are elements in 

ANSWER_NODE[]. For the answer “I like curries”, 

ANSWER_NODE[] is {“curry”} and 

ANSWER_INTENTION[“curry”] is {“acceptance”}, 

respectively. 

 

Output: INTENTION[NODE[“REC”]]  

 

Method: 

for i=1 to n do/*n is the number of elements in 

E[]ANSWER_NOD */ 

INTENTION[NODE[ANSWER_NODE[i]]=ANSWER_I

NTENTION[ANSWER_NODE[i]]  

target_node = NODE[ANSWER_NODE[i]] 

   while target_node   NODE[“REC”] do 

   if REJECTION(target_node) is true then 

         INTENTION[ PARENT(target_node)] = rejection 

      else if ACCEPTANCE(target_node) is true then 

         INTENTION[ PARENT(target_node)] = acceptance 

      endif 

      target_node = PARENT(target_node)] 

   endwhile 

   if INTENTION[ NODE[“REC”]] is rejection then 

      INTENTION[ NODE[“REC”]] = negative 

      break 

   else if INTENTION[ NODE[“REC”]] is acceptance then 

      INTENTION[ NODE[“REC”]] = affirmative 

   endif 

endfor 

End of Algorithm 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No. 8, 2013 

232 | P a g e  
www.ijacsa.thesai.org 

 
In case of a recommendation “How about having a cake 

today?”, examples of derivations from answers “I like 
something sweet.” (accepting the node with R_edge), “I hate 
something sweet.” (rejecting the node with R_edge), “I like 
curries.” (accepting the node with NS_edge), and “I dislike 
short cakes” (rejecting the node with S_edge) are as follows: 

Example 3.1  

For an answer “I like something sweet.”, 
ANSWER_NODE[] is {“sweet”} and 
ANSWER_INTENTION[“sweet”] is {“acceptance”}. 

By tracing NODE[x] for all x such that x is “sweet”, 
“taste”, “cake”, “WHAT”, and “REC”, 
INTENTION[NODE[“REC”]] is become affirmative. Fig. 4 
shows intentions of nodes. Gray-shaded circles represent 
nodes with the intention of acceptance. 

Example 3.2 

For an answer “I hate something sweet.”, 
ANSWER_NODE[] is {“sweet”} and 
ANSWER_INTENTION[“sweet”] is {“rejection”}. 

By tracing NODE[x] for all x such that x is ”sweet”, 
“taste”, “cake”, “WHAT”, and “REC”, 
INTENTION[NODE[“REC”]] is become negative. Fig. 5 
shows intentions of nodes. Black-shaded circles represent 
nodes with the intention of rejection. 

 

 

Example 3.3 
For an answer “I like curries.”, ANSWER_NODE[] is 

{“curry”} and ANSWER_INTENTION[“curry”] is 
{“acceptance”}. 

By tracing NODE[x] for all x such that x is “curry”, 
“WHAT”, and “REC”, INTENTION[NODE[“REC”]] is 
become negative. Fig. 6 shows intentions of nodes. Gray-
shaded circles and black-shaded circles represent nodes with 
intentions of acceptance and rejection, respectively. 

Example 3.4 

For an answer “I dislike short cakes”, ANSWER_NODE[] 
is {“short cake”} and ANSWER_INTENTION[“short cake”] 
is {“rejection”}. 

By tracing NODE[x] for all x such that x is “short cake”, 
”kind”, ”cake”, ”WHAT”, and ”REC”, 
INTENTION[NODE[“REC”]] is become affirmative. Fig. 7 
shows intentions of nodes. Gray-shaded circles and black-
shaded circles represent nodes with intentions of acceptance 
and rejection, respectively. 
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Fig. 6. The derivation process of the answer “I 

like curries.” 
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IV. EXPERIMENTS 

A.  Knowledge for experiments 

In daily lives, it is common to recommend foods including 
cakes and Japanese noodles, and movies. In this experiment, 
the following three recommendations are assumed, where 
“Resident Evil” is a title of a movie: 

 Recommendation 1: “How about having a cake today?”  

 Recommendation 2: “How about having a Japanese 
noodle today?”  

 Recommendation 3: “How about going to the movie, 
Resident Evil?”  

In order to determine intentions from answers to them, a 
recommendation tree is needed. This experiment constructs 
the tree from closed corpora which have 500 answers for each 
recommendation. Answers are collected by four 
undergraduate students. From corpora, RC nodes and the 
recommendation tree are defined by discussions with these 
students. Examples of RC nodes with concept nodes are 
presented in Table 2. For RC nodes “cake”, “Japanese 
noodle”, and “Resident Evil”, more detailed descendant nodes 
are constructed. Total numbers of descendant nodes are 236 
nodes. Examples of descendant nodes for each RC node are 
presented in Table 3. In Table 3, R_edge and S_edge between 
a node and a parent node show R and S, respectively. 

TABLE II.  EXAMPLES OF RC NODES WITH CONCEPT NODES 

Concept nodes RC nodes Numbers 

WHO You, He, She  7 

WHEN Now, Today, Tomorrow 7 

WHAT Cake, Japanese noodle, 

Resident Evil 

51 

VERB Have, See 10 

 

 

TABLE III.  EXAMPLES OF DESCENDANT NODES OF NODES“CAKE”, 
“JAPANESE NOODLE”, AND “RESIDENT EVIL”   

Parent Child Grandchild 

Cake Genre[R] Sweets[R], 

Dessert[R], 

Confectionery[R] 

Taste[R] Sweet[R] 

Kind[R] Short cake[S], Mont 

Blanc[S], Mille-

feuille[S] 

Ingredient[R] Flour[R], Sugar[R], 

Egg[R] 

Butter[S], Apple[S], 

Strawberry[S], 
Banana[S] 

Japanese 

noodle 
Genre[R] Noodles[R], Food[R] 

Taste[R] 
Spicy[S], Light[S], 

Salty[S] 

Kind of soup[R] 
Miso[S], Soy[S], 
Salt[S] 

Kind of noodle[R] 

Crimp[S], 

Straight[S], Thin[S], 

Thick[S] 

Ingredient[R] 

Flour[R] 

Garlic[S], Bean 

sprouts[S], Onion[S], 

Sesame seeds[S]  

Size[R] 
Large[S], 

Medium[S], Small[S] 

Resident Evil Screen type[R] Caption[S], Dub[S], 

3D[S] 

Genre of films[R] Horror[R], Action[R] 

(R and S means required and selectable) 

B. Knowledge for experiments  

In order to evaluate the accuracy of the proposed method, 
two experiments for closed and open tests are carried out. The 
closed test uses corpora for constructing the recommendation 
tree with 500 answers for each recommendation. Open tests 
uses corpora with 100 answers for each recommendation such 
as the appendix of this paper. These corpora are collected by 
ten undergraduate students who don’t accumulate closed 
corpora, and they make ten answers to each recommendation 
without restriction of responses.  

The traditional method proposed by Yoshie et al. [21] is 
used as a comparative method. Table 4 shows results on the 
closed test of the proposed method. Tables 5 and 6 show 
results on open tests for the proposed method and the  
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Fig. 7. The derivation process of the answer “I 

dislike short cakes.” 
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TABLE IV.  RESULTS ON THE CLOSED TEST OF THE PROPOSED METHOD 

 Correct 
sentences 

Total 
sentences 

Correct 
rates (%) 

Recommendation 1 472 509 92.7 

Recommendation 2 512 556 92.1 

Recommendation 3 476 506 94.1 

TABLE V.  RESULTS ON THE OPEN TEST OF THE PROPOSED METHOD  

 Correct 
sentences 

Total 
sentences 

Correct 
rates (%) 

Recommendation 1 81 100 81.0 

Recommendation 2 83 100 83.0 

Recommendation 3 84 100 84.0 

TABLE VI.  RESULTS ON THE OPEN TEST OF THE COMPARATIVE METHOD  

 Correct 

sentences 

Total 

sentences 

Correct 

rates (%) 

Recommendation 1 38 100 38.0 

Recommendation 2 40 100 40.0 

Recommendation 3 34 100 34.0 

 
Comparative methods, respectively. In tables 4, 5, and 6, 

correct rates mean percentages of correct sentences in total 
sentences. 

From Table 4, it is verified that correct rates of the 
proposed method becomes high for the closed tests. From 
Tables 5 and 6, all accuracies of the proposed method are 
about 40 points higher than the comparative method in open 
tests of recommendations 1, 2, and 3.  

In the open test, problems of the proposed method are 
misclassifications of complex sentences and the lack of 
knowledge. 

 Misclassifications of complex sentences 

The example of the complex sentence is “I’ve had enough, 
therefore I choose a small dish.” which has two sentences, 
“I’ve had enough” and “I choose a small dish”. The intention 
of the first sentence is negative because the sentence rejects 
R_RC,”have”. The intention of the second sentence is 
affirmative because the sentence accepts S_RC, “small”. The 
intention of the sentence is affirmative. However, the 
proposed method produces a negative intention because the 
negative intention is prior to the affirmative one. 

The way to solve the problem is to consider conjunctions 
and give priority to the intention estimated from a backward-
sentence. 

 The lack of knowledge 

A part of misclassifications of the proposed method are 
occurred in sentences which include non-defined nodes. For 
example, the proposed method misclassifies the sentence, “I 
have to go to a piano lesson.”, because there is no node “piano 

lesson” in the child nodes of node “WHAT”. This problem 
can be solved by introducing knowledge of daily lives. 

V. CONCLUSIONS  

This paper has proposed a method of determining 
affirmative and negative intentions from indirect speech acts. 
In the proposed method, a recommendation tree has been 
defined and an algorithm of deriving intentions of indirect 
speech acts by the tree is proposed. 

The tree consists of nodes and edges corresponding to the 
three kinds of RC: R_RC, S_RC, and NS_RC. The root node 
indicates the recommendation and has four concept nodes as 
child nodes. Concept nodes have RC nodes as child nodes. 
The deriving algorithm determines affirmative and negative 
intentions of indirect speech acts by tracing the trees. 

From experimental results for three kinds of open tests, all 
accuracies of the proposed method are about 40 points higher 
than the traditional method. 

VI. FUTURE WORK 

Future works are to improve misclassifications of complex 
sentences of an acceptance sentence and a rejection sentence, 
and to construct invitational knowledge of daily lives. 
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Appendix 

Examples of answers in Open corpora are shown as follows: 

[Answers to recommendation 1, “How about having a cake 

today?” ] 

Answers Intention 

Let’s go now. Affirmative 

I can’t get enough of sweet food.  Affirmative 

I have a Mont Blanc.  Affirmative 

I dislike short cakes.  Affirmative 

Oh goody! Affirmative 

My tummy is full.  Negative 

Maybe another time.  Negative 

I don’t like cakes.  Negative 

I can’t have it because I have a 

piano lesson now.  

Negative 

I don’t have it because I have egg 

allergies.  

Negative 

 

[Answers to recommendation 2, “How about having a 

Japanese noodle today?” ] 

Answers Intention 

Yes, I want to have it.  Affirmative 

Let’s go to a low price Japanese 

noodle shop.  

Affirmative 

I want to have 3 bowls.  Affirmative 

I want to have a miso-flavored 

noodle.  

Affirmative 

O.K.  Affirmative 

I got tired of it.  Negative 

Shall we have other foods?  Negative 

I can’t have it because I feel bad.  Negative 

I don't go to have it.  Negative 

I can’t have noodles.  Negative 

 

 

 

 

[Answers to recommendation 2, “How about going to the 

movie, Resident Evil?” ] 

Answers Intention 

I want to watch it with 3D 

scenography.  

Affirmative 

I like action movies.  Affirmative 

It seems pleasant.  Affirmative 

I want to go if the ticket price is 

discounted.  

Affirmative 

I like movies very much.  Affirmative 

I want to watch animation movies.  Negative 

I don’t want to watch it.  Negative 

I watch it by a rental video.  Negative 

I dislike something terrible.  Negative 

I’m not interested it. Negative 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 


