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Abstract—a critical point is a point at which the derivatives of 

an error function are all zero. It has been shown in the literature 

that critical points caused by the hierarchical structure of a real-

valued neural network (NN) can be local minima or saddle 

points, although most critical points caused by the hierarchical 

structure are saddle points in the case of complex-valued neural 

networks. Several studies have demonstrated that singularity of 

those kinds has a negative effect on learning dynamics in neural 

networks. As described in this paper, the decomposition of high-

dimensional neural networks into low-dimensional neural 

networks equivalent to the original neural networks yields neural 

networks that have no critical point based on the hierarchical 

structure. Concretely, the following three cases are shown: (a) A 

2-2-2 real-valued NN is constructed from a 1-1-1 complex-valued 

NN. (b) A 4-4-4 real-valued NN is constructed from a 1-1-1 

quaternionic NN. (c) A 2-2-2 complex-valued NN is constructed 

from a 1-1-1 quaternionic NN. Those NNs described above do not 

suffer from a negative effect by singular points during learning 

comparatively because they have no critical point based on a 
hierarchical structure. 

Keywords—critical point; singular point; redundancy; complex 

number; quaternion  

I. INTRODUCTION 

A neural network is a network composed of neurons, and 
can be trained to find nonlinear relationships in data. NNs 
have been studied for many years in the hope of achieving 
human-like flexibility to process information. The common 
objective of training of a neural network is to determine the 
global minimum of an error function. However, learning 
algorithms for NN such as the back-propagataion learning 
algorithm take a very long time to find the global minimum 
due to the standstill of learning generally. 

If *  is the global minimum of error function ( )E  , then

*
( ) /E    

Nevertheless, even when  

*
( ) /E    

, *  is not necessarily a global minimum. 

* , a point satisfying *
( ) /E    

, is designated as the 

critical point of the error function E . A critical point can be a 
local minimum, a local maximum, or a saddle point. 

Fukumizu et al. mathematically proved the existence of a 
local minimum resulting from a hierarchical structure in a 
real-valued NN (ordinary NN handling real-valued signals).  

They demonstrated that critical points in a three-layer real-

valued NN with 1H   hidden neurons behave as critical 

points in a three-layer real-valued NN with H hidden neurons, 
and that they are local minima or saddle points. This kind of 
critical point turns into singular points of a real-valued NN to 
stagnate training.  

A complex-valued NN extends (real-valued) parameters 
such as weight and threshold values in an ordinary NN to 
complex numbers. It is suitable for information processing of 
complex-valued data and two-dimensional data. Moreover, it 
is applicable to communications, image-processing, biologic 
information processing, land-mine detection, wind prediction, 
independent component analysis (ICA), etc. Reportedly, a 
critical point in a three-layer complex-valued NN also behaves 
in the same manner as that in a three-layer real-valued NN [1]: 

critical points in a three-layer complex-valued NN with 1H   
hidden neurons turn into critical points in a three-layer 

complex-valued NN wit H neurons, which are saddle points 
(except for cases meeting rare conditions).  

Such singular points have been emerging lately as objects 
of study. Learning models with a hierarchical structure or 
symmetry of exchange of weights, such as a hierarchical NN 
and Gaussian mixture model, usually have a singular point. It 
has been revealed that a singular point affects the training 
dynamics of a learning model and that it engenders stagnation 
of training.  

This paper presents an attempt to implement an NN having 
no critical point based on a hierarchical structure.  

II. ANALYSIS 

In this section, it is demonstrated that NNs having no 
critical point based on a hierarchical structure can be 
constructed by decomposing a high-dimensional NN into 
equivalent lower-dimensional NNs.  

A. Construction of a 2-2-2 real-valued NN 

A 2-2-2 real-valued NN having no critical point based on a 
hierarchical structure is constructed from a 1-1-1 complex-
valued NN.  

Consider a 1-1-1 complex-valued NN (called NET 1 here). 

We will use a ib C for the weight between the 

inputneuron and the hidden neuron, v iw C for the weight 
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Fig. 1. NET 2, a 2-2-2 real-valued NN equivalent to the NET 1. Restriction 

applies between weights. , , , , , , , , , ,x y a b c d v w p q X and Y are all real numbers. 

between the hidden neuron and the output neuron, 

c id C for the threshold of the hidden neuron, and 

p iq C for the threshold of the output neuron, where i  

denotes 1 andC denotes the set of complex numbers. We 

assume that 0a ib  and 0v iw  . Let x iy C  

denote the input signal, and let X iY C denote the output 
signal. We will use activation functions defined by the 
following equations:  

( ) tanh( ) tanh( ),
R I R I

C
f z z i z z z iz    C    (1) 

for the hidden neuron, and  

( ) ,
C

g z z z C            (2) 

for the output neuron. This 1-1-1 complex-valued NN is 
apparently equivalent to a 2-2-2 real-valued NN (called NET 2 
here) shown in Fig.1.   

Proposition 1 NET 2 has no critical point based on a 

hierarchical structure.  

(Proof) Assume a 2-1-2 real-valued NN obtained by 
removing the hidden neuron 1 from the NET 2 (called NET 3 
here) (Fig.2). Also assume that the learning parameter of NET 

3 is a critical point that implements mapping 1( , )F x y . It is 

necessary to realize any one of the following three conditions 

for implementing the same mapping 1F by appending once-

removed hidden neuron 1 to NET 3 again.  

1) A weight vector between hidden neuron 1 appended and 

the two output neurons is 0 . 

 0v w  must hold in this case, but this violates the 

assumption 0v iw  .  

2) A weight vector between hidden neuron 1 appended and 

the two input neurons is 0 . 

 0a b  Must hold in this case, which violates the 

assumption 0a ib  .  

3) For weight vector 1w  between hidden neuron 1 

appended and the two input neurons, and the weight vector 

2
w between hidden neuron 2 and the two input neurons, 

1 2w w or 1 2 w w . 

 0a b  Must hold in this case, but this violates the 

assumption 0a ib  . 

Therefore, mapping 1F cannot be implemented by NET 3 

 

 

 

 

 

 

Fig. 2. NET 3, a 2-1-2 real-valued NN obtained by removing hidden neuron 
1 from NET 2. 

with the original hidden neuron 1 appended and having the 
weight structure of NET 2.  

The description above illustrates a case in which hidden 
neuron 1 is removed, but removal of the hidden neuron 2 
engenders the same conclusion. Consequently, NET 2 has no 
critical point based on a hierarchical structure. (QED) 

See appendix A for the practical implementation process 
for 2-2-2 real-valued NN having no critical points based on a 
hierarchical structure.  

B. Construction of 4-4-4 real-valued NN 

A 4-4-4 real-valued NN having no critical point based on a 
hierarchical structure is constructed from a 1-1-1 quaternionic 
NN. The quaternionic NN is an extension of the classical real-
valued neural network to quaternions, of which the weights, 
threshold values, input and output signals are all quaternions, 
where a quaternion is a four-dimensional number invented by 
W. R. Hamilton in 1843.  

Consider a 1-1-1 quaternionic NN (called NET 4 here). Let 
the weight between the input neuron and hidden neuron be

A a ib jc kd    Q , and the weight between a hidden 

neuron and an output neuron be B i j k       Q , 

where Q represents a set of quaternions. We assume that

0A  and 0B  . Let C p iq jr ks    Q denote the 

threshold of the hidden neuron, D i j k       Q

represent the threshold of the output neuron, 

I v iw jx ky    Q be the input signal, and 

O V iW jX kY    Q  be the output signal. We can 

use the activation functions defined by the following 
equations:  

1 2 3 4
( ) tanh( ) tanh( ) tanh( ) tanh( ),

Q
f u u i u j u k u        

(3) 

 
1 2 3 4

u u iu ju ku    Q                     (4) 

For the hidden neuron, and  

( ) ,
Q

g u u u Q                                  (5) 

For the output neuron. Because a quaternion is non-
commutative for multiplication, the computational result 
varies with the multiplication sequence of an input value and 

weight: IA AI .Accordingly, quaternion neurons of two 

kinds exist: a normal quaternary neuron (computing AI ) and 
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an inverse quaternary neuron (computing IA ). This paper 
specifically addresses a quaternionic NN that comprises only 
inverse quaternary neurons as an example.  

In fact, NET 4 is apparently equivalent to a 4-4-4 real-
valued NN (called NET 5 here) shown in Fig.3.  

Proposition 2 NET 5 has no critical point based on a 
hierarchical structure.  

(Proof) Assume a 4-3-4 real-valued NN obtained by 
removing the hidden neuron 1 from the NET 5 (called NET 6 
here). Also assume that the learning parameter of the NET 6 is 

a critical point that implements mapping
2
( , , , )F v w x y . It is 

necessary to realize any one of the following three conditions 

for implementation of the same mapping 2F  by appending 

once-removed hidden neuron 1 to the NET 6 again.  

1) A weight vector between hidden neuron 1 appended and 

the four output neurons is 0 . 

0B  must hold in this case, but this violates the 

assumption 0B  . 

2) A weight vector between hidden neuron 1 appended and 

the four input neurons is 0 .  

0A  must hold in this case, but this violates the 

assumption of 0A  . 

3) Letting 
j

w  denote the weight vector between hidden 

neuron j and the four input neurons for any 1 4j  where 

the hidden neuron 1 is the appended one, then there exist some

2 4j  such that 
1 j
w w  or 

1 j
 w w  

In this case, 0A   must hold, which violates the 

assumption of 0A  . 

Therefore, mapping
2

F cannot be implemented by the NET 

6 with the original hidden neuron 1 appended and having the 
weight structure of the NET 5. 

The description above presents a case in which hidden 

neuron 1 is removed, but removal of the hidden neuron j  

engenders the same conclusion ( 2 4j  ). Consequently, 

NET 5 has no critical point based on a hierarchical structure.  
(QED) 

See appendix B for the practical implementation process 
used for the 4-4-4 real-valued NN having no critical points 
based on a hierarchical structure.  

C. Construction of 2-2-2 complex-valued NN 

A 2-2-2 complex-valued NN having no critical point based 
on a hierarchical structure is constructed from a 1-1-1 
quaternionic NN.  

Next we consider a 1-1-1 quaternionic NN (NET 4) 
defined in Section II-B, assuming that 

( ),a ib i c id                                 (6) 

0.C                                           (7) 

Fig. 3. NET 5, a 4-4-4 real-valued NN equivalent to the NET 4. Restriction 

applies between weights. , , , , , , , , , , , ,v w x y a b c d      , , , , , , , , , , ,p q r s V W X Y   

are all real numbers. 

We designate this 1-1-1 quaternionic NN as NET 7. 

Equation (6) has the meaning described below. The weight A
between the input neuron and the hidden neuron of the NET 7 
can be written using Cayley-Dickson notation as follows.  

A a ib jc kd     

                            
1 2

 x x j                                           (8) 

Where 1
x a ib C

 and 2
x c id C

. Equation 

(6) can be rewritten as 1 2x ix 
from (8). Therefore, if we 

regard 1x
and 2x

respectively as two vectors, 1x
and 2x

do not 

intersect orthogonally. Furthermore, if 1 2
x ix

, then

1 2 1
(1 )A x x j x k   

holds. That is, the weight A has 

information related only to 1x
. Consequently, (6) means the 

exclusion of such a special case.  

In addition, (7) means that the threshold value of the 
hidden neuron is 0, which is necessary for application of the 
condition for complex-valued NN being reducible.  

Cayley-Dickson notation reveals that the NET 7 is 
equivalent to a 2-2-2 complex-valued NN (called NET 8 here) 

shown in Fig. 4, where  , ,v v iw x x iy      

' , ', , ,a a ib c c iid i               

' , ' i ,i          ,V V iW X X iY     . 

The activation functions are given as (1) and (2). 

Proposition 3 NET 8 has no critical point based on a 
hierarchical structure (as a complex-valued NN).  

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No. 9, 2013 

71 | P a g e  

www.ijacsa.thesai.org 

Fig. 4. NET 8, a 2-2-2 complex-valued NN equivalent to a 1-1-1 

quaternionic NN (NET 7). Restriction applies between weights. 

, , , , , , , , ,v x a c V X             are all complex numbers. The threshold values of 

the hidden neurons are all omitted because they are 0. 

(Proof) Assume a 2-1-2 complex-valued NN obtained by 
removing the hidden neuron 1 from NET 8 (called NET 9 
here). Also assume that the learning parameter of the NET 9 is 

a critical point that implements complex mapping ( , )G v x  . 

It is necessary to realize any one of the following three 

conditions for implementing the same complex mapping G by 
appending once-removed hidden neuron 1 to the NET 9 again.  

1) A weight vector between hidden neuron 1 appended and 

the two output neurons is 0 .  

0     Must hold in this case, but this violates the 

assumption 0B j     .  

2) A weight vector between hidden neuron 1 appended and 

the two input neurons is 0 .  

0a c   must hold in this case, but this violates the 

assumption 0A a c j    . 

3) Let
1

 be the net input to the hidden neuron 1 appended, 

and
2

  the net input to the hidden neuron 2. Then, 
1

   and
2


are rotation-equivalent: 

1 2
  or 

1 2
   or 

1 2
i  or

1 2
i   .  

Because 
1
( , )v x v a x c        and

2
( , )v x v c x a        ,  

a) Case of 1 2
  

  

0a c   must hold in this case, but this violates the 

assumption 0A a c j    .  

b) Case of 1 2i  
 

a ic   Must hold in this case, but this violates the 

assumption ( )a ib i c id     ((6)). 

Therefore, the complex mapping G cannot be implemented 
by the NET 9 with the original hidden neuron 1 appended and 
having the weight structure of NET 8.  

The description above presents case in which hidden 
neuron 1 is removed, but removal of the hidden neuron 2 
engenders the same conclusion. Consequently, NET 8 has no 

critical point based on a hierarchical structure (as a complex-
valued NN).  (QED) 

This paper assumes the threshold value of the hidden 
neuron of a 1-1-1 quaternionic NN to be 0 ((7)). This threshold 
value is necessary to apply the `three conditions for a 
complex-valued NN to be reducible' as described in the proof 
of Proposition 3. As a result, all threshold values of the hidden 
neuron of the obtained 2-2-2 complex-valued NN are 0. 
Considering a 1-1-1 quaternionic NN with possibly non-zero 
threshold value of a hidden neuron might yield a 2-2-2 
complex-valued NN with the possibly non-zero threshold 
value of a hidden neuron. For a three-layer complex-valued 
NN with a possibly non-zero threshold value of a hidden 
neuron to be reducible, exceptional reducibility is necessary in 
addition to the three conditions presented above [2].  

See the appendix C for the practical implementation 
process of a 2-2-2 complex-valued NN having no critical 
points based on a hierarchical structure. 

III. DISCUSSION 

Fukumizu and Amari proved that a critical point of the 

three-layered real-valued NN with 1H  hidden neurons 
always gives many critical points of the three-layered real-

valued NN with H hidden neurons. These critical points can 
be local minima or saddle points.  

Local minima cause plateaus, which have a strong 
negative influence on learning. Recently, it was proven that 
most of the local minima that Fukumizu et al. discovered are 
resolved by extending the real-valued NN to complex 
numbers; most of the critical points attributable to the 
hierarchical structure of the complex-valued NN are saddle 
points, which is a prominent property of the complex-valued 
NN [1]. That is, there exist many critical points based on a 
hierarchical structure both in the real-valued NN and the 
complex-valued NN.  

Such critical points can be local minima or saddle points in 
the real-valued NN, although most critical points of the 
complex-valued NN are saddle points. However, in both cases, 
critical points do exist in the networks. As described in this 
paper, an attempt is made to remove critical points themselves 
from NNs based on a hierarchical structure. 

IV. CONCLUSION 

This paper presented a proposal for an implementation 
process of a NN having no critical point based on a 
hierarchical structure. Results demonstrate that real-valued 
and complex-valued NNs having no critical point based on a 
hierarchical structure can be constructed by decomposing a 
high-dimensional NN into equivalent real-valued or complex-
valued NNs. Concretely, the following three cases are shown:  

(a) A 2-2-2 real-valued NN is constructed from a 1-1-1 
complex-valued NN.  

(b) A 4-4-4 real-valued NN is constructed from a 1-1-1 
quaternionic NN.  

(c) A 2-2-2 complex-valued NN is constructed from a 1-1-
1 quaternionic NN. Those NNs described above do not suffer 
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from a negative effect by singular points during learning 
comparatively because they have no critical point based on a 
hierarchical structure.  

The author expects to address the following issues in 
future studies.  

1) Although quaternionic NN that comprise only inverse 

quaternary neurons are used for this study, the case with 

normal quaternary neurons shall be considered.  

2) General complex-valued NNs with possibly non-zero 

threshold values of a hidden neuron shall be analyzed, which 

requires consideration of exceptional reducibility [2].  

3) A 2
s
-dimensional Clifford NN having no critical point 

based on a hierarchical structure shall be produced by 

decomposing a general 2
n

-dimensional Clifford NN [3] into 

equivalent Clifford NNs of 2
s
dimensions ( s n ).  

V. APPENDICES 

A. Implementation of the 2-2-2 real-valued NN  

The practical implementation of the 2-2-2 real-valued NN 
having no critical points based on a hierarchical structure is 
described below.  

1) Consider NET 1 (1-1-1 complex-valued NN) defined in 

Section II-A.  

2) Create NET 2 shown in Fig.1 by decomposing NET 1 

where the complex numbers are decomposed into two real 

numbers. That is, the complex number a ib C representing 

the complex-valued weight between the input neuron and the 

hidden neuron is decomposed into the two real numbers 

aR and bR . The complex number v iw C
representing the complex-valued weight between the hidden 

neuron and the output neuron is decomposed into the two real 

numbers vR and wR . The complex number c id C
representing the complex-valued threshold of the hidden 

neuron is decomposed into the two real numbers cR and

d R . The complex number p iq C representing the 

complex-valued threshold of the output neuron is decomposed 

into pR and qR . 

3) The activation functions of NET 2 are as follows:  

( ) tanh( ),
R

f u u u R                         (9) 

for the hidden neurons, and  

( ) ,
R

g u u u R                                  (10) 

for the output neurons. The following conditions are imposed 

on NET 2 for the assumption that 0a ib  and 0v iw 
for NET 1: ( 0a  or 0b  ) and ( 0v  or 0w  ).  

B. Implementation of the4-4-4  real-valued NN  

Practical implementation of the 4-4-4 real-valued NN 
having no critical points based on a hierarchical structure is 
the following. 

1) Consider NET 4 (1-1-1 quaternionic NN) defined in 

Section II-B.  

2) Create NET 5 shown in Fig.3 by decomposing NET 4 

where the quaternions are decomposed into four real 

numbers. That is, quaternion A a ib jc kd    Q
representing the quaternionic weight between the input neuron 

and the hidden neuron is decomposed into the four real 

numbers aR , bR , cR , and d R .The quaternion

B i j k       Q representing the quaternionic 

weight between a hidden neuron and an output neuron is 

decomposed into the four real numbers  R ,  R , 

 R , and  R . The quaternion

C p iq jr ks    Q representing the quaternionic 

threshold of the hidden neuron is decomposed into four real 

numbers pR , qR , rR , and sR  .The quaternion

D i j k       Q representing the quaternionic 

threshold of the output neuron is decomposed into four real 

numbers R ,  R ,  R , and  R . The 

activation functions of NET 5 are as follows:  

( ) tanh( ),
R

f u u u R                   (11) 

for the hidden neurons, and  

( ) ,
R

g u u u R                              (12) 

for the output neurons.  

The following conditions are imposed on NET 5 for the 

assumption that 0A a ib jc kd      and 

0B i j k         for NET 4: ( 0a  or 0b  or 

0c  or 0d  ) and ( 0  or 0   or 0   or 0  ).  

C. Implementation of the 2-2-2 complex-valued NN  

The practical implementation of the 2-2-2 complex-valued 
NN having no critical points based on a hierarchical structure 
is the following.  

1) Consider NET 7 (1-1-1 quaternionic NN) defined in 

Section II-C.  
Create NET 8 shown in Fig. 4 by decomposing NET 7 

where the quaternions are decomposed into the two complex 

numbers. That is, the quaternion A a ib jc kd    Q

representing the quaternionic weight between the input neuron 
and the hidden neuron is decomposed into the two complex 

numbers a a ib   C and c c id   C . The quaternion 

B i j k       Q  representing the quaternionic 

weight between a hidden neuron and an output neuron is 

decomposed into the two complex numbers ' i    C

and ' i    C  .  

The quaternion D i j k       Q representing 

the quaternionic threshold of the output neuron is decomposed 

into two complex numbers ' i    C and

' i    C . The activation functions of NET 8 are the 

following: (1) for the hidden neurons and (2) for the output 
neurons.  
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The following conditions are imposed on NET 8 for the 

assumption that ( )a ib i c id     ((6)) and 0C   ((7)) for 

NET 7: a ic   , and the thresholds of the hidden neurons 
are all equal to zero. 
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