
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

228 | P a g e
www.ijacsa.thesai.org

The Determination of Affirmative and Negative

Intentions for Indirect Speech Acts by a

Recommendation Tree

Takuki Ogawa, Kazuhiro Morita, Masao Fuketa, Jun-ichi Aoe

Dept. of Information Science and Intelligent Systems

University of Tokushima

Tokushima City, Japan

Abstract—For context-based recommendation systems, it is

necessary to detect affirmative and negative intentions from

answers. However, traditional studies cannot determine these
intentions from indirect speech acts.

In order to determine these intentions from indirect speech

acts, this paper defines a recommendation tree and proposes an

algorithm of deriving intentions of indirect speech acts by the

tree. In the proposed method, a recommendation condition (RC)

is introduced and it is classified into a required RC, a selectable

RC, and a not-selectable RC. The recommendation tree is

constructed by nodes and edges corresponding to these three

conditions. The deriving algorithm determines affirmative and
negative intentions of indirect speech acts by tracing the trees.

From experimental results, it is verified that the accuracy of

the proposed method is about 40 points higher than the
traditional method.

Keywords—recommendation system; indirect speech acts;

affirmative intention; negative intention

I. INTRODUCTION

As recommendation systems [1] assist users to select
commodities, services, and information, it is necessary to
elicit users’ requirements in conversational contexts. There are
many studies of context-based recommendation systems [2-9].
In these systems with proactive recommendations, affirmative
and negative intentions of answers are important in order to
decide items [5,6,8,9]. For example, items are commodities
in e-commerce sites.

In answers with affirmative and negative intentions, there
are direct speech acts and indirect speech acts. The direct
speech acts represent these intentions by the following two
approaches for a recommendation “How about having a cake
today?”: the first is fixed phrases such as “O.K.” and ”No,
thank you.” without “cakes”. The second is sentences
representing acceptance and rejection intentions such as “I like
cakes.” and “I don’t want to have cakes.” with “cakes”,
respectively.

In the indirect speech acts, there are two patterns for the
recommendation: the first is the affirmative answers that select
other cakes excluding chocolate cakes such as “I don’t want to
have chocolate cakes.”. The second is the negative answers

that select other foods excluding cakes such as “I want to have
Japanese noodles”.

In order to determine intentions from sentences, there are
two methods: the first uses machine learning such as SVM or
HMM, the second uses meaning of words and grammars.

For the machine learning methods which classify
sentences into intentions or tag-sets with affirmative and
negative ones, Fernandez and Picard [10] divided sentences of
Spanish CallHome database (telephone conversations) into
eight kinds of dialog act tags [11] by SVM. Surendran and
Levow [12] classified sentences of HCRC MapTask corpus
[13] into twelve kinds of dialog act tags [14] by SVM and
HMM. Stolcke et al. [15] proposed methods of a domain-
independent framework for tagging the Discourse Annotation
and Markup System of Labeling (DAMSL) tag-set [16] to
sentences of conversational speeches. Ravi and Kim [17]
classified sentences on discussion boards into six speech act
categories by N-gram features and linear SVM. Mera,
Ichimura, and Yamashita [18] recognized affirmative and
negative intentions from answers of questions by the fuzzy
theory.

These methods have the advantage that classification
models are constructed automatically, but they expend
considerable efforts to collect a large learning data.

For the second classifications by meanings of words and
grammars, Kitamura, Watanabe, Sekiguchi, and Suzuki [19]
estimated negative intentions by combinations of the
following five grammatical features: words, auxiliaries, verbs,
adjectives, and superordinate concepts of words in previous
sentences. Mera [20] and Yoshie et al. [21] calculated
affirmative values of sentences by combining these values of
words and formulas of grammars (including modality). These
values indicate the strength of affirmative intentions and are
defined by questionnaires within [0.0-1.0] scales. For
example, affirmative values, “Yes” and “No”, are defined as
0.94 and 0.06, respectively. Affirmative formulas reflect
effects of modalities in affirmative values. The examples of
modalities are adverbs such as “very” and “a little”, negative
modalities, and double negative modalities.

These methods have the merit that their rules have broad
utilities for sentences of many domains, but they can not
classify answers of indirect speech acts.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

229 | P a g e
www.ijacsa.thesai.org

In order to determine affirmative and negative intentions
from indirect speech acts, this paper defines a new
recommendation tree and proposes a new algorithm of
deriving intentions of indirect speech acts by the tree. The tree
has a root node which indicates a recommendation. The root
node has child nodes corresponding to the following three
kinds of recommendation conditions (RC):

1) R_RC is the required RC. In a recommendation, “How

about having a cake today?”, there are R_RCs, “you”,

“have”, “cake”, and “today”. In RC “cake”, there are

R_RCs “sweet” and “sweets”.

2) S_RC is the selectable RC. In RC “cake”, there are

S_RCs of kinds of cakes such as “chocolate cake”, “short

cake”, and “Mont Blanc”.

3) NS_RC is the non-selectable RC such as “tomorrow”,

“Japanese noodle” for the recommendation.
The deriving algorithm determines the intention to the root

node from the intention to RCs by tracing the trees. From the
indirect speech act “I don’t like chocolate cakes.” for the
above recommendation, the algorithm derives the affirmative
intention of the root node from the rejection intention of the
S_RC “chocolate cake”.

Sections 2 and 3 propose the recommendation tree and the
algorithm of deriving intentions, respectively. Section 4
evaluates the proposed method by three kinds of open tests.
Section 5 concludes the proposed method.

II. A RECOMMENDATION TREE

In this paper, recommendations include four necessary
concepts of RC: “WHO”, “WHEN”, “WHAT”, and “VERB”.
These concepts have RCs related to persons, schedules,
objects, and actions, respectively. Table 1 shows examples of
RCs of these concepts.

TABLE I. EXAMPLES OF RCS OF FOUR CONCEPTS

Concepts RCs

WHO you

he

WHEN today

tomorrow

WHAT cake

curry

VERB go

have

Fig. 1 shows a part of the recommendation tree by using
RCs in Table 1. In figures of this paper, node labeled by x
corresponding to string x.

In Fig. 1, root node “REC” indicates the recommendation.
The root node has four child nodes corresponding to concepts
(concept nodes): “WHO”, “WHEN”, “WHAT”, and “VERB”.
These nodes have child nodes of RCs (RC nodes). For
example, concept node “WHO” has RC nodes “you” and “he”.
There are three kinds of edges (R_edges, S_edges, and
NS_edges) for R_RC, S_RC, and NS_RC, respectively. Root
node and concept nodes are connected by R_edges as shown
by double lines. Concept nodes and RC nodes are connected
by S_edges as shown by single lines. These kinds of edges are
changed by each recommendation. For the recommendation
“How about having a cake today?”, the recommendation tree
in Fig. 1 is modified (Fig. 2). In Fig. 2, edges of nodes “you”,
“today”, “cake”, and “have” are modified to R_edges. Edges
of nodes “he”, “tomorrow”, “curry”, and “go” are set to
NS_edges as shown by dotted lines.

The recommendation tree can be extended by expanding
terminal nodes. Considering an example in Fig. 3, RC node
“cake” in Fig. 1 constructs the subtree as the root node. RC
node “cake” has RC nodes “taste” and “kind” with R_edge as
child nodes. RC node “taste” has RC node “sweet” with
R_edge as a child node. RC node “kind” has RC nodes “Mont
Blanc”, “short cake”, and “chocolate cake” with S_edge as
child nodes.

 cake

R_edge

S_edge

 WHO WHEN WHAT VERB

 you

 today

 tomorrow

 curry

Fig. 1. A part of the recommendation tree

 he

 go

 REC

have

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

230 | P a g e
www.ijacsa.thesai.org

III. AN ALGORITHM OF DERIVING INTENTIONS

An algorithm to be proposed here derives the intention of
node “REC” from intentions of RC nodes by tracing a
recommendation tree. Suppose that there is the acceptance
intention of RC node “curry” for a recommendation “How
about having a cake today?” in Fig. 2. Then, the intention of
node “REC” is derived to the negative intention. Before
proposing the algorithm, the following definitions are
prepared.

 Definition

Suppose that NODE[x] is a node for string x. Let
EDGE[NODE[x],NODE[y]] be the kind of edges (NC-edge,
S_edge, and NS_edge) between NODE[x] and NODE[y]. Let
INTENTION[NODE[x]] be the intention of NODE[x] which
has one of three kinds intentions: acceptance, rejection, and
no_information in this algorithm. No_information means that
a node doesn’t have any intentions. All intentions of nodes are
initialized to no_information. PARENT(NODE[x]) represents
the parent node of NODE[x]. SIBLING(NODE[x]) returns the
set of sibling nodes of NODE[x].

 Rejection intentions of PARENT(NODE[x])

 INTENTION[PARENT[NODE[x]]] is rejection if
REJECTION(NODE[x]) is true. It is computed by (1)-(4),
where “ ” and “  ” means logical disjunction and logical
conjunction, respectively.

REJECTION(NODE[x]) = REJECTION1(NODE[x])

REJECTION2(NODE[x])

REJECTION3(NODE[x])
(1)

 REJECTION1(NODE[x]) = (2)

 x(INTENTION[NODE[x]] = rejection

 EDGE[NODE[x], PARENT(NODE[x])] =

R_edge)

REJECTION2(NODE[x]) =  x(
SIBLING(NODE[x])(INTENTION[SIBLING(NODE

[x])] = rejection

 EDGE[PARENT(NODE[x]),

SIBLING(NODE[x])] = S_edge)

 (INTENTION[NODE[x]] = rejection 

EDGE[PARENT(NODE[x]), NODE[x]] = S_edge))

(3)

REJECTION3(NODE[x]) =
 x(INTENTION[NODE[x]] = acceptance

 EDGE[NODE[x], PARENT(NODE[x])] =

NS_edge)

(4)

 Suppose that users refuse NODE[“cake”], and then

INTENTION[NODE[“cake”]] is rejection. In Fig. 2,

PARENT(NODE[“cake”]) is NODE[“WHAT”], and

EDGE[NODE[“cake”],NODE[“WHAT”]] is equal to R_edge.

For REJECTION 1, INTENTION[NODE[“WHAT”]] is

rejection.

 Next, suppose that users refuse NODE[x] for all x such that

x is “chocolate cake”, “short cake”, and “Mont Blanc”. Then,

INTENTION[NODE[x]] is rejection. In Figs. 2 and 3,

PARENT(NODE[x]) is NODE[“kind”], and

EDGE[NODE[“kind”],NODE[x]] is S_edge. For REJECTION

2, INTENTION[NODE[“kind”]] is rejection.

Finally, suppose that users accept NODE[“curry”], and

then INTENTION[NODE[“curry”]] is acceptance. In Fig. 2,

PARENT[NODE[“curry”]] is NODE[“WHAT”], and

cake

 taste

 sweet

 kind

 Short cake Chocolate cake Mont Blanc

R_edge

S_edge

Fig. 3. The subtree of node “cake”

 cake

R_edge

S_edge

 WHO WHEN WHAT VERB

 today

 tomorrow

 curry

NS_edge

Fig. 2. A part of the recommendation tree of “How about having a cake today?”

 you

 he

 have go

 REC

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

231 | P a g e
www.ijacsa.thesai.org

EDGE[NODE[“curry”],NODE[“WHAT”]] is equal to

NS_edge. For REJECTION 3,

INTENTION[NODE[“WHAT”]] is rejection.

 Acceptance intentions of PARENT(NODE[x])

INTENTION[PARENT(NODE[x])] is acceptance if
ACCEPTANCE(NODE[x]) is true. It is computed by (5)-(7).

ACCEPTANCE(NODE[x]) =

ACCEPTANCE1(NODE[x])

 ACCEPTANCE2(NODE[x])
(5)

ACCEPTANCE1(NODE[x]) =

 x(INTENTION[NODE[x]] = acceptance

 EDGE[NODE[x], PARENT(NODE[x])] =

(R_edge  S_edge))

(6)

ACCEPTANCE2(NODE[x]) =

 x(INTENTION[NODE[x] = rejection

 EDGE[PARENT(NODE[x]), NODE[x]] = S_edge

 SIBLING(NODE[x])
(INTENTION[SIBLING(NODE[x])]  rejection

 EDGE[PARENT(NODE[x]),

SIBLING(NODE[x])] = S_edge))

(7)

Suppose that users accept NODE[“cake”], and then
INTENTION[NODE[“cake”]] is acceptance. In Fig. 2,
PARENT(NODE[“cake”]) is NODE[“WHAT”], and
EDGE[NODE[“cake”],NODE[“WHAT”]] is equal to R_edge.
For ACCEPTANCE 1, INTENTION[NODE[“WHAT”]] is
acceptance.

Next, suppose that users accept NODE[“chocolate cake”],
and then INTENTION[NODE[“chocolate cake”]] is
acceptance. In Fig. 2, PARENT(NODE[“chocolate cake”]) is
NODE[“WHAT”], and EDGE[NODE[“chocolate
cake”],NODE[“WHAT”]] is equal to S_edge. For
ACCEPTANCE 1, INTENTION[NODE[“WHAT”]] is
acceptance.

Finally, suppose that users reject NODE[“chocolate cake”]
and don’t reject NODE[“short cake”]. Then,
INTENTION[NODE[“chocolate cake”]] is rejection, and
INTENTION[NODE[“short cake”]] is no_information or
acceptance. In Fig. 3, PARENT(NODE[x]) for x=”chocolate
cake” and x=“short cake” is NODE[“kind”], and
EDGE[NODE[“kind”],NODE[x]] is S_edge. For

ACCEPTANCE 2, INTENTION[NODE[“kind”]] is
acceptance.

By using above definitions, the proposed algorithm is
defined as below.

 An algorithm of deriving intentions

Input: ANSWER_NODE[] and ANSWER_INTENTION[]

ANSWER_NODE[] is a list of strings for nodes accepted

or rejected by answers. ANSWER_INTENTION[] is a list of

intentions for elements in ANSWER_NODE[]. Indexes of

ANSWER_INTENTION[] are elements in

ANSWER_NODE[]. For the answer “I like curries”,

ANSWER_NODE[] is {“curry”} and

ANSWER_INTENTION[“curry”] is {“acceptance”},

respectively.

Output: INTENTION[NODE[“REC”]]

Method:

for i=1 to n do/*n is the number of elements in

E[]ANSWER_NOD */

INTENTION[NODE[ANSWER_NODE[i]]=ANSWER_I

NTENTION[ANSWER_NODE[i]]

target_node = NODE[ANSWER_NODE[i]]

 while target_node  NODE[“REC”] do

 if REJECTION(target_node) is true then

 INTENTION[PARENT(target_node)] = rejection

 else if ACCEPTANCE(target_node) is true then

 INTENTION[PARENT(target_node)] = acceptance

 endif

 target_node = PARENT(target_node)]

 endwhile

 if INTENTION[NODE[“REC”]] is rejection then

 INTENTION[NODE[“REC”]] = negative

 break

 else if INTENTION[NODE[“REC”]] is acceptance then

 INTENTION[NODE[“REC”]] = affirmative

 endif

endfor

End of Algorithm

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

232 | P a g e
www.ijacsa.thesai.org

In case of a recommendation “How about having a cake

today?”, examples of derivations from answers “I like
something sweet.” (accepting the node with R_edge), “I hate
something sweet.” (rejecting the node with R_edge), “I like
curries.” (accepting the node with NS_edge), and “I dislike
short cakes” (rejecting the node with S_edge) are as follows:

Example 3.1

For an answer “I like something sweet.”,
ANSWER_NODE[] is {“sweet”} and
ANSWER_INTENTION[“sweet”] is {“acceptance”}.

By tracing NODE[x] for all x such that x is “sweet”,
“taste”, “cake”, “WHAT”, and “REC”,
INTENTION[NODE[“REC”]] is become affirmative. Fig. 4
shows intentions of nodes. Gray-shaded circles represent
nodes with the intention of acceptance.

Example 3.2

For an answer “I hate something sweet.”,
ANSWER_NODE[] is {“sweet”} and
ANSWER_INTENTION[“sweet”] is {“rejection”}.

By tracing NODE[x] for all x such that x is ”sweet”,
“taste”, “cake”, “WHAT”, and “REC”,
INTENTION[NODE[“REC”]] is become negative. Fig. 5
shows intentions of nodes. Black-shaded circles represent
nodes with the intention of rejection.

Example 3.3
For an answer “I like curries.”, ANSWER_NODE[] is

{“curry”} and ANSWER_INTENTION[“curry”] is
{“acceptance”}.

By tracing NODE[x] for all x such that x is “curry”,
“WHAT”, and “REC”, INTENTION[NODE[“REC”]] is
become negative. Fig. 6 shows intentions of nodes. Gray-
shaded circles and black-shaded circles represent nodes with
intentions of acceptance and rejection, respectively.

Example 3.4

For an answer “I dislike short cakes”, ANSWER_NODE[]
is {“short cake”} and ANSWER_INTENTION[“short cake”]
is {“rejection”}.

By tracing NODE[x] for all x such that x is “short cake”,
”kind”, ”cake”, ”WHAT”, and ”REC”,
INTENTION[NODE[“REC”]] is become affirmative. Fig. 7
shows intentions of nodes. Gray-shaded circles and black-
shaded circles represent nodes with intentions of acceptance
and rejection, respectively.

 cake

 WHAT

 curry

Fig. 6. The derivation process of the answer “I

like curries.”

 REC R_edge

S_edge

NS_edge

 cake

 taste

 sweet

 WHAT

Fig. 5. The derivation process of the answer

“I hate something sweet.”

R_edg

e
S_edg

e
NS_edg

e

 REC

 cake

 taste

 sweet

 kind

 Short cake Chocolate cake
 Mont Blanc

 WHO WHEN WHAT VERB

 you

 today

 have

 curry

Fig. 4. The derivation process of the answer “I like something sweet.”

 REC
R_edge

S_edge

NS_edge

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

233 | P a g e
www.ijacsa.thesai.org

IV. EXPERIMENTS

A. Knowledge for experiments

In daily lives, it is common to recommend foods including
cakes and Japanese noodles, and movies. In this experiment,
the following three recommendations are assumed, where
“Resident Evil” is a title of a movie:

 Recommendation 1: “How about having a cake today?”

 Recommendation 2: “How about having a Japanese
noodle today?”

 Recommendation 3: “How about going to the movie,
Resident Evil?”

In order to determine intentions from answers to them, a
recommendation tree is needed. This experiment constructs
the tree from closed corpora which have 500 answers for each
recommendation. Answers are collected by four
undergraduate students. From corpora, RC nodes and the
recommendation tree are defined by discussions with these
students. Examples of RC nodes with concept nodes are
presented in Table 2. For RC nodes “cake”, “Japanese
noodle”, and “Resident Evil”, more detailed descendant nodes
are constructed. Total numbers of descendant nodes are 236
nodes. Examples of descendant nodes for each RC node are
presented in Table 3. In Table 3, R_edge and S_edge between
a node and a parent node show R and S, respectively.

TABLE II. EXAMPLES OF RC NODES WITH CONCEPT NODES

Concept nodes RC nodes Numbers

WHO You, He, She 7

WHEN Now, Today, Tomorrow 7

WHAT Cake, Japanese noodle,

Resident Evil

51

VERB Have, See 10

TABLE III. EXAMPLES OF DESCENDANT NODES OF NODES“CAKE”,
“JAPANESE NOODLE”, AND “RESIDENT EVIL”

Parent Child Grandchild

Cake Genre[R] Sweets[R],

Dessert[R],

Confectionery[R]

Taste[R] Sweet[R]

Kind[R] Short cake[S], Mont

Blanc[S], Mille-

feuille[S]

Ingredient[R] Flour[R], Sugar[R],

Egg[R]

Butter[S], Apple[S],

Strawberry[S],
Banana[S]

Japanese

noodle
Genre[R] Noodles[R], Food[R]

Taste[R]
Spicy[S], Light[S],

Salty[S]

Kind of soup[R]
Miso[S], Soy[S],
Salt[S]

Kind of noodle[R]

Crimp[S],

Straight[S], Thin[S],

Thick[S]

Ingredient[R]

Flour[R]

Garlic[S], Bean

sprouts[S], Onion[S],

Sesame seeds[S]

Size[R]
Large[S],

Medium[S], Small[S]

Resident Evil Screen type[R] Caption[S], Dub[S],

3D[S]

Genre of films[R] Horror[R], Action[R]

(R and S means required and selectable)

B. Knowledge for experiments

In order to evaluate the accuracy of the proposed method,
two experiments for closed and open tests are carried out. The
closed test uses corpora for constructing the recommendation
tree with 500 answers for each recommendation. Open tests
uses corpora with 100 answers for each recommendation such
as the appendix of this paper. These corpora are collected by
ten undergraduate students who don’t accumulate closed
corpora, and they make ten answers to each recommendation
without restriction of responses.

The traditional method proposed by Yoshie et al. [21] is
used as a comparative method. Table 4 shows results on the
closed test of the proposed method. Tables 5 and 6 show
results on open tests for the proposed method and the

 cake

 kind

 Short cake Chocolate cake Mont Blanc

 WHAT

Fig. 7. The derivation process of the answer “I

dislike short cakes.”

 REC R_edge

S_edge

NS_edge

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

234 | P a g e
www.ijacsa.thesai.org

TABLE IV. RESULTS ON THE CLOSED TEST OF THE PROPOSED METHOD

 Correct
sentences

Total
sentences

Correct
rates (%)

Recommendation 1 472 509 92.7

Recommendation 2 512 556 92.1

Recommendation 3 476 506 94.1

TABLE V. RESULTS ON THE OPEN TEST OF THE PROPOSED METHOD

 Correct
sentences

Total
sentences

Correct
rates (%)

Recommendation 1 81 100 81.0

Recommendation 2 83 100 83.0

Recommendation 3 84 100 84.0

TABLE VI. RESULTS ON THE OPEN TEST OF THE COMPARATIVE METHOD

 Correct

sentences

Total

sentences

Correct

rates (%)

Recommendation 1 38 100 38.0

Recommendation 2 40 100 40.0

Recommendation 3 34 100 34.0

Comparative methods, respectively. In tables 4, 5, and 6,

correct rates mean percentages of correct sentences in total
sentences.

From Table 4, it is verified that correct rates of the
proposed method becomes high for the closed tests. From
Tables 5 and 6, all accuracies of the proposed method are
about 40 points higher than the comparative method in open
tests of recommendations 1, 2, and 3.

In the open test, problems of the proposed method are
misclassifications of complex sentences and the lack of
knowledge.

 Misclassifications of complex sentences

The example of the complex sentence is “I’ve had enough,
therefore I choose a small dish.” which has two sentences,
“I’ve had enough” and “I choose a small dish”. The intention
of the first sentence is negative because the sentence rejects
R_RC,”have”. The intention of the second sentence is
affirmative because the sentence accepts S_RC, “small”. The
intention of the sentence is affirmative. However, the
proposed method produces a negative intention because the
negative intention is prior to the affirmative one.

The way to solve the problem is to consider conjunctions
and give priority to the intention estimated from a backward-
sentence.

 The lack of knowledge

A part of misclassifications of the proposed method are
occurred in sentences which include non-defined nodes. For
example, the proposed method misclassifies the sentence, “I
have to go to a piano lesson.”, because there is no node “piano

lesson” in the child nodes of node “WHAT”. This problem
can be solved by introducing knowledge of daily lives.

V. CONCLUSIONS

This paper has proposed a method of determining
affirmative and negative intentions from indirect speech acts.
In the proposed method, a recommendation tree has been
defined and an algorithm of deriving intentions of indirect
speech acts by the tree is proposed.

The tree consists of nodes and edges corresponding to the
three kinds of RC: R_RC, S_RC, and NS_RC. The root node
indicates the recommendation and has four concept nodes as
child nodes. Concept nodes have RC nodes as child nodes.
The deriving algorithm determines affirmative and negative
intentions of indirect speech acts by tracing the trees.

From experimental results for three kinds of open tests, all
accuracies of the proposed method are about 40 points higher
than the traditional method.

VI. FUTURE WORK

Future works are to improve misclassifications of complex
sentences of an acceptance sentence and a rejection sentence,
and to construct invitational knowledge of daily lives.

REFERENCES

[1] A. Levi, O. Monkryn, C. Diot, and N. Traft, "Finding a needle in a
haystack of reviews: cold start context-based hotel recommender system

demo." Proceedings of the sixth ACM conference on Recommender
systems. ACM, 2012.

[2] P. Lops, G. Marco, and S. Giovanni, "Content-based recommender
systems: State of the art and trends." Recommender Systems Handbook.

Springer US, 73-105, 2011.

[3] B. J. Han, S. Rho, S. Jun, and E. Hwang, "Music emotion classification
and context-based music recommendation." Multimedia Tools and

Applications 47.3, 433-460, 2010.

[4] P. Johansson, “Natural language interaction in personalized EPGs”,
InProc. of Workshop notes from the 3rd International Workshop on

Personalization of Future TV, Johnstown, Pennsylvania, USA , 27-31,
2003.

[5] P. Johansson, “Madfilm-a multimodal approach to handle search and

organization in a movie recommendation system”, In Proceedings of the
1st Nordic Symposium on Multimodal Communication , 53-65, 2003.

[6] T. Misu, and T. Kawahara, “Speech-based interactive information

guidance system using question-answering technique”, In Acoustics,
Speech and Signal Processing, 2007. ICASSP 2007. , 4, 145-148.

[7] H. Shimazu, “ExpertClerk: navigating shoppers' buying process with the

combination of asking and proposing”, In Proceedings of the 17th
international joint conference on Artificial intelligence, 2, 1443-1448,

2001.

[8] H. Shimazu, “ExpertClerk: A Conversational Case-Based Reasoning

Tool forDeveloping Salesclerk Agents in E-Commerce Webshops”,
Artificial Intelligence Review, 18(3-4), 223-244, 2002.

[9] C. A. Thompson, M. H. Goeker, and P. Langley, “A personalized

system for conversational recommendations”, J. Artif. Intell. Res.
(JAIR), 21, 393-428, 2004.

[10] R. Fernandez, and R. W. Picard, “Dialog act classification from prosodic

features using support vector machines”, In Speech Prosody 2002,
International Conference, 291-294.

[11] L. Levin, A. Thymé-Gobbel, A. Lavie, K. Ries and K. Zechner, “A

discourse coding scheme for conversational Spanish”, In International
Conference on Speech and Language Processing, 1998.

[12] D. Surendran, and G. A. Levow, “Dialog act tagging with support vector

machines and hidden Markov models”, In Proceedings of Interspeech ,
2006, 1950-1953.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 8, 2013

235 | P a g e
www.ijacsa.thesai.org

[13] A. H. Anderson, M. Bader, E. G. Bard, E. Boyle, G. Doherty, S. Garrod,

S. Isard. J. Kowtko, J. McAllister, J. Miller, C. Sotillo, H. S. Thompson,
and R. Weinert, “The HCRC map task corpus”, Language and

Speech,34(4), 351-366, 1991.

[14] J. Carletta, S. Isard, G. Doherty-Sneddon, A. Isard, J. C. Kowtko, and A.

H. Anderson, “The reliability of a dialogue structure coding scheme”,
Computational Linguistics, 23(1), 13-31, 1997.

[15] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky, P.

Taylor, R. Martin, C. V. Ess-Dykema, and M. Meteer, “Dialogue act
modeling for automatic tagging and recognition of conversational

speech”, Computational linguistics, 26(3), 339-373, 2000.

[16] M. Core, and J. Allen, “Coding dialogs with the DAMSL annotation
scheme”, In AAAI fall symposium on communicative action in humans

and machines, 28-35, 1997.

[17] S. Ravi, and J. Kim, “Profiling student interactions in threaded
discussions with speech act classifiers”, Frontiers in Artificial

Intelligence and Applications, 357-364, 2007.

[18] K. Mera, T. Ichimura, and T. Yamashita, “Analysis of User

Communicative Intention from Affirmative/Negative Elements by
Fuzzy Reasoning and Its Application to WWW-based Health Service

System for Elderly”, In Proc. of the 6th Intl. Conf. on Soft Computing
(IIZUKA2000) , 971-976.

[19] J. Kitamura, Y. Watanabe, Y. Sekiguchi, and Y. Suzuki, “An Extraction
and Processing Method of User's Denial Utterance for a Speech Dialog

Device”, Transactions of Information Processing Society of Japan,
46(7), 1789-1796, 2005. (in Japanese)

[20] K. Mera, “Analyzing affirmative/negative intention from plural

sentences”, Proc. KES'01, 1222-1227.

[21] M. Yoshie, K. Mera, T. Ichimura, T. Yamashita, T. Aizawa, and K.
Yoshida, “Analysis of affirmative/negative intentions of the answers to

yes-no questions and its application to a web-based interface”, Journal
of Japan Society for Fuzzy Theory and Systems, 14(4), 393-403, 2002.

Appendix

Examples of answers in Open corpora are shown as follows:

[Answers to recommendation 1, “How about having a cake

today?”]

Answers Intention

Let’s go now. Affirmative

I can’t get enough of sweet food. Affirmative

I have a Mont Blanc. Affirmative

I dislike short cakes. Affirmative

Oh goody! Affirmative

My tummy is full. Negative

Maybe another time. Negative

I don’t like cakes. Negative

I can’t have it because I have a

piano lesson now.

Negative

I don’t have it because I have egg

allergies.

Negative

[Answers to recommendation 2, “How about having a

Japanese noodle today?”]

Answers Intention

Yes, I want to have it. Affirmative

Let’s go to a low price Japanese

noodle shop.

Affirmative

I want to have 3 bowls. Affirmative

I want to have a miso-flavored

noodle.

Affirmative

O.K. Affirmative

I got tired of it. Negative

Shall we have other foods? Negative

I can’t have it because I feel bad. Negative

I don't go to have it. Negative

I can’t have noodles. Negative

[Answers to recommendation 2, “How about going to the

movie, Resident Evil?”]

Answers Intention

I want to watch it with 3D

scenography.

Affirmative

I like action movies. Affirmative

It seems pleasant. Affirmative

I want to go if the ticket price is

discounted.

Affirmative

I like movies very much. Affirmative

I want to watch animation movies. Negative

I don’t want to watch it. Negative

I watch it by a rental video. Negative

I dislike something terrible. Negative

I’m not interested it. Negative

