
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

165 | P a g e
www.ijacsa.thesai.org

Multithreading Image Processing in Single-core and

Multi-core CPU using Java

Alda Kika

Department of Informatics

Faculty of Natural Sciences, University of Tirana

Tirana, Albania

Silvana Greca

Department of Informatics

Faculty of Natural Sciences, University of Tirana

Tirana, Albania

Abstract—Multithreading has been shown to be a powerful

approach for boosting a system performance. One of the good

examples of applications that benefits from multithreading is

image processing. Image processing requires many resources and

processing run time because the calculations are often done on a

matrix of pixels. The programming language Java supports the

multithreading programming as part of the language itself

instead of treating threads through the operating system. In this

paper we explore the performance of Java image processing

applications designed with multithreading approach. In order to

test how the multithreading influences on the performance of the

program, we tested several image processing algorithms

implemented with Java language using the sequential one thread

and multithreading approach on single and multi-core CPU. The

experiments were based not only on different platforms and

algorithms that differ from each other from the level of

complexity, but also on changing the sizes of the images and the

number of threads when multithreading approach is applied.

Performance is increased on single core and multiple core CPU in

different ways in relation with image size, complexity of the
algorithm and the platform.

Keywords—multithreading; image processing; multi-core; Java

I. INTRODUCTION

In recent years, Java language has become a popular choice
for development of multithreaded applications due to the
language multithreading support. Multithreaded programming
allows simple identification of the sections of code that can be
executed concurrently to exploit parallelism. The programs
must be able to exploit this kind of parallelism in order to get
performance gains in computing. There are two different ways
to implement concurrent applications. The first approach is
through the creation of processes, with all the communication
made through messages, which are responsible for keeping all
the necessary information for the programs, including register
content and memory space [1]. The second approach uses
thread, which are also known as light processes [2]. A thread is
a point of execution within a process and they represent a key
concurrency model supported by modern computers,
programming languages, and operating systems. The threads
exchange information only through shared memory and can be
up to 20 times faster in their creation time when compared to
processes [3].

A multi-threaded process has multiple points of concurrent
execution within the process [4]. The use of multiple threads
allows an application to distribute long running tasks so that
they can be executed in parallel. This is also possible with

significant advances of multi-core systems. Today, multi-core
processors are widely deployed in both server and desktop
systems. The performance of multi-threaded applications could
be improved on multi-core based systems because the
workload of threads could be dispatched to cores, which work
in parallel [5].

One of the good examples of applications that benefit from
multithreading in a multi-core processor is image processing.
Image processing “refers to the manipulation and analysis of
pictorial information” [6]. The main idea of parallel image
processing is to divide the problem into simple tasks and solve
them concurrently, in such a way the total time can be divided
between the total tasks (in the best case) [7]. The general idea
behind image processing involves examining image pixels and
manipulating them. Image processing can be a time consuming
task based on the matrix structure of the image leading this
process towards a multithreading algorithm.

Many authors have addressed the multithreading topic in
java on multi-core systems. The java as a suitable
programming language for parallel software and the power of
multi-core processing is studied by Peter Bertels and Dirk
Stroobandtin [8]. In [9], authors studied and implemented
parallel multi-threaded implementations of two popular
clustering algorithms: k-means and mean-shift. The
experimental results show that good parallel implementations
of those algorithms are able to achieve nearly linear speedups
on multicore processors. In [10] Mahmood has implemented
the imaging filter on multi-core processors for win32 platform.
He shows that for large images, the parallel implementation
approaches Amdahl’s ideal curve. In [4] authors observed that
multithreading leads to tune the application performance
considerably. The performance and scalability issues of
multithreaded Java applications on multicore systems are
studied in [11]. This interesting topic has solicited many
scientific works so far.

In our work we studied how the algorithm performance
changed when multithreading approach is applied on different
single core and multi-core platforms. We also studied how
complexity of the algorithm and the image size of the images
influence the performance.

In order to exploit how multithreading can improve the
performance of the algorithm, we have done some experiments
with several image processing algorithms such as brightness,
contrast and steganography executed on either single-core CPU
or multi-core CPU using single-thread and multithreading

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

166 | P a g e
www.ijacsa.thesai.org

approaches in Java. The algorithms that we have taken in
consideration differ from each other from the level of
complexity. As the image size increases, the number of
calculations increases too. For this reason we have
experimented with different sizes of images. The difference in
the algorithms and image size would influence on a further
change of the level of complexity.

We measured the algorithms processing time on different
platforms and image sizes that we took in consideration.

In this paper, we have provided insight into Java
multithreading approach performance on single and multi-core
CPU platforms and hardware suggesting the combination
complexity and image size that gives the best performance.

Section I gives a brief introduction and related work. The
rest of the paper is organized as follows. Section II presents an
overview of multithreading programming and the algorithms
implemented with this approach. Section III outlines the
experimental setup including test programs and specifications
of the experimental platforms. Section IV presents the results
and section V gives a brief analysis of the results. The paper is
concluded in Section VI and VII by presenting the conclusions
and further work.

II. MULTITHREADING PROGRAMMING

First, in creating a multithreaded algorithm, there are three
basic considerations. The first step is to identify the
parallelism. This may mean simply decomposing the problem
domain of a conventional algorithm into several sections. The
second step is to control the access to shared data items. The
third step is to optimize the algorithm [4].

The application running in the operating system is either
single-threaded or multi-threaded. Single threaded applications
require one thread to run on the CPU. Whereas a multithreaded
program contains two or more parts that can run concurrently.

We have implemented three image processing algorithms
using Java. Java has become a leading programming language
soon after its release and it is an emerging option for High
Performance Computing [12]. Java supports multithreading and
we can construct single-thread as well as multi-thread
application with it. A multi-threaded program in java has many
entry and exit points, which are run concurrently with the
main() method. The three constructed algorithms have been
implemented using single thread approach and multithreading
approach. In the multithreading approach the shared memory in
which the threads operate is the matrix of the image pixels. We
have used the Java packages to grab the pixel matrix of the
image that has to be processed. Then different threads
manipulate different parts of the matrix depending on the
algorithm. The work task and the part of the matrix that each
thread has to manipulate are determined by the main thread.
The time that is necessary to manipulate all the matrix either by
a single thread or by all the threads is registered.

III. EXPERIMENTAL SETUP

A. Testing programs

Initially, three image processing algorithms have been
chosen to test the multithreading approach on different single-

core and multiple-core platforms. The first and the second
algorithms change brightness and contrast of the chosen image
and display the changing image. Brightness and contrast are
very important features of an image. Brightness refers to the
overall lightness or darkness, whereas contrast is the difference
in brightness between objects or regions. For the algorithm of
the brightness we have used the formula :

Arithmetic mean model = (r + g + b) / 3 (1)

After finding the mean from the formula 1 we use a value
input from the user to change the brightness of the image
following these steps:

 Subtract the overall mean from every color value of
every image pixel.

 Add the mean value multiplied by the brightness value
to every color value.

In the Figure 1 a view from the brightness application is
presented.

Fig. 1. A screenshot from the brightness application

The contrast algorithm will multiply every color value by a
scale factor determined by the user. It has a little less
calculation than the brightness algorithm.

The third algorithm is from the field of steganography.
Steganography is the art of hiding the fact that communication
is taking place by hiding information in other information [13].
In our implementation of steganography algorithm we hide a
message in an image in such a way that the modification of the
image is imperceptible. Since people perceive red and green
color brighter than the blue color, the image would be darker in
the red and green pixels and brighter in the blue pixels. In order
to hide the original message in the image we have constructed
an algorithm that change only the last bit of the blue color of
the image pixels using the message and a private key as well
[14]. The complexity of this algorithm is greater than the other
two. A view from the application that implement the third
algorithm designed with multithreading approach is given in
the Fig. 2.

Fig. 2. A screenshot from the steganography algorithm application

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

167 | P a g e
www.ijacsa.thesai.org

B. Experimental platforms

Since the first multicore processor was released over a
decade ago, today’s processors implement up to a dozen cores
and this number is expected to increase because of Moore’s
law [15]. Multi-core CPU-s support advanced capabilities, such
as multithreading and parallel processing. The advantage of a
multi-core processor is increased speed. They are widely used
across many application domains including embedded,
network, graphics etc. The experiments were conducted on the
Windows Operating Systems (Windows XP and Windows 7),
single-core and multiple-core CPU-s platforms.

In Table 1 is given a brief description of the four used
experimental platforms.

TABLE I. THE DESCRIPTION OF EXPERIMENTAL PLATFORMS

We used the first and second platform to test the algorithms
according to the single thread and multithreading approach in
single core, and we used the third and fourth platform to test
the algorithms in the multi-core CPU.

C. Input Data

Not only the platforms but also the size of the input images
influence on the execution time of the algorithms. We perform
the experiments using three image sizes: 371*281, 500*500
and 1024*768. We refer to the dimension of the images in the
experiments as S(Small), M(Medium) and L(Large). The
results of these experiments are presented in the next section.

IV. EXPERIMENTAL RESULTS

Every algorithm was repeated 10 times and the average of
all the results was recorded.

From the implementation of the tests of the single thread
approach algorithms on the single-core and multiple-core
platforms we recorded the results shown in Table 2:

TABLE II. SINGLE-THREAD APPROACH RESULTS

Platform

Image Size

Algorithms performance(ms)

Contrast Brightness Steganography

1(S) 30 40 190

1(M) 50 40 351

1(L) 110 100 872

2(S) 29 29 62

2(M) 29 29 172

2(L) 47 62 296

3(S) 15 20 50

3(M) 16 21 70

3(L) 16 31 172

4(S) 10 14 32

4(M) 11 16 47

4(L) 18 26 109

We redesigned the same algorithms with multithreading
approach. Then we varied the number of threads from 1 to 10
and then the multiples of 5 thus 15, 20, 25, 30 …100.

The results from the experiments showed that on the
platform with single core (platform 1 and platform2) the
processing time of the algorithms decreases in a considerably
rates when multithreading approach is applied. However when
the number of threads increases over 10 threads the processing
time does not decrease, but remains almost constant with a
tendency to increase more than in the case when the single
thread approach is applied. Generally when the number of
threads increased from 1 to 10 the average processing time has
the tendency to remain constant and when the number of
threads increases more than 10 the processing time increases
and it becomes bigger than the executing time in single thread
approach.

Table 3 shows the result for the first platform. The result
refers to the average executing processing time for the 10 first
threads for the small, medium and large images.

TABLE III. AVERAGE RESULTS OF THE FIRST 10 THREADS FOR THE

FIRST PLATFORM

Image

Size

Algorithms

Contrast Brightness Steganography

Small 18 20 151.3

Medium 41 27.1 295.5

Large 109 69 824.3

The tables 4,5,6 display the average executing processing
time for the 10 first threads in case of small, medium and large
images for the second, third and fourth platform.

TABLE IV. AVERAGE RESULTS OF THE FIRST 10 THREADS FOR THE

SECOND PLATFORM

Image

Size

Algorithms

Contrast Brightness Steganography

Small 15 15 48.4

Medium 20.6 15.5 100

Large 46.5 29.9 271.8

TABLE V. AVERAGE RESULTS OF THE FIRST 10 THREADS FOR THE

THIRD PLATFORM

Image

Size

Algorithms

Contrast Brightness Steganography

Small 10 11 31.3

Medium 18.8 15.4 59.6

Large 51.3 46.9 162.3

TABLE VI. AVERAGE RESULTS OF THE FIRST 10 THREADS FOR THE

FOURTH PLATFORM

Image

Size

Algorithms

Contrast Brightness Steganography

Small 13.5 12.3 19.7

Medium 17.8 15.7 43.7

Large 31.2 23.2 101

V. PERFORMANCE ANALYSIS

As we expected when single thread approach of the
algorithms is applied, the processing time decrements if we
increase the speed and the number of the cores from one
platform to the other (table 2). When multithreading is applied,

Platform Processor
Operating

System

Number

of Cores

Platform1
AMD Athlon™,

1.11GHz
Windows XP 1

Platform2 Intel Pentium 4, 3.2 Ghz Windows XP 1

Platform3
Intel Core

TM
2 Duo

Processors, 2.2 GHz
Windows 7 2

Platform4
Intel Core™ i5-4570R

Processor, 2.7 GHZ
Windows 7 4

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

168 | P a g e
www.ijacsa.thesai.org

the CPU without cores improves the processing time with a
greater rate than when the number and cores of the processor
increase in the case when the size of the image is small or
medium and the complexity of algorithm is not big.

In the first and second platform where the number of cores
is 1, the increase rate of processing time is more than 48.27 %
when the size is small and the algorithms are brightness and
contrast. In the other cases this rate varies from 15.9 to 44.82.
The results do not fall in this interval when the size of the
image is large and the algorithm is contrast (first platform 0.9
and the second 2) and when the algorithm is steganography
(first platform 5.5 and the second 8.1).

The third and the fourth platform give different results. The
result of performance increase rates can be even negative
which means that the processing time of the single thread
approaches are better than multithreading approach. The result
for the third and fourth platform is displayed in the tables 7 and
8.

TABLE VII. PERFORMANCE INCREASE RATE FOR THE THIRD PLATFORM

Image

Size

Performance increase rates(%)

Contrast Brightness Steganography

Small 33,3 45 44,7

Medium -18,7 28,5 14,3

Large -218,7 -51,6 5,8

TABLE VIII. PERFORMANCE INCREASE RATE FOR THE FOURTH PLATFORM

Image

Size

Performance increase rates(%)

Contrast Brightness Steganography

Small -40 14,2 37,5

Medium -63,6 0 6,3

Large -72,2 11,5 7,3

The third platform gives the best result when the size of the
image is small for all the algorithms as shown in the table 7.
When the size of the image is large it gives the worst result.
When the complexity of the algorithm is bigger the processing
time tends to be less.

In the fourth platform the image size seems to have no
influence as much as in third platform in the processing time.
But the complexity of the algorithm influence the processing
time by reducing it.

From both platforms with multi core CPU the combination
small image size and complex algorithm gives the best results,
improving the processing time when multithreading occurs.

VI. CONCLUSIONS

Java language is very suitable to develop image processing
applications due to its features and the free packages that it
offers for this purpose. New open source java image processing
packages is often added [16].

It is very important to understand how to improve the
performance of this kind of applications using managed
languages like Java. Through some experiments with the image
processing algorithms the impact that multithreading approach
has on performance is analyzed in single-core and multi-core
platforms.

The results showed that the multithreading approach
improves the performance processing time of algorithms either
in single-core or multi-core CPU platforms but this
improvement is different.

In single core the best results is given by the combination of
small image size and less complex algorithm whereas in multi-
core CPU the combination of small image size and more
complex algorithm improves the performance. Multithreading
programming can improve the performance on multi-core CPU
when complex image processing algorithms is applied.

VII. FUTURE WORK

Others studies are needed to be done to understand the
causes of these behaviors. Future work includes developing a
C# environment with image processing algorithms in order to
compare it with Java applications in different platforms. The
influence that parallel implementation of these multithreading
approach algorithms will be another interesting task for the
future. We assume that we can improve the processing time as
it was shown for Wu-Lee Steganography Algorithm [17].

REFERENCES

[1] J. F. CORSINI, L. G. FREITAS, and F. D. ROSSI, “Comparando

Processos entre Unix e Windows". Revista INFOCAMP. March, 2006.

[2] SCHEFFER, R. “Uma visao Geralsobre Threads". Revista Campo
Digit@l. Volume 2.N_umero 1.Paginas: 7-12, 2007.

[3] B. BARNEY, “POSIX Threads Programing". Lawrence Livermore
National Laboratory. 2011.

<https://computing.llnl.gov/tutorials/pthreads>.

[4] M.Shanthi, A.Anthony Irudhayaraj. Multithreading, “An Efficient
Technique for Enhancing Application Performance”, International

Journal of Recent Trends in Engineering, Vol 2, No. 4, November 2009,
pp. 165-167.

[5] Kuo-Yi Chen, Fuh-Gwo Chen, “The Smart Energy Management of

Multithreaded Java Applications on Multi-Core Processors”,
International Journal of Networked and Distributed Computing, Vol. 1,

No. 1, January 2013, pp.53-60.

[6] Gregory A. Baxes, Digital Image Processing: Principles and
Applications. John Wiley and Sons, Inc, New York, NY, 1994.

[7] S. Saxena, N. Sharma, Sh. Sharma, “Image Processing Tasks using

Parallel Computing in Multi core Architecture and its Applications in
Medical Imaging”, International Journal of Advanced Research in

Computer and Communication Engineering Vol. 2, Issue 4, April 2013

[8] Peter Bertels, Dirk Stroobandt, “Java and the Power of Multi-Core
Processing”. The Second International Conference on Complex,

Intelligent and Software Intensive Systems, CISIS 2008, pp. 627 – 631

[9] Honggang Wang, Jide Zhao, Hongguang Li, Jianguo Wang. “Parallel

Clustering Algorithms for Image Processing on MultiCore CPUs”.
International Conference on Computer Science and Software

Engineering, 2008.

[10] Faran Mahmood, “Parallel Implementation of Imaging Filters on Multi-
Core Processors for Win32 Platform”. Proceedings of the 4th

International Conference on Open-Source Systems and Technologies,
ICOSST, 2011.

[11] Kuo-Yi Chen,, J. Morris Chang, Ting-Wei Hou. :Multithreading in Java:

Performance and Scalability on Multicore Systems:, IEEE Transactions
on Computers 2011 (vol. 60 no. 11), pp. 1521-1534

[12] G.L. Taboada, J. Touriño, R. Doallo, “Java for high performance

computing: assessment of current research and practice:, in: Proc. 7th
Intl. Conference on the Principles and Practice of Programming in Java,

PPPJ’09, Calgary, Alberta, Canada, 2009, pp. 30–39.

[13] Obaida Mohammad Awad Al-Hazaimeh, “Hiding Data in Images Using
New Random Technique”, IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 4, No 2, July 2012, pp 49-53.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=J.%20Morris%20Chang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Ting-Wei%20Hou

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

169 | P a g e
www.ijacsa.thesai.org

[14] S. Greca, A. Kika, O. Qirici, ”A new steganography method for hiding

the message in the image”, Buletin of the Natural Sciences Faculty, No.
14, 2012, pp. 211-220.

[15] G. E. Moore. “Readings in computer architecture. Chapter Cramming
more components onto integrated circuits”, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2000, pp 56–59..

[16] Tobias Pietzsch, Stephan Preibisch, Pavel Tomanc and Stephan Saalfeld,

“ImgLib2 generic image processing in Java”, BioInformatics, Vol. 28
no. 22 2012, pp. 3009–3011.

[17] S. Greca, E.Martiri, “Wu-Lee Steganographic Algorithm on Binary
Images Processed in Parallel”, International Journal of Video & Image

Processing and Network Security IJVIPNS-IJENS Vol: 12 No: 03,2012,
pp 1-4.

