
A Bayesian framework for glaucoma progression

detection using Heidelberg Retina Tomograph

images

Akram Belghith, Christopher Bowd, Madhusudhanan Balasubramanian, Robert N. Weinreb, Linda M. Zangwill

Hamilton Glaucoma Center

University of California San Diego,

La Jolla, California

abelghith@ucsd.edu, cbowd@ucsd.edu, bmadhu@ieee.org, rweinreb@ucsd.edu, lzangwill@ucsd.edu

Abstract—Glaucoma, the second leading cause of blindness
in the United States, is an ocular disease characterized by
structural changes of the optic nerve head (ONH) and changes
in visual function. Therefore, early detection is of high impor-
tance to preserve remaining visual function. In this context,
the Heidelberg Retina Tomograph (HRT), a confocal scanning
laser tomograph, is widely used as a research tool as well as
a clinical diagnostic tool for imaging the optic nerve head to
detect glaucoma and monitor its progression.
In this paper, a glaucoma progression detection technique is
proposed using the HRT images. Contrary to the existing
methods that do not integrate the spatial pixel dependency in
the change detection map, we propose the use of the Markov
Random Field (MRF) to handle a such dependency. In order
to estimate the model parameters, a Monte Carlo Markov
Chain procedure is used. We then compared the diagnostic
performance of the proposed framework to existing methods
of glaucoma progression detection.

Keywords—Glaucoma, Markov random field, change detec-
tion, Bayesian estimation.

I. INTRUDUCTION

Glaucoma refers to a set of eye conditions of great
clinical and etiological heterogeneity. It is characterized by
the degeneration of optic nerve fibers and often accompanied
by an elevated intraocular pressure (IOP). The loss of nerve
fibers leads a decrease in the thickness of the retinal nerve
fiber layer (RNFL), affects the appearance of the ONH and
causes an irreversible damage to the retina. In the course
of the disease, the neuroretinal rim gets thinner whereas the
optic cup gets bigger [1].

Since the introduction of the ophthalmoscope by
Helmholtz in 1851, ophthalmologists have been able to
assess the ONH structure associated with glaucoma. Nev-
ertheless, the qualitative clinical assessment of the ONH
leads to a considerable inter-observer diagnostic variability
[2]. Therefore, development of quantitative measurements
for glaucoma detection is important to make the qualitative
clinical assessment more objective and reproducible.

For these reasons, sophisticated ocular imaging instru-
ments are providing quantitative parameters of the ONH

in glaucoma such as the Scanning Laser Polarimetry and
the Optical Coherence Tomography. In particular, the Hei-
delberg Retina Tomograph (HRT; Heidelberg Engineering,
Heidelberg, Germany), a confocal scanning laser tomogra-
phy, has been commonly used for glaucoma diagnosis since
its commercialization 20 years ago [3].

A limited number of studies have been published inves-
tigating glaucoma progression detection using HRT images
by detecting changes between baseline reference images and
follow-up images. In [4], authors assessed the glaucomatous
changes using the Topographic Change Analysis (TCA).
However, this method requires up to three additional confir-
matory follow-up exams to detect changes (progression) [5].
To overcome this requirement, [6] used the Proper Orthogo-
nal Decomposition (POD) for glaucoma detection. However,
although this method is successfully applied to HRT images,
it does not exploit additional available knowledge, such as
spatial dependency among neighboring pixels ( i.e, the status
of a pixel will depend on the status of its neighborhood).
The POD method indirectly utilizes the spatial relationship
among pixels by controlling the familywise type I error
rate. In [7], a retinal surface reflectance model and a
homomorphic filter were used to detect progression from
changes in the retinal reflectance over time. Similar to POD,
dependency among spatial locations were only indirectly
used by controlling familywise type I error rate.

In this paper, we propose a new strategy for glaucoma
progression detection. We particularly show that glaucoma
detection can be improved if spatial dependency of status of
pixels are directly modeled and integrated within the change
detection method. In addition, since for each follow-up
exam, three follow-up scans are generated by the machine,
each follow-up scan is considered as a separate ’information
source’. The data-fusion (i.e. combining information from
three scans per exam) and dependency in the status of pixels
in a neighborhood are jointly modeled and addressed using
the Markov Random Field (MRF) [8]. Indeed, many studies
have tackled the change detection problem by modeling
the change detection map as a MRF [9], [10]. The widely
used procedure to estimate the different problem parame-
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ters is the Expectation-Maximization EM algorithm [11].
However, since we used the MRF model with the change
detection map as a priori for the change detection map,
the optimization step is intractable and therefore, we used a
Monte Carlo Markov Chain MCMC technique [12] at each
EM iteration [13]. The principle of MCMC technique is to
generate samples by drawing from the posterior densities
[12].

The paper is divided into two sections. In section II,
we present our new glaucoma progression detection scheme.
In Section III, we present the results of our new algorithm
using HRT follow-up exams of participants in the UCSD
Diagnostic Innovations in Glaucoma Study. Then, we com-
pare the diagnostic accuracy, robustness and the efficiency
of our novel approach to three existing progression detection
approaches, topographic change analysis (TCA) [4], proper
orthogonal decomposition (POD) [6] and the reflectance
based method [7].

II. GLAUCOMA PROGRESSION DETECTION SCHEME

A. Illumination correction

The HRT images can be affected by inhomogeneous
background (illuminance) and effect may be differing among
follow-up exams due to curvature of the retina and differ-
ences in the angle of imaging the eye between exams [7].
Although, this problem is not due to glaucoma, it would
have an influence on the subsequent statistical analysis
and quantitative estimates of glaucoma progression. To this
end, a reflectance-based normalization step is performed.
Assuming that the optic nerve head is Lambertian, each
HRT image I can be simplified and formulated as a product
I = L x F where F is the reflectance and L is the
illuminance. Because illumination varies slowly over the
field of view, the illuminance L is assumed to be contained
in the low frequency component of the image. Therefore, the
reflectance F can be approximated by the high frequency
component of the image. The reflectance component F
describes the surface reflectivity of the retina whereas the
illumination component L models the light sources. The
reflectance image can then be used as an input to the change
detection algorithm [7], [14], [15].

Several methods have been proposed to solve the prob-
lem of reflectance and illumuiance estimation including
the homomorphic filtering [16], the scale retinex algorithm
[17]–[19] and the isotropic diffusion approach [20]. The
reflectance based method of detecting progression uses a
homomorphic filter to estimate retinal reflectance [7]. In
our new glaucoma progression detection scheme presented
in this study, we used the scale retinex approach. The
retinex approach has been successfully utilized in many ap-
plications, including medical radiography [21], underwater
photography [22] and weather images enhancement [23].

B. Change detection

Let us consider the detection of changes in a pair
of amplitude images. Change-detection can be formulated

as a binary hypothesis testing problem by denoting the
”change” and ”no-change” hypotheses as H1 and H0 ,
respectively. We denote by I0 and I1 two images acquired
over the same scene at times t0 and t1, respectively (t0
> t1), and coregistered. A difference image R with N
pixels was estimated as pixelwise difference between im-
ages I0 (a baseline image) and I1 (a follow-up image):
R = abs(I0 − I1). HRT acquires three scans during
each exam. Therefore, we obtain three image differences
R(l, i) = {r(l, i)|l = 1, 2, 3, i = 1, 2, ..., N}. The change
detection is handled through the introduction of change class
assignments Q = {q(i)|i = 1, 2, ..., N}. Accordingly, the
posterior probability distribution of change (i.e. q(i)) at each
pixel location is expressed as:

p(qi = Hj |R,Θ) =
1

Z
exp (−U(Hj |R,Θ)) (1)

where Z is the normalization constant, Θ consists of the
model hyperparameters and U(Hj |R,Θ), j ∈ {1, 2}, is the
energy function of the MRF model. The energy function
is expressed as a linear combination of elementary energies
that model both the spatial dependency of pixel classification
in each follow-up exam and the information convoyed by
all follow up scans (multisource fusion). Note that we have
opted for the 8-connexity neighboring system in our MRF
model of pixel classification. The proposed energy function
is defined by:

U(Hj |R,Θ) =
3

∑

l=1

γl [log (pj,l(r(i, l)|q(i) = Hj , αj,l))]

+ β
∑

i∼k

δ(qi, qk) (2)

where pj,l (r(i, l)|q(i) = Hj) is the probability density
function of the ith amplitude difference r(i) belonging
to the source l (or HRT scan), where l = 1, 2, 3 and
conditioned to Hj ; αj,l is the set of the pdf hyperparam-
eters; δ the delta Kroneker function; k = 1...N ; and γl
and β are positive parameters. Note that the first part of
the energy function models the a priori we have on the
image differences R(l) conditioned to change and no-change
hypotheses which allows us to use the whole information
available in every scan (information fusion). The second part
models the spatial dependency by the use of the second-
order isotropic Potts model with parameter β. Hence, the
definition of the energy function favors the generation of
homogeneous areas reducing the impact of the speckle noise,
which could affect the classification results of the HRT
images [24]s. The hyperparameters β, γ1, γ2, γ3 handle the
importance of the energy terms. On one hand, β allows us
to tune the importance of the spatial dependency constraint.
In particular, high values of β correspond to a high spatial
constraint. On the other hand, γl models the reliability of
each HRT follow-up image and it is usually assumed to take
on values in ]0, 1]. This constraint can easily be satisfied by
choosing the appropriate a priori distribution for γl. Note
that when γl = 0, all the energy contribution related to the
difference-images is removed and hence should be avoided.

Several parametric models can be used to model the dis-
tribution of r(i, l) conditioned to Hj . In this work, we opted
for the normal distribution. The pdf pj,l (r(i, l)|q(i) = Hj)
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is then given by:

pj,l (r(i, l)|q(i) = Hj , αj,l) =
1√

2πσj,l

× exp

(

− (r(i, l)− µj,l)
2

2σj,l

)

(3)

where µj,l and σj,l stand for the mean and the standard
deviation respectively.

The whole set of the model hyperparameters is then
given by Θ = {σj,l, µj,l, γl, β}. In the absence of infor-
mation prior knowledge, the following priors were used to
generate model hyperparameters:

p(σ2

j,l) =
1

σj,l

(4)

p(µj,l) =
1√
2πϕ

exp

(

−
µ2
j,l

2ϕ2

)

(5)

The non-negativity of the the hyperparameters {γl, β} is
guaranteed through the use of the exponential densities:

p(γl) =
1

κ
exp

(

−γl

κ

)

(6)

p(β) =
1

η
exp

(

−β

η

)

(7)

Note that the values of {η, ϕ, κ} are fixed empirically but
do not really influence the results.

To estimate the model parameters and hyperparameters,
we propose the use of a Monte Carlo Markov Chain
(MCMC) procedure. Specifically, the principle of MCMC
method is to generate samples drawn from the posterior
densities and then to achieve parameter estimation. We use
a Gibbs sampler based on a stationary ergodic Markov chain
allowing us to draw samples whose distribution asymptoti-
cally follows the a posteriori densities.

C. Inference scheme

The Gibbs sampler facilitates efficient sampling from
a n-dimensional joint distribution when knowledge about
its conditional distributions is available. The aim of the
approach is to generate a sample of values from the poste-
rior distribution of the unknown parameters. The inference
scheme consists of running the Gibbs sampler for many
iterations and at each iteration an estimate for each unknown
parameter is produced. At each iteration, the parameter
estimate from the last iteration is used to produce new
estimate by assuming that the current values for the other
parameters are the true values. The main Gibbs sampler steps
are described in algorithm 1.

Algorithm 1 Sampling Algorithm

1- Initialization of Θ[0]

2- For each iteration h repeat:
i) Sample β[h] from p(β)

ii) Sample γ
[h]
l from p(γ)

iii) Sample σ
[h]
j,l and µ

[h]
j,l from p(σj,l) and p(µj,l)

iv) Sample γ
[h]
l from p(γ)

v) Create a configuration of Q basing on R
vi) Calculate p[h](qi = Hj |R,Θ[h])
vii) Repeat i) to vi until Convergence criterion is

satisfied

For convergence, we used a burn-in period of hmin =
500 iterations followed by another 1000 iterations for
convergence (hmax=1500). The change detection map
Q is then estimated using the maximum a posteriori

MAP estimator: Q̂ = argmax
Hj

p̄Hj
, where p̄H0

=

1
hmax−hmin

∑hmax

h=hmin+1 p
[h](qi = H0|R,Θ[h])) and p̄H1

=

1− p̄H0
and p[h](qi = Hj |R,Θ)) is the estimated pdf at the

iteration h.

III. EXPERIMENTS

This section aims at validating the proposed framework.
Datasets used for validation are presented in the next sub-
section. In sub-section III-B, the intensity normalization
algorithm reliability is presented. Change detection results
on semi-simulated datasets are presented in sub-sections
III-C. Finally, the glaucoma progression detection results
using datasets are presented in sub-section III-D.

A. Datasets

The proposed framework was experimentally validated
with clinical datasets. The three study groups in the clinical
datasets have been described previously [6] . In brief, all
eligible participants were recruited from the University of
California, San Diego Diagnostic Innovations in Glaucoma
Study (DIGS) with at least 4 good quality HRT-II exams,
at least 5 good quality visual field exams and at least
2 good quality stereo-photographs of the optic disk were
included in the study (267 eyes of 202 participants). Two
hundred and forty six eyes from 167 glaucoma patients were
included as progressing or non-progressing. Thirty six eyes
from 33 participants progressed by stereo-photographs and
/ or showed likely visual field (Progressors) and the rest of
the 210 eyes from 148 participants were considered non-
progressing (Non-progressors). An additional 21 eyes from
20 participants were normal eyes with no history of IOP>22
mmHg, normal appearing optic disk by stereo-photography
and visual field exams within normal limits (median age
of 62.7 years and median HRT-II follow-up of 0.5 years).
The UCSD Institutional Review Boards approved the study
methodologies and all methods adhered to the Declaration
of Helsinki guidelines for research in human subjects and
the Health Insurance Portability and Accountability Act
(HIPAA).
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HRT exams from each study eye were of size 360 x 360
pixels. For each eye, several exams were performed over
time. For each exam, the baseline image and the follow-up
image are co-registered using built in instrument software
and saved together.

Since no change detection map is available for the
clinical dataset, we generated two semi-simulated datasets
to assess the proposed change detection method. The first
semi-simulated dataset (dataset1) was constructed from four
normal HRT images. Changes were simulated by permuting
5%, 7%, 10% and 12% of image regions in the four
images respectively (Figure 1). The second simulated dataset
(dataset2) was constructed from another set of four nor-
mal HRT images. Changes were simulated by modifying
the intensities of each 15 x 15 pixel-sized regions in the
four images randomly with 0.5%, 0.75%, 1% and 1.25%
probability of occurrence respectively. The intensities were
modified by multiplying randomly the real intensities by 0.5,
0.75, 1.5 or 2 with a 0.25% probability (Figure 2).

B. Intensity normalization algorithm assessment

To assess the proposed illumination correction normal-
ization algorithm and particularly the use of the retinex
method for the reflectance estimation, five different methods
were used to normalize the image intensities: the proposed
method [18] (filter size=20 pixels), the homomorphic filter-
ing method [16] (standard deviation=2 and filter size=20
pixels), the isotropic diffusion method [20] (smoothness
constraint=7 pixels), the Discrete Cosine Transform (DCT)
method [25] (number of components is 40) and the wavelet-
based method (with Daubechies wavelet and three level
decomposition) [21]. Fig. 3 presents the intensity normal-
ization of a baseline and follow-up images using the five
methods.

All the above methods were evaluated using the simu-
lated datasets, dataset1 and dataset2. For evaluation, we use
False Alarm PFA, Missed Detection PMD and Total Error
PTE measurements computed in percentage and defined
as: PFA = FA

NF
× 100%, PMD = MD

NM
× 100% and

PTE = MD+FA
NM+NF

× 100, where FA stands for the number
of unchanged pixels that were incorrectly determined as
changed, NF is the total number of unchanged pixels, MD
the number of changed pixels that were incorrectly detected
as unchanged, NM is the total number of changed pixels.
Table. I presents false detections, missed detections and
total errors for the simulated datasets. As one can see, the
retinex reflectance algorithm performs better than the other
normalization methods.

C. Change detection results

In order to emphasize the benefit of the proposed change
detection algorithm and particularly the use of the Markov
model to handle pixel spatial dependency, we compared the
proposed method to the following two kernel-based methods
and a Bayesian threshold-based method:

False detection Missed detection Total Errors

Retenix 0.96 % 5.99 % 1.32 %

DCT 1.09 % 6.08 % 1.57 %

Isotropic diffusion 8.21 % 6.39 % 2.11 %

Homomorphic filtering 8.66 % 6.32 % 2.84 %

Wavelet 2.05 % 9.15 % 3.09 %

TABLE I. FALSE DETECTION, MISSED DETECTION AND TOTAL

ERRORS FOR: THE PROPOSED INITIALIZATION METHOD, THE

HOMOMORPHIC FILTERING, THE ISOTROPIC DIFFUSION METHOD, THE

DCT METHOD AND THE WAVELET METHOD.

False detection Missed detection Total Errors

Proposed method 0.95 % 5.74 % 1.22 %

SVM 1.89 % 8.41 % 2.41 %

SVDD 1.99 % 8.94 % 2.58 %

Threshold 2.85 % 10.85 % 4.11 %

TABLE II. FALSE DETECTION, MISSED DETECTION AND TOTAL

ERRORS RESULTING FROM: THE PROPOSED CHANGE DETECTION

METHOD, THE SVM METHOD, THE SVDD METHOD AND THE

THRESHOLD METHOD.

• The Support Vector Data Description SVDD [26]
with the Radial Basis Function RBF kernel,

• The Support Vector Machine [27] with the RBF
Gaussian kernel,

• A Bayesian threshold-based method [28],

Note that we used the retinex-based intensity normalization
for all methods. First, we applied these methods on the
semi-simulated datasets. The proposed method tends to
perform better than the above methods. This means that
the proposed Markov a priori we considered improves the
change detection results by utilizing the information about
spatial dependency of pixels in our detection scheme.

D. Glaucoma progression detection

We are now faced with the problem of framework
validation on clinical datasets. We estimated the sensitivity
and the specificity of detecting glaucoma progression as:

sensitivity = TP
TP+FN

; specificity = TN
TN+FP

where TP stands for the number of true positive
identifications, FN the number of false negative
identifications and FP the number of false positive
identifications.

In order to emphasize the benefit of the proposed glau-
coma progression detection scheme, we have compared the
proposed framework with three other published methods:
the Topographic Change Analysis (TCA) method [5], the
Proper Orthogonal Decomposition POD method [6] and the
reflectance based method [7] (Table III). Note that an eye is
considered as progressor when, in one exam, the number of
changed pixels with an increase of intensity (loss of retinal
height) is greater that 5% of the number of pixels within
the optic disc [6]. The proposed framework had approx-
imately twice the specificity in the non-progressing eyes
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(a) (b) (c)

Fig. 1. Semi-simulated image by the permutation of image regions: (a) the original image (b) the simulated image (PSNR=28 dB) and (c) the ground
truth.

(a) (b) (c)

Fig. 2. Semi-simulated image by the modification of image intensities: (a) the original image (b) the simulated image (PSNR=28 dB) and (c) the ground
truth.

Progressor
sensitivity

Normal
specificity

Non-progressor
specificity

Proposed method 87 % 91 % 72 %

POD 78 % 86 % 43 %

TCA 86 % 62 % 21 %

reflectance based

method
64 % 100 % 74 %

TABLE III. DIAGNOSTIC ACCURACY OF DIFFERENT METHODS.

(72%) than the POD method (43%). Moreover, it has higher
sensitivity in progressor eyes (87%) while maintaining good
specificity in normal eyes (91%). Further, in comparison to
the reflectance based method, our proposed method provided
similar specificity in normal and non-progressing eyes and
higher sensitivity in progressing eyes. Increased sensitivity
in our proposed scheme is likely because of the fact that
we explicitly modeled the spatial dependency of clasifica-
tion among pixels where as dependency is only implicitly
accounted by the reflectance based method using familywise
type I error rate.

IV. CONCLUSION

In this paper, a Bayesian framework for glaucoma pro-
gression detection has been proposed. The task of inferring
the glaucomatous changes is tackled with a Monte Carlo
Markov Chain algorithm that is used for the first time
to our knowledge in the glaucoma diagnosis framework.
Modeling and accounting of both spatial dependency of
pixels increased the robustness of the proposed change de-
tection scheme compared to the kernel-based method and the
threshold method. The validation of the proposed approach
using clinical datasets has shown its ability to provide high
specificity in non-progressor stable glaucoma eyes and high
sensitivity in progressor eyes while maintaining a good
specificity in normal eyes.
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