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Abstract—Protein fold recognition plays an important role in 

computational protein analysis since it can determine protein 

function whose structure is unknown.  In this paper, a Classified 

Sequential Pattern mining technique for Protein Fold 

Recognition (CSPF) is proposed. CSPF technique consists of two 

main phases: the sequential mining pattern phase and the fold 

recognition phase.  In the sequential mining pattern phase, Mix 

& Test algorithm is developed based on Grammatical Inference, 

which is used as a training phase.   Mix & Test algorithm 

minimizes I/O costs by one database scan, discovers subsequence 

combinations directly from sequences in memory without 

searching the whole sequence file, has no database projection, 

handles gaps, and works with variant length sequences without 

having to align them. In addition, a parallelized version of Mix & 

Test algorithm is applied to speed up Mix & Test  algorithm 

performance.  In the fold recognition phase, unknown protein 

folds are predicted via a proposed testing function.  To test the 

performance, 36 SCOP protein folds are used, where the 

accuracy rate is 75.84% for training data and 59.7% for testing 

data. 

Keywords—Data mining; grammatical inference; sequential 

mining; protein fold recognition 

I. INTRODUCTION 

Protein fold recognition is an important step towards 
understanding protein three-dimensional structures and their 
biological functions. Fold recognition techniques do not 
require similar sequences in the protein databank, just similar 
folds. Successful approaches have been applied to protein fold 
recognition [1].  For example, various researchers used Neural 
networks to predict protein folds, such as GeneThreader [2], 
TUNE (Threading Using Neural nEtwork) [3],  neural 
networks with tailored early-stopping [4], Bayesian Networks 
[5],  structural- pattern based methods [6], and Genetic 
Algorithms [7,8].  Examples of using Support Vector Machines 
(SVM) have been illustrated as follows: directly predict the 
alignment accuracy of a sequence template alignment [9] and a 
combined technique of Support Vector Machine (SVM) 
classifier with Regularized Discriminant Analysis (RDA) [10]. 

Other research has been performed using Monte Carlo methods 
[11].   In addition, many researchers used parallel evolutionary 
algorithms for protein fold recognition, such as parallel EST, 
probabilistic roadmap for motion planning, pRNAPredict for 
RNA secondary structure [12-16]. However, although 
significant improvement has been made, the accuracy of the 
existing methods remains low and there is a need for new 
methods contributing to the field of fold recognition. 

Sequential mining algorithms have been proposed to 
predict protein folds.  The objective of sequential pattern 
mining is to discover interesting sequential patterns in a 
sequence database.  It is one of the essential data mining tasks 
widely used in many applications, including customer purchase 
pattern analysis and biological data sequences [17-22], etc. 
Many research have been performed to efficient sequential 
pattern mining, such as [23-25],  closed and maximal 
sequential pattern mining [26-29], constraint-based sequential 
pattern mining [30-32] approximate sequential pattern mining 
[33], sequential pattern mining in multiple data sources [34], 
sequential pattern mining in noisy data [35], incremental 
mining of sequential patterns [36],  and time-interval weighted 
sequential pattern mining [37]. Two of the general sequential 
mining algorithms are SPADE [24] and PrefixSpan [23], which 
are more efficient than others in terms of processing time. 
SPADE is one of the vertical-format based  algorithms and 
uses equivalence classes in the mining process. PrefixSpan is 
one of the pattern-growth approaches. It recursively projects a 
sequence database into a set of smaller projected sequence 
databases and grows sequential patterns in each projected 
database by exploring only the locally frequent fragments. 
cSPADE [38]   algorithm  is a straightforward extension of 
SPADE algorithm.  The only difference is the involvement of 
constraints in the cSPADE. These constraints include length, 
width, and duration limitations on the sequences, item 
constraints, event constraints, and incorporating class 
information.  In addition, one of the SPADE based algorithm 
called SPAM (Sequential PAttern Mining) [39] has been 
proposed. It integrates the ideas of GSP, SPADE, and 
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FreeSpan and combines a vertical bitmap representation of the 
database with efficient support counting. 

One of the promising areas is Formal Language Theory and 
Grammatical Inference (GI), which is playing important role in 
the development of new methods to process biological data 
[40].  Many works propose GI techniques to tackle 
bioinformatics tasks, such as secondary structure identification 
[41], protein motifs detection [42], and optimal consensus 
sequence discovery [43].  In this paper, GI is used as the 
backbone of the sequential pattern mining algorithm, which has 
achieved faster and higher performance accuracy than other 
sequential pattern mining algorithms for protein fold 
recognition. 

In this paper, we introduce a Classified Sequential Pattern 
mining technique for Protein Fold Recognition (CSPF).  CSPF 
consists of two main phases: 1) Sequential pattern mining and 
2) fold recognition.  It handles gap constraints, uses data 
parallelization, and performs incremental updating.  CSPF has 
shown efficient results when applied to 36 SCOP protein folds. 
This paper is organized as follows: section 2 explains the 
proposed CSPF technique. Section 3 describes datasets used 
and the performance study. Finally, section 4 gives the 
conclusions and future work. 

II. METHODS 

CSPF technique consists of two main phases: the sequential 
pattern mining phase and the fold recognition phase.  In the 
sequential pattern mining phase, Mix & Test algorithm is 
developed, which is used as a training phase. In the fold 
recognition phase, unknown protein folds are predicted via a 
proposed testing function.  Our work is close to the sequential 
pattern mining suggested in [13].  However, this work depends 
on a new algorithm for sequential pattern mining, based on 
grammatical inference.  In addition, it employs parallel 
sequential pattern mining and incremental updating. 

A. Phase I: Sequential Pattern Mining: 

During this phase, Mix & Test algorithm is developed in 
order to mine sequential patterns for each fold, based on 
Grammatical Inference.  The key advantages of Mix &Test 
algorithm are minimizing I/O costs via one database scan, 
discovering combinations directly from sequences in-memory 
without searching the whole sequences file, no database 
projection, handling gaps, and working with variant length 
sequences without having to align them.  In addition, Mix & 
Test algorithm supports incremental updating, where it does 
not prune infrequent patterns and count the support of them 
during the mining steps.    Mix & Test algorithm acts 
iteratively.   First, it generates a list of no gap sequential 
combinations, which will serve as the seed for the coming 
generation if there is a gap value specified. If no gap is 
specified, this list will be evaluated by the testing strategy with 
the specified minimum support threshold. Thus, this list will 
obtain the frequent and infrequent lists. If the gap value is 
specified, Mix &Test will loop to the combinations generation 
step and will use the combinations list obtained from the 
previous step to construct new combinations list with a gap by 
following steps of Mix &Test algorithm’s grammar. 

The steps of the algorithm are shown in Fig. 1. 

1) Mix Strategy: 

Problem Definition: Given a sequences file S that contains a 

set of sequences S= {s1, s2, ..., sm} and a set of items I = { i1, 

i2, …, in} that may appear in any sequence (here, a set of 

amino acids), where m is the number of sequences in a file 

and n is the number of amino acids.  A sequence sj= <i1, ...,in> 

, where i1 is the first item in the sequence and in is the last item 

in the sequence.  Let P is a subsequence that is derived from sj, 

Pt is the current generated subsequence. Pt-1 is the previous 

generated subsequence.  The first generated subsequence will 

be: 

P1(sj) = in-1 & in(1)

The generated subsequence will be:  

            Pt(sj)= in-t & Pt-1(sj)           (2) 

1. Read New Protein Sequences  

2. Apply Mix Strategy to generate sequential 

combination 
3. If New Combination then  

Add new combination to Arraylist with 

support =1  
               Else  

                   Increase it support by 1  

4. If End of sequences file then  
    If stopping criterion is reached 

            (No_of Max gaps) then  

    If Combinations’ support >=Minsup then 
          Output frequent Sequential patterns 

     Else  

        Output Infrequent Sequential patterns  
  Else  

       GOTO step 3 

Else  
    GOTO step 2 

 

Fig. 1. Mix & Test Algorithm Flowchart 

Sequential combinations Generation "No-Gap 
combinations" 

Mix strategy will first generate all "no gap combinations" 
list. It starts by reading the first sequence of protein sequences 
file and generates all possible sequential combinations of it. 
Mix strategy inserts the generated combination to the "no gap 
combinations" list with support equals to 1. Mix strategy will 
loop through new generated P to generate all possible 
combinations of it, using a removing procedure. This 
procedure removes the last item of the last generated 
combination to get a new combination from current P. It will 
stop generate Pt when t equals to number of items in the 
sequence n.   An example of generated sequential combinations 
of “No-gap combinations” is illustrated in Table I, given 
original sequence MAKNNGCDP. After generating all 
possible sequential combinations from the first sequence of the 
protein sequences file. It will start to read the second sequence 
and go through the previous steps and generate all new 
combinations. If the new generated combination is previously 
composed, its support will be incremented by one; otherwise, it 
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will be inserted to "no gap combinations" list with support 
equals to 1, as clarified in Fig. 1. 

Gapped Sequential combinations Generation 

If there is a gap value specified, the "no gap combinations" 
list will be used to generate "one gap combinations" list, which 
will be used to generate "two gaps combinations" list, and so 
on. Mix strategy will use two procedures to generate all 
possible gapped sequential combinations: Ladder and 
CrissCross procedures. 

First, the Ladder procedure reads each combination in "no 
gap combinations" list and loops through it by inserting one 
gap at a time starting from the second character position shifted 
right in each loop until reaching the last character of the 
combination. Then, it will start again to read the next no gap 
combination and apply the previous steps on it. 

TABLE I.  LIST OF GENERATED SEQUENTIAL COMBINATIONS “NO-GAP 

COMBINATIONS” 

SUBSEQUENCE LIST OF GENERATED COMBINATIONS 

P1 DP 

P2 CD, CDP 

P3 GC, GCD, GCDP 

P4 NG, NGC, NGCD, NGCDP 

P5 NN, NNG, NNGC, NNGCD, NNGCDP 

P6 KN, KNN, KNNG, KNNGC, KNNGCD, 

KNNGCDP 

P7 AK, AKN, AKNN, AKNNG, AKNNGC, 

AKNNGCD, AKNNGCDP 

P8 MA, MAK, MAKN, MAKNN, 

MAKNNG, MAKNNGC, MAKNNGCD, 
MAKNNGCDP 

Definition 1: Given C as a "no gap combinations" list. Ci is 
a no gap combination.  Let L be the gapped combination list 
generated by Ladder procedure, as follows: 

Ly(Ci(Sj)) = Ci – iy+1    (3)

Where Ly(Ci(Sj)) is the y combination generated by Ladder 
procedure from no gap combination Ci, and iy+1  is the item i 
with the position y+1 in Ci  combination. 

Consider the first combination in the "No gap 
combinations" list is MAKNNGCDP, applying this procedure, 
we will obtain these one gap combinations: M_KNNGCDP, 
MA_NNGCDP, MAK_NGCDP, MAKN_GCDP, 
MAKNN_CDP, MAKNNG_DP, and MAKNNGC_P. Note 
that MAK_NGCDP is equivalent to MAKN_GCDP, so that 
they are treated as one combination and inserted only once in 
"one gap combinations" list as MAKNGCDP. 

Second, the Crisscross procedure generates the rest of 
possible gapped sequential combinations of "one gap 
combinations" list. It reads each combination in "no gap 
combinations" list, looping through it and inserting one gap 
between each character of combination's characters. It starts 
from the second character's position shifted right one character 
position in each loop. 

Definition 2: Given C as a "no gap combinations" list. Ci is 
a no gap combination.   Let Q be the gapped combination list 
generated by Crisscross procedure, as follows: 

Qr(Ci(Sj)) = Ci – (ir+1 & ir+3 & ir+5  & ir+7 … in)   (4)

Where Qr(Ci(Sj)) is the r combination generated by 
Crisscross procedure from no gap combination Ci, and ir+1 is 
the item i with the position r+1 in Ci combination. The 
concatenation part of the function will stop when n equals to or 
greater than the number of items in Ci. 

By applying this procedure in the last example, 
MAKNNGCDP no-gap combination will produce: 
M_K_N_C_P, MA_N_G_D, MAK_N_C_P, MAKN_G_D, 
MAKNN_C_P, MAKNNG_D, and MAKNNGC_P. Notice 
that all these derivative combinations by the two procedures 
will take the same support of the parent no gap combination 
which they are derived from it. Mix strategy will stop 
generating new combinations when the number of sequences in 
protein sequences file. The final result from applying the Mix 
strategy will be a list of all combinations derived from all 
combinations lists. 

2) Test strategy: 
The Test strategy will filter final combinations list, which 

contains all no-gap and gapped combinations to distinguish 
frequent and infrequent patterns, according to user-specified 
support.  However, infrequent patterns will not be discarded 
because incremental updating will be performed later on. 

The most time consuming step in the Mix&Test algorithm 
is updating the combinations list, where a search is required in 
order to ensure if the generated combination is a new one to 
insert it or an old one to update its support. Thus, the 
combinations list may become very large.  Therefore, a 
lexicographic prefix tree of lists is suggested, where each list 
contains all combinations with the same prefix. For example, 
let P = {p1, p2, … , pn} be a set of lists (here n= 20 Amino 
Acids). Each pi represents a list of all combinations with a 
prefix i. For example, if i = M, the list Pm can contain 
combinations, such as MV, MVV, MTV, MNKLSV. After 
Mix strategy generates the new combination, the first character 
of this combination is checked to determine which list to be 
inserted in. So, instead of having one big list, we will have pn 
lists, this shrinks time T to find or insert combination to T/n. In 
order to increase the speed of computing and minimize the 
time required to generate the combinations in Mix strategy, 
especially with the large number of files and the rapid 
incoming rates, Parallel Mix strategy (PMix) is proposed. 
PMix uses horizontal data parallelization, where the data are 
split into chunks in the memory for the task.  These data 
chunks will be distributed on PMix threads. Each thread will 
apply Mix strategy to generate the combinations of candidate 
patterns of this data chunk. After all threads finish their work, a 
combination integrator module will integrate all combinations 
generated from the threads into one final combinations list. The 
final combinations list is used by combinations evaluator 
module, which applies test strategy to get frequent and 
infrequent patterns. 
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3) Incremental updating 
CSPF saves and records the sequential patterns of each 

fold, which are generated from the training phase. However, 
increasing the speed of processing, especially with large 
volumes of data and high data rates, is highly required.  
Existing incremental updating algorithms are highly based on 
the availability of main memory. As a result, the use of In-
Memory relational databases is proposed, where TimesTen 
Oracle database management system is applied. TimesTen is 
an In-Memory DBMS technology, which provides very fast 
data access time because all its data will reside in physical 
memory (RAM) during run time. TimesTen provides 
applications with short, consistent response times and very 
high throughput required by applications with database-
intensive workloads. 

Incremental updating handles two cases: inserting new data 
and deleting old data.  First, Insert module, as shown in Fig. 2, 
deals with new protein files to existing fold trial, the Mix 
strategy is applied to obtain the combination patterns of these 
files. These patterns are sent to database and added to the 
previously obtained frequent sequential patterns. Updated 
patterns can be classified into four cases: 1) Patterns that were 
frequent in the old database and become infrequent in the new 
database, 2) Patterns that were frequent in the old database and 
still frequent in the new database, 3) Patterns that were 
infrequent in the old database and become frequent in the new 
database, and 4) Patterns that were infrequent in the old 
database and still infrequent in the new database. Second, the 
Delete module deals with deleted sequences from the original 
database, which yields an inconsistent state with respect to the 
same specified minimum support threshold. The Delete 
procedure is similar to the Insert procedure. When deleting 
some protein sequences from existing fold trial, the obtained 
lists of frequent and infrequent patterns are affected. Delete 
module provides two ways for deletion either by deleting files 
directly by specifying their names or by a range of time to 
delete files in between. 

B. Phase II: Protein Fold Recognition 

The objective of the fold recognition phase is to classify 
unknown protein folds. In addition, an incremental updating 
module is used for maintaining the underlying database. 

1) Weight Function for Protein Fold Recognition 
The proposed weight function classifies the unknown 

protein by matching the extracted sequential patterns of each 
fold with the coming protein sequence. A weight for each fold 
with respect to the unknown protein is calculated. The higher 
the number of matched patterns is found, the higher the weight 
for the fold and the higher the probability of it to be selected as 
the recognized fold. However, there are very important aspects 
that have to be considered: 1) The length of the matched 
sequential patterns. The more matched frequent patterns with 
long length are reached, the higher the accuracy of the fold 
classification. 2)  Two folds having the same number of 
sequential patterns.  The proposed Weight Fold Function is: 

Wf= N/ S + ∑ (Ki * (Li / Mi ))  (5) 

Where N is Number of matched Patterns, M is the 
Maximum length of extracted patterns for the fold, L is Length 

of pattern, K represents Number of patterns with the same 
length, S is the number of extracted sequential patterns for a 
fold, and W is the weight of the fold. 

 

Fig. 2. Insert Module 

III. APPLICATION 

The CSPF technique is evaluated using different 
parameters, such as different support thresholds, number of 
sequences, memory consumption, and number of items per 
sequence.  CSFP is trained and tested by a specific set of 
selected folds from the Structural Classification of Proteins 
(SCOP) database

1
.  The ASTRAL SCOP 1.75B dataset 

updated on 25-4-2013 is selected, where no proteins with more 
than 40% identity between them are included. The ASTRAL 
SCOP 1.75B dataset release has 49,757 PDB entries and 
136,776 Domains.   For each fold in this set, a corresponding 
set of at least 30 protein members is obtained from Protein 
Data Bank (PDB) [44], which is a worldwide archive of 
structural data of biological macromolecules.  The protein 
sequences extracted from this release are used to validate the 
results of the proposed model. Two third of this dataset is used 
in the training phase to establish features set for each fold and 
one third is used in the test data to check validity of the 
proposed model.  The algorithms are developed using Java 
language with NetBeans IDE 7.2 as the Java execution 
environment. The algorithms are tested on an Intel Core™ i5 
2.50 GHz with 6 GB of main memory. The operating system 
used is Windows 7. 

The following performance evaluation tests are achieved: 
1) For no gap mix strategy: a) Comparison of Mix & Test, 
PMix, and SPAM in terms of varied number of sequences, b) 
Comparison of Mix& Test, PMix, SPAM, and PrefixSpan in 
case of varied support threshold, and c) Comparison of Mix& 
Test, PMix, SPAM, and PrefixSpan in case of changing 
number of items per sequence. 2) For gapped mix strategy:   
Comparison of Mix & Test, and  cSPADE algorithms 
according to the changes in maximum gap value. 3) 
Incremental Updating, 4) Memory consumption, and 5) Fold 
recognition phase: a comparison between the proposed method 
and SAM, which is widely used as a benchmark in fold 

1http://scop.berkeley.edu/ 

http://scop.berkeley.edu/
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recognition [39,45]. However, SAM requires higher 
computational effort during training, since it employs the 
Baum–Welch algorithm for training the model, which is an 
iterative procedure. 

A. Performance analysis of no gap mix strategy 

1) Number of sequences Test: 
In this study, we measure the performance of Mix & Test, 

PMix, and SPAM algorithms according to the change in 
number of sequences.  Fig. 3 shows the performance results 
derived from Mix &Test,  PMix, and SPAM having data 
ranges from 100, 000 to 900,000 sequences. Fig. 4 illustrates 
the performance results derived from Mix&Test,  PMix, and 
SPAM having data ranges from 1,000,000 to 5,000,000 
sequences. In both figures, Mix &Test and PMix outperform 
SPAM, where time taken by them is much smaller than time 
taken by SPAM. In addition, PMix outperforms both Mix & 
Test and SPAM algorithms because of parallelization step. 

Fig. 3. M&T, PMix vs. SPAM having data ranges from 100,000 to 900,000 

sequences 

2) Minimum Support Threshold test: 
Fig. 5 and Fig. 6 show the processing time of Mix&Test 

and PMix versus PrefixSpan and SPAM at different values of 
support threshold having the number of sequences equals 
25,000 and 50,000, respectively. For protein sequences data 
and with very low minimum support threshold, the 
performance of PrefixSpan and SPAM take hours to process. 
On the other hand, Mix&Test and PMix take seconds and are 
not affected with the change of minimum support threshold 
values. 

Fig. 4. M&T, PMix vs. SPAM having data ranges from 1,000,000 to 
5,000,000 sequences 

 
 

Fig. 5. Mix & Test, PMix, PrefixSpan, and SPAM Comparisons with varied 

support threshold  (25,000 Sequences)  

 
Fig. 6. Mix & Test, PMix, PrefixSpan, and SPAM Comparisons with varied 

support threshold (50,000 Sequences) 

3) Number of Items per Sequence 
Four tests are applied, having 180 and 300 items per 

sequence (ips) and variant support threshold, as shown in Fig. 
7(a,b), respectively . Each trial in each test of the experiment is 
represented by adding 5% to the support threshold value of the 
previous trial. Thus, the first trial with support threshold value 
equals to 5% and the last one with support threshold value 
equals to 50%. The execution time is measured in each trial. 
The result of these tests shows the relationship between the 
value of the support threshold and the processing time in 
seconds according of the four algorithms: Mix& Test, PMix, 
PrefixSpan, and SPAM.  As shown in Fig. 7(a,b), Mix & Test 
and PMix are much faster than PrefixSpan and SPAM.  

 

Fig. 7. (a). M&T and PMix vs. PrefixSpan and SPAM under different support 
threshold and 180 items per sequence 
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Fig. 7. (b).M&T and PMix vs. PrefixSpan and SPAM under different 

support threshold and 300 items per sequence 

B. Performance analysis of gapped mix strategy 

In this case, the performance of Mix&Test and PMix versus 
cSPADE algorithm is tested, according to the changes in 
maximum gap value, as illustrated in Fig. 8. This minimum 
support threshold equals to 35%. One can observe that the 
higher the gap value, the higher consumed time taken, having 
Mix&Test and PMix algorithms outperform cSPADE in small 
gap values.  In addition, PMix outperforms both Mix&Test and 
cSPADE. 

 

Fig. 8. Mix&Test and PMix vs. cSPADE under different Maximum Gap 

Values 

C. Performance analysis of Incremental Updating Process 

The Incremental updating module is implemented via two 
different database management systems. The first is MySQL 
DBMS with a conventional disk-resident database and the 
other is the Oracle TimesTen database, as explained 
previously.  The performance of Mix&Test(TimesTen) and 
Mix&Test(MySql) according to the change in number of 
sequences (in this case from 10,000 to 50,000 sequences) is 
tested.      In this case, a support threshold value equals to 20% 
with no gap value is applied, as illustrated in Fig. 11.  In 
addition, the performance result of Mix&Test(TT) outperforms 
Mix&Test(MySql). Mix&Test(TT) takes around 30 seconds to 
process 10,000 sequences file where M&T(MySql) takes 
around 200 seconds to process it. This is because Timesten 
database is more efficient than MySql DBMS, where it offers a 
small, fast multithreaded, and transactional database engine 
with in-memory and disk-based tables. 

Fig. 9. Mix&Test(TT) and Mix&Test(MySql) under different Sequences File 

volumes 

D. Performance Analysis of Memory Consumption 

To evaluate the memory consumption of Mix&Test and 
PMix are evaluated versus cSPADE under two aspects, which 
are the different gap values and the variant number of 
sequences.  Changing gap values, Mix& Test and PMix are 
tested versus cSPADE algorithm by using sequences file with 
30,000 sequences with minimum support threshold value 
equals to 30%, as illustrated in Fig. 10. PMix consumes 
memory greater than Mix&Test because it processes 
multithreads in the same time. Also, cSPADE consumes much 
memory more than both Mix& Test and Pmix. 

Fig. 10. The memory consumption of M&T and PMix vs. cSPADE under 
different gap values 

E. Performance Analysis of Fold recognition Phase: 

The fold recognition phase of CSPF technique is trained 
and tested by the dataset described previously [13].  In Table 
II, we compare the sensitivity of the CSPF to SPM sensitivity 
for fold recognition.  Sensitivity of each model represents the 
number of proteins, which are classified successfully from the 
whole proteins under evaluation.   

CSPF reported an overall accuracy of training data equals 
to 75.84%, with MaxGap=0 and MinSup=20%, while the 
overall accuracy of "SPM for FR" model is 59.7% with 
MaxGap=3 and MinSup=40%.  A set of 804 protein 
experiments (test data set) are used to measure the accuracy of 
the model with the test set. CSPF reported an overall accuracy 
of testing data equals to 34.32%, as shown in Table III. 
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TABLE II.  SENSITIVITY FOR ALL FOLDS AND OVERALL ACCURACY OF 

THE PROPOSED CSPF TECHNIQUE AND "SPM FOR FOLD RECOGNITION (FR)" 

Fold index CSPF Sensitivity 
SPM for FR 

Sensitivity 

 (Proteins) (%) (Proteins) (%) 

a1 20/21 95.2 15/21 71.4 

a3 20/20 100 17/20 85 

a4 38/103 36.89 30/103 29.1 

a24 28/28 100 28/28 100 

a39 27/31 87.09 26/31 83 

a60 21/25 84 19/25 76 

a118 30/32 93.75 28/32 87.5 

Class A (total) 184/260 70.76 163/260 62.7 

b1 81/132 61.36 68/132 51.5 

b2 20/20 100 19/20 95 

b18 21/21 100 20/21 95.2 

b29 22/24 91.6 21/24 87.5 

b34 22/44 50 10/44 22.7 

b40 26/61 42.6 25/61 41 

b47 25/25 100 24/25 96 

b55 18/24 75 16/24 66 

b82 22/28 78.5 20/28 71.4 

b121 27/27 100 26/27 96.3 

Class B (total) 284/406 69.95 249/406 61.3 

c1 82/143 57.34 16/143 11.2 

c2 88/91 96.70 85/91 93.4 

c3 20/22 90.9 22/22 100 

c23 49/58 84.4 30/58 51.7 

c26 31/35 88.57 29/35 82.9 

c37 79/91 86.8 32/91 35.2 

c47 34/39 87.1 22/39 56.4 

c55 31/31 100 30/31 96.8 

c56 18/20 90 20/20 100 

c66 36/40 90 27/40 67.5 

c67 30/31 96.77 31/31 100 

c69 32/34 94.1 29/34 85.3 

c94 22/23 95.6 19/23 82.6 

Class C (total) 552/658 83.8 392/658 59.6 

d15 39/44 88.6 21/44 47.7 

d17 18/20 90 14/20 70 

d58 38/102 37.25 22/102 21.6 

d144 21/23 91.3 22/23 95.7 

Class D (total) 116/189 90.4 79/189 41.8 

f23 20/25 80 16/25 64 

Class F (total) 20/25 80 16/25 64 

g3 62/68 91.1 60/68 88.2 

Class G (total) 62/68 91.1 60/68 88.2 

Overall 1218/1606 75.84 959/1606 59.7 

Using the same test datasets and in order to compare the 
efficiency of the proposed model, SAM model [16] is also 
employed. A comparison of the results obtained by CPSF, 
"SPM for FR" and SAM (E-values ranking) are presented in 
Table IV.   

CSPF outperforms the other two models, where it reports 
an overall accuracy of testing data equals to 34.32% while the 
overall accuracy of "SPM for FR" model was 24.9% and 
SAM’s overall accuracy was 29.4%. The classification results 
of the proposed method CSPF, and "SPM for FR" algorithm 
and SAM (E-values) of the test set are shown in Table IV. 

In terms of space complexity, for a sequence file with n as 
the number of sequences, and m as the number of items per 
sequence and number of items equals to 20 which is the 20 
amino acids, the space complexity of Mix&Test algorithm is 
O(20m+n).  In terms of time complexity, the complexity of 
generating all the candidate patterns of Mix&Test with no gap 
is O(n2). The complexity of generating all the candidate 
patterns of Mix&Test with a gap m is O(n2)*m. The 
complexity of discovering the frequent patterns is O(N). 

IV. CONCLUSIONS 

In this work, we proposed a CSFP technique for protein 
fold recognition.  This technique consisted of two main phases: 
sequential patterns extraction and protein fold recognition.  
Sequential patterns extraction phase introduced Mix & Test 
algorithm.  Several experiments were conducted to assess the 
performance of Mix&Test and PMix. The performance of 
M&T and PMix algorithms were compared with PrefixSpan, 
SPAM and cSPADE algorithms.  

In addition, performance of CSFP fold recognition was 
compared with "SPM for FR" and SAM (E-values) models. 
CSPF outperformed "SPM for FR" and SAM (E-values) 
models with an overall accuracy for training data equals to 
75.84%  and "SPM for FR" model was 59.7% for testing data.  
Future work of CSFP can be in several directions: utilizing 
optimization techniques to enhance the prediction results and 
applying high performance computing to provide very fast 
process over protein sequences databases.   In addition, more 
protein sequences will be used. 
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TABLE III.  DETAILED SENSITIVITY RESULTS FOR ALL FOLDS UNDER 

EVALUATION AND OVERALL ACCURACY OF THE PROPOSED CSPF MODEL IN 

THE TEST SET 

Fold index 

CSPF 

Sensitivity 

(Proteins) 

CSPF 

Sensitivity 

% 

a1 4/11 36.36 

a3 8/10 80 

a4 3/52 5.7 

a24 15/15 100 

a39 11/15 37.3 

a60 2/12 16.3 

a118 3/16 18.75 

Class A (total) 46/131 35.11 

b1 31/66 46.9 

b2 2/10 20 

b18 3/10 30 

b29 2/12 16.6 

b34 11/22 50 

b40 12/31 38.7 

b47 10/12 83.7 

b55 2/12 16.6 

b82 0 0 

b121 9/14 64.3 

Class B (total) 82/203 40.39 

c1 2/71 2.8 

c2 36/46 78.2 

c3 2/11 18.1 

c23 11/29 37.9 

c26 7/17 41.1 

c37 9/46 19.5 

c47 1/20 5 

c55 1/15 6.6 

c56 0 0 

c66 3/20 15 

c67 8/15 53.3 

c69 3/17 17.6 

c94 9/12 75 

Class C (total) 92/329 27.9 

d15 7/22 31.8 

d17 1/10 10 

d58 8/51 15.6 

d144 3/12 25 

Class D (total) 19/95 20 

f23 8/12 66.6 

Class F (total) 8/12 66.6 

g3 29/34 85.2 

Class G (total) 29/34 85.2 

Overall 276/804 34.32 

 

TABLE IV.  CLASSIFICATION RESULTS OF THE PROPOSED METHOD CSPF, 
"SPM FOR FR" ALGORITHM AND SAM (E-VALUES) IN THE TEST SET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fold index 

CSPF 

Sensitivity 

% 

SAM(E-

values) 

Sensitivity% 

SPM for 

FR 

Sensitivity 

% 

a1 36.36 81.8 18.2 

a3 80 60 20 

a4 5.7 3.8 28.8 

a24 100 6.7 33.3 

a39 37.3 87.7 66.7 

a60 16.3 16.7 16.7 

a118 18.75 0 37.5 

Class A (total) 35.11 25.2 32.1 

b1 46.9 50 36.4 

b2 20 0 30 

b18 30 30 20 

b29 16.6 25 8.3 

b34 50 36.4 0 

b40 38.7 6.5 19.4 

b47 83.7 83.3 58.3 

b55 16.6 25 0 

b82 0 14.3 0 

b121 64.3 7.1 64.3 

Class B (total) 40.39 32 25.6 

c1 2.8 14.1 0 

c2 78.2 23.9 69.6 

c3 18.1 100 9.1 

c23 37.9 27.6 24.1 

c26 41.1 11.8 47.1 

c37 19.5 80.4 10.9 

c47 5 25 0 

c55 6.6 13.3 0 

c56 0 10 0 

c66 15 20 5 

c67 53.3 80 46.7 

c69 17.6 5.9 5.9 

c94 75 25 58.3 

Class C (total) 27.9 32.5 21 

d15 31.8 0 9.1 

d17 10 0 0 

d58 15.6 3.9 3.9 

d144 25 91.7 16.7 

Class D (total) 20 13.7 6.3 

f23 66.6 25 41.7 

Class F (total) 66.6 25 41.7 

g3 85.2 44.1 76.5 

Class G (total) 85.2 44.1 76.5 

Overall 34.32 29.4 24.9 
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