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Abstract—This paper presentsa framework, called the knowl-
edge co-creation framework (KCF), for heterogeneousmulti-
agentrobot systemsthat usea transfer learning method. A multi-
agent robot system(MARS) that utilizes reinforcement learning
and a transfer learning method hasrecently beenstudied in real-
world situations. In MARS, autonomousagentsobtain behavior
autonomously through multi-agent reinforcement learning and
the transfer learning method enablesthe reuse of the knowledge
of other robots’ behavior, such as for cooperative behavior.
Those methods, however, have not been fully and systematically
discussed.To addressthis, KCF leveragesthe transfer learning
method and cloud-computing resources. In prior research, we
developedontology-basednter-task mapping asa core technology
for hierarchical transfer learning (HTL) method and investigated
its effectivenessin a dynamic multi-agent environment. The
HTL method hierarchically abstracts obtained knowledge by
ontological methods. Here, we evaluate the effectivenessof HTL
with a basic experimental setup that considers two types of
ontology: action and state.

Keywords—Transfer learning; Multi-agent reinforcementlearn-
ing; Multi-agent robot systems

I. INTRODUCTION

Actual multi-agentrobot systems(MARSSs) haverecently
beendeployedin real-world situations.Among other applica
tions, a multi-robotinspectionsystemdor disaster-strickear
easautonomousnulti-robotsecuritysystemsandautonomous
multi-robot conveyancesystemdor warehousebavebeende
veloped[1]-[3]. However,the realworld, wheresuchMARSs
are expectedto operate,is a dynamic environmentthat com
plicatesthe developmentof the systemsbecausedevelopers
must customizethe robotsto this dynamicenvironment.The
applicationof multi-agentreinforcementearning(MARL) to
MARSs is one of the approachegakenin responseto this
problem.MARL is a mechanisnfor implementinga posteriori
cooperationamongagents,which can behaveadaptivelyin a
dynamic environmentevenwhen they are not provided with
specific control policies. The benefitsof MARL have been
demonstratedn various studiesover the pastdecade[4]-[6].

Akiya Kamimuraand Kohji Tomita
Intelligent SystemsResearcHnstitute

National Institute of Advancedindustrial Scienceand Technology

(AIST)
Ibaraki, Japan

TsuyoshiSuzuki

Departmenibf Information and communicationEngineering

Tokyo Denki University
Tokyo, Japan

Theapplicationof MARL to actualrobotshasbeenstudiedby
Mataric[7]. A methodfor acceleratinghelearningprocesshas
also beeninvestigatedbecausereinforcementiearningin dy-
namicenvironmentgequiresa long time to obtainan optimal
(or nearlyoptimal) solution[6]. However,this methodis diffi-
cult to apply to MARS with MARL in dynamicenvironments
becausehe learning speedis impractically low. Moreover, a
MARS typically containsat leastone pre-programmedobot,
and MARL hasthe following drawbacks.

e Thelearningprocessequiresa long time.
e The obtainedknowledgedepend=on the situation.

e Thereis a limit to a robot’'s capacityto store the
knowledge.

In contrast,cloud roboticshasrecentlybeenproposed8],
[9] asa meango increasethe availability of standaloneobots
by utilizing cloud computingresourcesCloud robotics may
increasethe utility of MARSs becauséhe robotsgain access
to broaderknowledge,vast computing resourcesand exter
nal functions. This should be helpful for achievingpractical
implementationof MARSs with MARL.

In this context,we proposea knowledgeco-creationframe
work (KCF) by integratingMARS, MARL, andcloudrobotics
[10], [11]. To implement this framework, an autonomous
mobilerobotin aMARS internallyexecutesyclical processes,
andwe implementcloud servicesfor gatheringand assimilat
ing knowledge(Fig. 1) asfollows.

e Knowledge data are generatedby using computer
simulationand other MARL systems.

e A robot savesknowledgeto its own repositoryvia a
network connectedo cloud computingresources.

e Therobot observeghe environmentaktate.

e Therobotselectgarticularknowledgefrom therepos
itory on the basisof the observedenvironment.
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Fig. 1: Simplified representatiorof a KCF. All systems(in-
cluding the otherrobots,MARS and simulator)are connected
to cloud-computingresources.

e If the observedenvironmentis unknown, the robot
acquiresthe learnedknowledgeof otherrobots(reuse
of knowledge)[12].

e As a result of this action, the robot obtains new
knowledgeabout unknown environmentsand shares
new knowledgewith otherrobotsand systems.

Note that an autonomousagentacts on the basisof existing
knowledgeif the observedenvironmentis known.

We developedthe hierarchical transfer learning (HTL)
method as the core technologyof KCF. The HTL method
enablesinter-task mapping (ITM) by using ontology among
heterogeneousgents. This allows autonomousrobots and
virtual agentsto reuseknowledgefrom other typesof robots
and agents.Here, we describeexperimentsthat confirm the
HTL enablesreuseof knowledgeby using action and state
ontologiesto mediateamongheterogeneouMARSS.

The rest of the paperis organizedas follows. Section?2
describeshetheoryandassumptionsf reinforcementearning
andtransferlearning.Section3 is an overviewof the proposed
HTL. Section4 provides details about the preconditionsof
simulation experiments.Section 5 details evaluationof the
effectivenessof HTL through simulation and containsa dis-
cussionof the results,which suggesthatautonomousgearning
agentscan reuseknowledgefrom other heterogeneouagents
by usingHTL. Section6 containsconcludingremarks.

II. REINFORCEMENTLEARNING AND TRANSFEROF
KNOWLEDGE

A. Reinforcementearning

Reinforcementlearning is one type of machinelearning
method, in which agentscan use a trial-and-error method
to createa policy for accomplishingtasks. Many kinds of
reinforcementearning mechanismsave beenproposedover
the past few decades.In this study, we adopt Q-learning,
definedbelow, asthe reinforcementearningmechanism:
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Q(s,a) « Q(s,a) + a{r + V() — Qs,a)} (1)
V(s) = max Q(s, ) @)

Here, S is a statespace,with s,s’ € S; a an element
of an action spaceA; a(0 < a < 1) is the learning rate;
~v(0 < v < 1) is the discountrate; and r is the reward. The
learningagentsselecteachdefineda with a probability given
by the Boltzmanndistribution accordingto

Q(;a))

exp (
Q(&b)) ) (3
T

2 bea EXP (

plals) =

Here, T is a parameterthat determinesthe randomness
of selection. The Q-learning model can select actions in
descendingorder accordingto the action value from learned
knowledge Whenthe valuesof availableactionsarethe same
or are equal to default value, the Boltzmanndistribution is
usedto selectthe actionat random.

B. TransferLearningin Reinforcementearning

Transferlearning, as proposedby Taylor, is a framework
for reuseof a policy obtainedthroughreinforcementearning
[12]. The policies and solutions obtainedthrough reinforce
mentlearningare hereregardedas knowledge.In the transfer
learningmethod,an agentfirst learnsthe policy asan action—
state pair during the sourcetask. Next, an agentperforming
the targettask can reusethe knowledgeobtainedduring the
sourcetaskvia ITM. ITM definesthe relationof the spacesS
and A betweenthe targetand sourcetasks.If the targettask
agenthas statespacesS;q4.: and action spaceA;q,get, then
ITM for simple taskswill map .S and A betweenthe target
and sourcetasks.This is formulatedas follows:

Stm'get — Ssource
Atarget — Asource (4)

xs(s):
xa(a):

Here,s anda arethe elementof the statespaceandaction
space,respectively;xs(s) and xa(a) are the corresponding
functions of ITM. The agentcompletingthe targettask can
have different characteristic§rom the agentthat learnedthe
sourcetask. Hence,the agentperforming the targettask can
adaptits behaviorfor a new environmentor targettask. This
methodis fundamentalin a single-agenenvironment.

C. TransferLearningin a Multi-agent Domain

In recentyears,transferlearninghasbeeninvestigatedhot
only for single—agensystemsbut also for MARSS. For ex-
ample,Boutsioukiset al. proposeda transferlearningmethod
with multi-agentreinforcementlearning, which enablesthe
use of ITM among agents[13]. Taylor et al. proposeda
parallel transferlearning method, which runs the target and
source tasks simultaneously[14]. Their method speedsup
learningin multi—-agentiransferlearning.However,manysuch
methods do not take into accountthe operation of large
numbersof single—agensystemsand MARSs, which means
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that an inter—taskmap must be either createdor modified
with every entry of a new agentsystem.The quality of ITM
is the most important factor in agentperformanceon target
tasks. Therefore,we believe that ITM for a systemshould
be designedby humans(such as researcher&nd engineers)
on the basisof experienceand intuition. However,as already
mentionedmanuallydesigningan ITM systemis problematic
when large numbersof single-agensystemsand MARSs are
involved in the transferlearningsystem.

Ill. HIERARCHICAL TRANSFERLEARNING
A. Heterogeneityof Robotsand Agents

For actual environments,it is assumedthat the hetere
geneityof robotsimplies that they may havedifferent sensors
(e.g.,cameraandlaserrangefinder) andactuatorarrangements
(e.g. crawler platform, omni-directionalmobile platform, and
humanoid platform). Moreover, different versions of robot
types and differencesin manufacturingare also aspectsof
heterogeneityln contrast,characteristicof virtual agentsare
similar to otheragentsin the virtual environmentsuchas for
simpletaskagentsFor the purposeof evaluationin this paper,
we assumea simulatedenvironment.Hence,heterogeneityis
characterizedby the number of elementsof S and A. We
supposethat the heterogeneityof S arisesfrom differences
in tasks,andthe heterogeneityf A arisesfrom differencesin
the motion characteristicof agents.

B. Ontology-basedTMs

Our KCF with HTL enablesintegrationof ITMs among
agents[10]. In a previous paper,we proposedHTL, which
uses the concept of ontologies as a method for creating
ITMs. We call this techniqueontology-basedTM (OITM).
Ontology is introducedhere as an “explicit specificationof
a conceptualizationfor the purposeof learning [15]. Our
OITM leveragesthe function of ontology by which we can
describemany different relationsin terms of ontology, and
specifically we can describeintegrative ITMs amongagents
(Fig. 2). Moreover, if we first define the ITM of a system
in termsof ontology, then agentscanuseITM to searchthe
knowledgeof many other agents.We assumethat a concrete
action of an agentis called an instanceof ontology and an
abstractaction of ontology is called a class or upper class
We additionallyspecifythatanyontologypresentatioin cloud
resourcesanbe accessedby all agents.

An exampleof OITM is shownin Fig. 3. First, the agent
developemmapsconcreteactionsof an agentto the ontology.
Another agentdeveloperalso mapsactionsto this ontology.
When the agent reusesthe knowledge of other agents, it
searchedor a mapping that matchesits actionswith other
agent actions. Second,the agent transfersknowledge from
other agentsto itself using the knowledge and mapping of
ontology for ITM. Note that when the agenttransfersthe
knowledgefrom otheragents,OITM requirestwo ontologies,
suchas an action ontology and a stateontology. Hence,the
agentindividually searchesorrespondin@ctionsandstatesof
otheragents.

Fig.3 showsa casewherethree heterogeneouagentsare
presentin an environment.The action spacesof thesethree
agentsare as follows:
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Fig. 2: Difference betweenITM and OITM. (a) Simplified
image of ITM with four agentsand others. (b) Simplified
imageof OITM, which integratedTM amongagents.

Aa = {aaly (a2, 0a3, a(x4}
Ap = {ap1,ap2,ap3} (5)
A, = {a'yla A2, A3, Ayd, a’yS}

We connectecdeachinstance(concreteaction) to the class
Cst = {c§,.¢85,¢55,¢5,}. The class spaceCy' is also
mappedto an upper class C5' = {c3,,c5,,¢55}, and
C{t = {c§,}. Thesemappingdescribesfunctionslike ITM,
definedbelow, asmappingshetweerinstancesindclassesand
betweenclassesand upperclasses.

xg(s): S—=Cf

XQ@): A—=cp (6)
Xg(cs) : Cf — Cﬁg 1
Xq(e™) s Cit = City (7

Here, we definedtwo typesof OITM, namely,x§(-) and
x4 (-). Thefunction y¢ (-) representan OITM aboutthe state
spaceamonginstances classesand upper classesxq(+) is
an OITM aboutan action space.In the implementation the
agentshavemechanismgo searchthe OITM.

C. Methodfor Transferof Knowledge

As mentionedabove, the agent can reuse knowledge of
other agentsthrough HTL. In this study, we adopted Q-
learningasthereinforcementearningmodel.In the Q-learning
mechanismstransferredknowledgeis reusedas follows.

Q(s,a) = (1= 7)Q"(s,a) + TQ°(x5(s),xa(a))  (8)

Here, Q'(s,a) is knowledge about the target task and
Q*(s,a) is knowledgeabouta sourcetask, known via HTL.
The transferrecknowledgealso usesOITM andthe functions
x4 () and xQ(-) meansOITM. The term Q’(s,a) is the
combined knowledge of the target and source tasks, and
7(0 < 7 < 1) is aparametefor adjustingthe action’svaluefor
thedifferencebetweerthe targetandsourcetask.A targettask
agentselectsanactionfrom Q7 (s, a) accordingio a Boltzmann
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Fig. 3: OITM for agentactions.The agent'sdevelopermapsconcreteactionsof an agentto abstractactionsin upperclasses,
which may be mappedinto still higherclassesAll actionsof all agentsare mappedto an ontologyin this manner.
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Fig. 4: Simplified schematicof an internal reinforcement
learning model in a targettask with Eq. (8). A learnercan
receivestateandrewardsfrom the environmentThe sourceof
transferrecknowledgecannotreceivethe reward.The actionis
selectedby using combinedknowledgeaccordingto Eqg. (8).

distribution (Equation(3)). However, updatingof knowledge
occursonly for Q(s,a) by Q-learning(Fig.4). In an actual
environment,when an actual agent,such as a robot, reuses
transferrecknowledge the knowledgeof sourcetasksconsists
of a datafile generatedby the sourcetask agent, and the
target task agentmust receivethe transferredknowledge(in

the form of thesefiles) aboutthe sourcetaskvia the network
infrastructure.Hence, to reuse knowledge,HTL requiresa

communicationinfrastructure,as well as a list of available
repositoriesof knowledgeand public ontology servers.

IV. TASK DESCRIPTION

We carriedout simulationexperimentgo confirmthe effec
tivenessof HTL in four dynamicenvironmentsWe designed
environmentdor MARL and heterogeneousxperiments\We
provide the following experimentalconditions of computer
simulation.

A. Pursuit Game

Previous studies have adoptedtasks such as zero-sum
games, foraging tasks, and cooperative carrying tasks for
evaluatingMARL. Here,we adopta pursuitgameto evaluate
MARL performanceThe pursuitgameis a benchmarkestof
agentperformancemeasuredastime until capture.We setan
N x N grid asthe simulationworld. An arbitrary numberof
hunteragentsand prey agentsare deployedin this world, and
we evaluatethe numberof steps(i.e., time) until the hunters
captureall of the prey. In our pursuitgame,we setlocations
for preyin the grid world. The final stateof this gameoccurs
when all prey has been capturedby hunters,which occurs
when all huntersare adjacentto the prey at the end of turn.
The locationsof all agentsare resetto their initial positions
after capture.A single episodeis definedas numberof steps
to reacha stateof capture.Agentsactin a predefinedorder,
suchashunterl — hunter2 — prey, and one set of actions
is regardedas a single step.A cell cannotbe simultaneously
occupiedby multiple agentsandagentscannotcrossthe world
boundaries Moreover, hunterscan learn cooperativecapture
actions,but prey cannotlearn.

B. Differencein Tasks

The heterogeneityof the statespacedependson the Task
and Sensor characteristicin actuallearning. In this exper
iment, we defined heterogeneityof the state spaceas the
differencein Tasks

We define the grid world of a pursuit game according
to a study by Tan [4] and Arai et al. [5]. In this particular
implementationhuntersand a prey agentcanmovein a 7 x
7 grid world. The initial position of eachagentis shownin
Fig.5. The differencebetweentasksis the numberof hunters.
We call thetaskin Fig. 5 (a) “2 vs. 1” andthatin 5 (b) “3 vs.
1". Notethatin the 2 vs. 1 task,the observablesnvironmental
stateof a hunteris the set containingthe coordinatesof the
otherhunterandof the prey.In the 3 vs. 1 task,the observable
environmentalstateis the set containing the coordinatesof
the othertwo huntersand of the prey. Therefore the concrete
differencebetweentasksis the observablenumbers of the set
of S. In eachtask,the observableenvironmentaktateasa set
S is definedasfollows.
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Fig. 5: Differencein tasks.(a) Two huntersvs. one prey in
7 % 7 grid world, with initial positionsof eachagent.(b) Three
huntersvs. onepreyin 7 x 7 grid world with initial positions
of agentsin the four corners.

Sovs1 ={ ax-coordinate of self,

y-coordinate of self,

x-coordinate of the second hunter,
y-coordinate of the second hunter (9)
x-coordinate of prey,

y-coordinate of prey}

S3ps.1 ={ x-coordinate of self,
y-coordinate of self,
x-coordinate of a second hunter,
y-coordinate of a second hunter,
x-coordinate of a third hunter, (20)
y-coordinate of a third hunter,
x-coordinate of prey,

y-coordinate of prey}

C. Heterogeneityof Agents

As mentioned above, the game involves two types of
agents: multiple hunter agentsand one prey agent. Only
huntersare provided with learning mechanismsthe actions
of the prey are provided by a fixed strategy,as discussedn
detail below.

Agentscanselectonly oneactionperstep.Preycanchoose
an actionfrom five actionsin an actionspaceA,,..,,, whichis
definedasfollows.

Aprey = { front, back, right, left, stop} (11)

Heterogeneityof huntersmeansthat differencesare per
mitted betweenthe strategiesand action spacesof different
huntersIn addition,eachagentis providedwith a sensorsuch
as sight. We definethe allowed actionsof eachhunterin the
following way.

Apunter1 = {front,back,right,left, stop} (12)
Apuntera = {upper right, lower right,

lower left, upper left, stop} (13)
Apunters = {long front,long right,lower right,

lower left,long left, stop}(14)
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Fig. 6: Actions and sight rangeof eachagent.Arrows denote
movabledirectionanddistancen grid world. Gray areasshow
the sight rangeof eachagent,andif otheragentsarein sight
range,agentcan observethe coordinatesof otheragents.

Here,characteristic®f Ay, uniert, Anunter2, Anunters and
Aprey are shownin Fig.6 subfigures(a), (b), (c), and (d),
respectively.Each agenthas its own sight range (shown as
shadectells),andthe shapeof this rangediffers amongagents.
The sightrangeof the prey is the sameasthatshownin Fig. 6
(c). Initially, huntersand prey choosetheir actionsrandomly.
Huntersadjustthe probabilitieswith which actionsareselected
asthelearningprogressesAlthoughthe prey doesnot learn, it
selectsan escapeactionwhenit recognizes hunter.The prey
movesaway from the hunterwhenit detectsonly one hunter,
or in any of the possibleescapedlirections(uniformly chosen)
whenit detectsmultiple huntersin its vicinity.

D. ExperimentalConditions

To confirm the effectivenessof HTL, we set the expert
mentalconditionsaslisted in Tablel. In this experimentwe
adoptedthe 2 vs. 1 task and the 3 vs. 1 task of the pursuit
game.In the sourcetask and self-transferexperimenthunters
1 and2 andthe prey aredeployedin a7 x 7 grid world. In the
3 vs.1task, two hunter1s and one hunter2, or one eachof
huntersl, 2, and3 aredeployedwith the preyin thegrid world.
Moreover,ontop of the aboveexperimentatonditionswe test
the self-transfeicondition.Self-transfelis usedasconfirmation
of transferredknowledgeproperly generatedby the agentof
the sourcetask,andwe transferthe generatedknowledgefrom
the sourcetaskto the sourcetask agent.

The Q-learningparametersare setto a = 0.1, v = 0.99,
and r = 1. The Boltzmann parameter? is 0.01. These
parametersare common to the self-transfercondition. The
default Q-valueis 0 in all experimentsand 7 is 0.5. In each
experiment, 10000 episodesare conductedor the sourceand
targettasks.

In this experiment,we designedtwo ontologies: action
ontology in Fig.7 and stateontology in Fig.8. For example,
whenthe hunter3 reuseshe knowledgeof hunterl1 by using
actionontologyandstateontology,theinformationof observed
statesis put in the stateontology. The hunter3 cantranslate
its own observedstatesto an observablestate of hunter 1,
and translatedstatesare input to the knowledge that was
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TABLE |. Experimentalconditionsof transferin four experimentsThe targettask agentusestransferredknowledgefrom a

sourcetask agentof the sametype.

Experiment Conditions Sourcetask Targettask
Task 2vs.1 2vs.1
Hunters Agent1 and Agent 2 Agent 1 andAgent 2
Self-transfer
Direction of Agent 1 — Agent1
transfer Agent 2 — Agent 2
Task 2vs. 1 2vs. 1
Hunters Agent1 and Agent 2 Agent2 andAgent 3
Different action space
Direction of Agent1 — Agent 2
transfer Agent 2 — Agent3
Task 2vs. 1 3vs. 1
Hunters Agent 1 and Agent 2 Two agentl andone Agent 2
Different statespace
Direction of Agent1 — Agent 1
transfer Agent 2 — Agent 2
Task 2vs. 1 3vs. 1
Hunters Agent1 and Agent 2 Agent1, Agent2, and Agent 3
Heterogeneous
Direction of Agent2 — Agent 1
transfer Agent 1 — Agent 2
Agent 1 — Agent3

transferredrom hunterl.Then, knowledgeoutputsthe action
valuesof hunterl, andhunter3 translatest to its own actions
by utilizing action ontology. Finally, hunter 3 calculatesthe
combinedknowledge(Eq. (8)), andit selectsa valuableaction
by usingthe Boltzmanndistribution(Eq. (3)). Whenthe hunter
3 reuseghe knowledgeof hunterl by using stateontology, if
thehunter3 detectsanothetunter(hunterl) in the grid world,
then the hunter3 can behavein cooperativeactionsbetween
hunter 1 and hunter 2 in the sourcetask. Here, we assume
that the two ontologiesand the necessarngearchfunction are
preprogrammedh all hunters.

V. EXPERIMENTAL RESULTSAND DISCUSSION

In this section,we describethe experimentalresultsand
discussJumpstart(JS), which is the difference betweenthe
value resulting from an agentwith transferand one without
transfer.This is formulatedas follows:

100

1 ot 100 .
8= - ;s =y s

i=1

(15)

Here, s¥* is the number of stepsof the learning curve
without transfer; s! is the numberof stepsof the learning
curve with transfer.Moreover,to aid intuitive understanding,
we definethe ratio of JS (RJS),asfollows.

100 100

RIS= s / > st
1=1 =1

If we obtainedthe resultfor JS that the numberof steps
until convergencdor the learningcurvewith transferexceeds

(16)

the analogousvalue without transfer, then transfer is not
effective sincethe final performanceof learningis worsethan
withouttransferHence Differencein convergencstepsDCS)
is defined as follows, and we also define the ratio of DCS

(RDCS).
1 10000 10000
= wt _ t
DCS= oo (Z s ‘Z sl> (17)
1=9901 1=9901
10000 10000
RDCS= Y s / > st (18)
1=9901 1=9901

DCS is the averagestepsin the final 100 episodesin
the learning curve with transfer and without transfer. DCS
and RDCS expresghe differencein convergencgerformance
betweenagentswith knowledgetransferand without transfer.

A. Resultsfor Self-transfer

In this experimentthe result of learningwithout transfer
showsimproved performancegFig. 9(a)). This learningcurve
does not convergeto a single solution, in contrastto the
performanceof general reinforcementlearning in a static
environment;this differenceoccursbecausethe agentsin all
of our experimentdearnin a dynamicenvironment.

The valuesof JS are shownin Table Il along with the
valuesof otherparametersuchasRJS,DCS,andRDCS.The
JSvalue of self-transferexperimentds 297.16steps,andthe
improvementrate with a JS is 80%. The learning curve of
self-transferexhibits an obvious JS relative to the “without
transfer”condition.Moreover,the numberof stepsof the final
100 episodesn the learningcurve with transferis lower than
the numberof stepsof the final 100 episodesn the learning
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Fig. 7: Action ontology. We mapthe instanceof actionsto a similar upperclass.In this actionontology, for example,“Move to
right (1 cell)” of hunter1l and“Move to right (2 cells)” of hunter3 are similar actionsin the action ontology. If the ontology
designerhasnot specifiedsimilar actions,actionsof agentsare connectedo upperclasses.
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Fig. 8: Stateontology, with coordinatesof cooperativeagents.Instancesof “Self-location” and “coordinatesof prey” of each
hunterare connectedo the sameclass.Whenthe hunter3 reuseshe knowledgeof hunterl, information about“coordinatesof
hunter1” areput in the stateontology as “coordinatesof hunter2” accordingto the knowledgeof hunter1.

TABLE II: Comparisonof JS, RJS,DCS andRDCSin each B Resultswith Different Action Spaces

experiment. The resultsfor the learningcurvesare shownin Fig.9(b).
In this experimentthe resultsexhibit an obviousJS.Thevalue
of JSis 108.35stepswhich meanghatthe performanceof the
Self-transfer 207.16 020 4284  0.64 targettask agentimproved58% from agentswithout transfer.
This result indicatesthe effectivenessof reusing knowledge
utilizing HTL. For the learning curve in the “with transfer”
conditionin Fig. 9(b), the curve decreasesnore slowly than
_ the curvefor theinitial episodesThis phenomenomshowsthat
Differentstatespace  4433.01  0.06 109525 0.19 theagentiearnecthe newenvironmentsa targettaskby using
the transferredknowledge.

Experiment JS RJS DCS RDCS

Different actionspace  108.35  0.42 -3.64 1.06

Heterogeneous 3059.12 0.28 602.67 051 . . . .,
The valueof DCS for learningcurvein the “with transfer

conditionis greaterthanthatin the “without transfer” condi
tion. This resultindicatesthat the final stateof learningwith
transferis 1% worse than the caseof without transfer. This
DCS valueis consideredsmall enoughfor effectiveness.

curve without transfer.in the learning curve without transfer.
This resultindicatesthe effectivenessof reusingknowledge,
and this emergenceeffect is consideredthe basic effect of

transferlearning. In this experiment,the agentalso use the C. Resultswith Different StateSpaces

HTL, andsothis resultindicatesreappearancef the effect of The resultsfor learningcurvesare shownin Fig. 9(c). In
transferlearning. this experiment,the result also exhibits a large value for JS,
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Fig. 9: Comparisonof learning curvesbetween*without transfer”and “with transfer”. (a) Resultof self-transfercondition. In
this experimentaktondition, obtainedknowledgeis commonknowledgeof all experimentaktonditions.(b) Resultof experiment
with different actionsspaces(c) Resultof experimentwith different statespaces(d) Resultof experimentwith heterogeneous

statespaces.

4433.01steps,which is an improvementrate from the JS of
94%relativeto the casewithout transferAdditionally, the DCS
value is also excellent,with improvementof 81%. Together,
thesephenomenaneanthat the performanceof the agentin
the“with transfer’conditionis greatethanperformancef the
agentin the “without transfer” condition at the final stateof
learning.Themainreasorfor thisis the adjustmenbdf learning
parameterssuchasa, v, and7'. In reinforcementearningin
a dynamic environment,the agent's behavioris sensitiveto
tuning of the learning parametersSuch sensitivity is clearly
seenin this experimentatresult,wherethe performanceof the
agentin the “without transfer” condition doesnot reachthe

performanceof the agentin the “with transfer”condition.

D. Resultswith Heterogeneou€onditions

Forthe experimentith heterogeneousonditions,anobvi-
ousJSvalueis presentasshownin Fig. 9(d). The DCSvalue
was high at 49%. Theseresultsindicate the effectiveneswof
HTL in a heterogeneouMARL situation.

Howeverthelearningcurvein the“with transfer’condition
is unstablein the above experimentalconditions. The main
causeof this is difficulty of tasks.In this experiment,the
taskis 3 vs. 1, and all agentsare heterogeneousMoreover,
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reusedknowledgeis transferredfrom heterogeneouagents.
This resultindicatesthat the agentscan reusethe knowledge,
althoughthe agentsrequirea relearningprocesdor the target
task.

VI. CONCLUSION

In this paper,we proposedKCF for implementationof
MARL, andpresentedHTL asatransferlearningmethodsuit-
able for large numbersof heterogeneoukearningagents.The
HTL methodis one of the functionsof KCF. We also carried
out simulationexperimentsunderfour transferconditionswith
the pursuit game used for the environmentand tasks. The
experimentalesultssuggesthat HTL cantransferknowledge
amongheterogeneouagentsand severaltasks.

For our future work, we plan to demonstratethe effec
tivenessof HTL by conductingexperimentsin actual multi-
robotlearningsystemsin the simulations,the actionsetsand
statesetswere discrete,and it seemshard to apply discrete
setsto real robot systemslnstead,HTL shouldbe appliedto
continuoussetsfor real situations.An evaluationsystemof
ontology and an autonomousestructuringmechanismshould
be developedas new functions. Thesefunctionsare important
becausehereis anincreasegrobability of choosinghewrong
design for ontology becausethe architectureof ontologies
(e.g., instancesand classesalong with the relations among
thosefactors) dependson the degreeof the ontology devel
oper’sexperienceFor applicationin real-worldsituations,our
proposedsystemneedsa systemfor autonomousontology
restructuringby agents.
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