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Abstract—This research explores urban growth based 

scenarios for the city of Nairobi using a cellular automata urban 

growth model (UGM). African cities have experienced rapid 

urbanization over the last decade due to increased population 

growth and high economic activities. We used multi-temporal 

Landsat imageries for 1976, 1986, 2000 and 2010 to investigate 

urban land-use changes in Nairobi. Our UGM used data from 

urban land-use of 1986 and 2010, road data, slope data and 

exclusion layer. Monte-Carlo technique was used for model 

calibration and Multi Resolution Validation (MRV) technique for 

validation. Simulation of urban land-use was done up to the year 

2030 when Kenya plans to attain Vision 2030. Three scenarios 

were explored in the urban modelling process; unmanaged 

growth with no restriction on environmental areas, managed 

growth with moderate protection, and a managed growth with 

maximum protection on forest, agricultural areas, and urban 

green. Thus alternative scenario development using UGM is 

useful for planning purposes so as to ensure sustainable 

development is achieved. UGM provides quantitative, visual, 

spatial and temporal information which aid policy and decision 

makers can make informed decisions. 
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I. INTRODUCTION  

Sustainable planning is crucial for future development of 
cities. Over the last decade there has been large rural urban 
migration in African cities as people search for employment 
and better amenities. This has led to a strain on the existing 
amenities and infrastructure [1]. There has been emergence of 
slums in cities in Africa such as Nairobi because of unsuitable 
land-use planning [2]. Undesirable consequences have been 
noted such as pollution, depletion of natural resources, 
inadequate transportation systems, urban sprawl among other 
negative environmental and social effects. Thus there is need 
for an integrated urban planning paradigm in order to identify 
and anticipate urban dynamics effectively. 

Integration of remote sensing and urban growth modelling 
has been the frontier edge of urban research. Remote sensing 
provides spatially consistent data sets that cover large areas 
with both high spatial detail and high temporal frequency [1]. 
Such data sets are useful in land-use monitoring and 
simulation. As urbanisation occurs, changes in land-use 

increase thus taking up the natural resource base such as forests 
and agricultural land. This in turn leads to fragmentation and 
land degradation [3]. 

Models based on cellular automata (CA) have been used 
over the last decades in simulating urban development growth 
and patterns [4]. Early models were based on demographic 
trends and were not successful in simulating contemporary 
urban growth [5], [6], [7], and [8]. However, land-use 
modelling using CA utilise biophysical factors making it 
possible to simulate various patterns and intensities of urban 
growth [4]. Land-use change models have been used as 
decision support tools in urban planning in order to inform 
planners and decision makers [9]. For an urban model to be 
used in an area of interest it needs to be localised and this 
involves calibration. This is done in order to make it adapt to 
the endogenous characteristics of the particular environment 
for simulation [4]. Urban models aid in making informed 
decisions on land-use planning in the context of future 
development. Sustainable development is thus possible once 
various simulations of land-use scenarios have been obtained 
and this helps in understanding the consequences of different 
driving forces [10].  

The “eXtendable Unified Land-use modelling platform” 
(XULU) was developed as a generic modelling framework at 
the University of Bonn, Germany [11]. It is able to handle 
several model types simultaneously such as statistic dynamic or 
agent based models of urban growth as well land-use change. 
We adopted the Urban Growth Model (UGM) on the modelling 
framework XULU for Nairobi. UGM was first developed and 
applied in the German federal state of North-Rhine Westphalia 
[12]. UGM is based on the modelling algorithm of the 
SLEUTH model [13] which uses the concept of cellular 
automata. Calibration of UGM involved five model parameters 
similar to SLEUTH model so as to make it adapt to Nairobi [4], 
[14].  

Urban growth modelling based on cellular automata has 
been used mostly in cities in North America and European 
cities. Cities in Africa are different to the counterpart cities in 
the western world in various ways. Major cities in Africa are 
characterised by high rural urban migration which result on a 
strain on local urban transport systems, traffic congestion, 
development of informal settlements [1]. 
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Fig. 1. Location of Nairobi 

Cities in Kenya represent very different environmental and 
geographic characteristics. Nairobi is the capital city of Kenya 
and has recently experienced a fast average annual growth rate 
of 4.9 per cent between the years 1990 and 2006 [15].  

In this research, a cellular automata model was used to 
study land-use change and prediction of future trends in 
Nairobi as Kenya attains Vision 2030 [16]. The urban land-use 
data for Nairobi was derived from multi-spectral Landsat 
imagery captured in 1976, 1986, 2000 and 2010. At the end of 
the research, calibration and validation of both models were 
achieved. The models were used to predict the future urban 
land-use development in the year 2030. 

II. THE STUDY AREA 

Nairobi extends between latitudes 1° 09' and 1° 28' South, 
and longitude 36° 04' and 37° 10' East in Kenya, with an 
average altitude of 1,700 meters above sea level, covering an 
area of 696 km²  (Fig. 1).  Nairobi is the capital city of Kenya. 
The administratively defined town has land uses divided 
roughly into urban use, agriculture, rangeland, open/transitional 
areas, and remnants of evergreen tropical forests. Nairobi has a 
high growth rate per annum compared to other growth rates in 
Africa with 75 % of urban population living in informal 
settlements [17]. From a population of 310,000 in 1960, the 
population reached 510,000 in 1970 [18], 828,000 in 1979 [19], 
1,321,000 in 1989 [20], 2,137,000 in 1999 [21] and 3,138,369 
in 2009 [22]. The projected population in the year 2020 will be 
almost six million [17]. 

Urban sprawl has a negative impact on infrastructure and 
the sustainability of cities [15]. This is exhibited for instance in 
the increase of transport costs, public infrastructure of 
residential and commercial development. Most African cities 
show characteristic patterns of urban sprawl where urban 
development evolves around the nexus of the main 
transportation routes, with urban growth tending to grow in 
sectors emanating from city centers [1]. Many urban areas are 
faced with environmental problems like water pollution, 
uncontrolled waste disposal, bad air quality and noise. 

III. MODELLING NAIROBI’S URBAN GROWTH 

Urban growth is a complex process which involves the 
spatio-temporal changes of all socio-economic and physical 
components at different scales [23]. The process can be 
demonstrated in a simplified way and be analyzed empirically 
using urban growth models. Numerical simulation models for 
land-use change involve highly complex applications that have 
been developed to solve specific problems in urban areas. 
Consequently, a majority of these models have been developed 
at universities and are a result of long-time research [12]. [11] 
developed XULU (eXtendable Unified Land Use Modelling 
Platform), a modelling framework that enables model 
integration and carries out tasks using functionalities such as 
data storage, input/output methods, editing and visualization. 
XULU was first used to compute the future land-use for 
different scenarios with their specific boundary conditions for a 
watershed in Benin [24]. Hence, the CLUE-s land-use change 
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model, developed by [25] was implemented in the XULU 
modelling framework. 

A majority of urban growth models are restricted to 
simulate changes of one land-use category, which is urban, and 
that typically just in one direction, which is growth [12]. 
SLEUTH is such a model and is an acronym for “Slope, Land 
use, Exclusion, Urban, Transport, Hill shade”, as its main input 
parameters. SLEUTH is a cellular automaton (CA) based urban 
growth and land-use change model [13]. The model was 
initially applied in the United States of America but has also 
been applied in other regions of the world such as in Europe 
[26], South America [27] and Southeast Asia [28]. SLEUTH 
consists of two components, an urban growth model based on 
the Clarke Urban Growth Model (UGM) described in [13] and 
a so-called Land cover Deltatron Model [29] to simulate other 
land-use changes induces by urban growth. In most of the 
studies using SLEUTH described in the scientific literature 
only the UGM component of SLEUTH is applied. 

UGM has been implemented in the modelling platform 
XULU in a modified way [12]. UGM now only needs four 
spatial input parameters namely a map of urban land-use, 
transportation, slope and exclusion. The exclusion layer 
determines, which areas in the research area cannot be changed 
(e.g. water bodies or protected areas) or, if not excluded, are by 
a certain degree resistant against urbanization. The 
transportation layer represents the road network in a research 
area. While SLEUTH needs at least four urban land-use data 
sets to calculate a set of calibration coefficients [4], the 
modified UGM in XULU only needs a map for the starting 
year of the calibration phase and a reference map at the end 
year. The simulated urban area of the end year is compared to 
the reference map with the Multiple Resolution Validation 
(MRV) as described in [30]. 

Calibration is the most crucial step in any modelling 
application [14]. In the calibration phase of UGM a brute-force 
method is used in order to determine five calibration 
parameters. These parameters control the transition rules that 
are implemented in the model and include: dispersion, breed, 
spread, slope resistance and road gravity. Dispersion 
determines the dispersiveness of the outward distribution and 
controls the number of pixels that are selected randomly for 
possible urbanization. Breed refers to the probability that a 
newly generated settlement starts its own growth. Spread 
controls how much existing settlements radiate. Slope 
resistance influences the likelihood of growth on steep slopes. 
Road gravity influences the creation of new centers along 
roads. 

A number of Monte-Carlo iterations are performed in the 
brute-force calibration to obtain the best set of the five 
calibration parameters. This consequently translates to four 
different kinds of urban growth: spontaneous growth, diffusive 
(new spreading centers), organic (infill and edge growth) and 
road influenced growth. Because testing all possible parameter 
combinations in Monte-Carlo iterations in a brute-force way 
would be way too time consuming, calibration is performed in 
sequential phases ranging from a coarse to a fine calibration 
[4].  

UGM’s underlying simulation technique is CA. A CA is a 
discrete dynamic system in which space is divided into regular 
spatial cells, and time progresses in discrete steps [31]. Each 
cell in the system has one of a finite number of states. The state 
of each cell is updated according to local rules, that is, the state 
of a cell at a given time depends on its own state and the states 
of its neighbors at the previous time step [32]. Cellular 
automata are seen not only as a framework for dynamic spatial 
modelling but as a paradigm for thinking about complex spatio-
temporal phenomena and an experimental laboratory for testing 
ideas [33]. A cellular automaton consists of five basic elements 
namely cell space, cell state, cell neighborhood, transition rules 
and time.  

The number and location of the randomly selected cells is 
controlled by the growth parameters. Depending on the type of 
growth different properties of the selected cells are 
investigated. For the diffusive growth (new spreading centers) 
e.g. this would be the existence of non-built-up cells in the 
direct proximity of a selected built-up cell and the slope of 
these cells. Depending on the specified parameters and 
transition rules the CA computes, if a cell is available for 
change or not. The CA knows only two states: 1 = urban/built-
up and 0 = non- urban/non-built-up. 

XULU is a stand-alone JAVA application and serves as a 
modelling framework whose functionalities include input, 
output, editing and visualization. XULU offers a model 
independent graphical user interface. The core program 
comprises the fields of data management, input/output routines 
for data import and export, data structure, memory 
management and data visualization [11]. The user has to load 
the necessary data objects into the data pool and allocate them 
to the individual model resources. Several plug-ins of land-use 
modelling are implemented in XULU include: spatial data 
types for raster and vector data, I/O routines for shape files and 
different raster types (e.g. ASCII and GeoTIFF) and a layer-
based visualization for raster and vector maps [11]. 
Additionally land-use change models are loaded as plug-ins. 
Models that are implemented so far include CLUE-s and the 
Urban Growth Model UGM [12].  

Model calibration is required in order to ensure that a 
model simulates the reality fully. Diverse model users have 
different ways of assessing land-use models. Whereas there is a 
group of model users who wish to make predictions as accurate 
as possible, another group emphasizes on the ability of a model 
to support the general knowledge of processes and mechanisms 
of land-use change [34].  

The method of multiple resolution validation (MRV) was 
used in a comparison of land-use models in which the tests 
were conducted in seven laboratories with 13 applications, 9 
different models and in 12 study areas [35]. Typically maps are 
compared pixel-wise and every pixel is calculated as an error, 
where the model map does not exactly fit with the reference 
map. In MRV method four neighboring pixels are averaged 
stepwise. The amount of correct pixels increases in every step, 
until in the last step when the whole research area is inside of 
one big pixel and both location agreement and location 
disagreement approach 0 [12]. The MRV technique was 
incorporated in UGM. 
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In order to evaluate model results with the technique 
described above, three datasets are necessary:  a reference map 
of time 1, a reference map of time 2 and a simulation map of 
time 2. The reference map of time 1 is the initial point for 
modelling, that is, land-use map of 1986 and at the same time 
serves as a Null-model, which is the assumption that no change 
has taken place. Therefore, the reference maps of t1 and t2 are 
compared. To evaluate the model result, the simulation map of 
t2 is compared with the reference map of t2. 

IV. SCENARIOS OF URBAN GROWTH 

The use of scenarios to address land-use changes have 
become useful tools in the assessment of land-use dynamics 
[36]. This approach is required to anticipate the consequences 
of various development scenarios. However scenarios are not 
predictions but rather they are an approach to help manage 
decisions based on the interpretation of qualitative descriptions 
of alternative futures translated into quantitative scenarios [37]. 
There is need for such scenarios to be integrated in land 
legislation. Several policies and strategies have been 
formulated by various national and regional governments in 
order to minimize the negative impacts caused by improper 
urban developments [38]. However, such policies are not well 
defined in the context of Kenya. Thus, exploring various 
scenarios by predicting future urban land-use patterns under 
different ‘‘what-if’’ conditions can help in the management of 
urban expansion and change as well as in the development of 
alternative plans before irreversible transformations occur [39]. 
This paradigm can help Kenya to manage its resources 
sustainably. 

The Government of Kenya formulated Kenya Vision 2030 
[16]. This was an attempt at maximum protection of natural 
resources so as to ensure sustainable development is attained in 
the year 2030. Cities in Kenya have undergone rapid 
urbanization as people migrate into cities in search of 
employment and better amenities. Thus this gave us the 
motivation to investigate scenarios of urban growth in Nairobi. 
Currently there are a few studies on scenario-based urban 
growth simulation in Nairobi. Nevertheless, [1] used SLEUTH 
to model urban growth in Nairobi.  

In order to test the usefulness of the urban growth 
modelling and to provide a coherent and alternate framework 
for the policy makers, we explored three scenarios in the 
modelling process. First scenario depicts an unmanaged growth 
with no restriction on environmental areas, such as forest, 
agriculture and wetland. Thus urban growth continues with the 
historical trend of land transition and permits future urban 
growth allocation without any constraint. The second scenario 
assumes a managed growth with moderate protection. Here the 
exclusion layer included government buildings and forest 
cover. Cities in Kenya have undergone rapid urbanization due 
to high rural to urban migration as people search for 
employment and social amenities [2]. There has been 
significant effect to preserve forest cover in Kenya under the 
Forest Act, 2005 [40]. The third scenario simulates a managed 
growth with maximum protection on forest, government 

reserved areas, government buildings, military bases, airports, 
and urban green. Government reserved areas include parks, 
cemeteries. 

V. ANALYSIS 

Scenarios based urban growth modelling of Nairobi 
involved datasets preparation, land-use change analysis and 
modelling using UGM. Fig. 2 shows the flow chart of the 
major steps applied in this research. 

A. Data 

Modelling of Nakuru utilized urban extents extracted from 
land-use maps for 1986 and 2010 as inputs. Other layers used 
included slope, areas excluded from development and road 
network. The road layer included three weight values of 100, 
50 and 25 [26]. A weight value of 100 was assigned to class A 
roads (International trunk roads), 50 was assigned to class B 
and C roads (National Trunk Roads), and 25 was assigned to 
local streets (Minor roads). The road classification in Kenya is 
explained in [41]. Thus a road with a value of 100 has the 
highest potential of attracting urban growth compared to a local 
street with a value of 25. 

B. Land-use change analysis 

Land-use classification of Nairobi consisted of six land-use 
classes; namely urban, forest, agriculture, open/transitional 
areas, water and rangeland. Urban land-use included built-up 
areas within the research area. Forest included evergreen forest, 
mixed forests with high densities of trees, little or under-storey 
vegetation. Open/transitional areas included bare land, exposed 
areas, quarries and transitional areas. Water included rivers and 
reservoirs. The sewage treatment plant in Ruai was also 
captured under water class. Rangeland included bush land and 
ground layer covered by grass and sparsely disturbed scrub 
species.  

Image pre-processing steps for the optical datasets were 
radiometric correction and geometric correction. Support 
vector machine (SVM) classification was applied to all the data 
sets and its performance assessed using error matrices. 
Recently SVM has been found to perform better compared to 
maximum likelihood classifier [42]. Post-classification 
refinements were enforced to diminish categorization errors as 
a result of the similarities in spectral signatures of certain 
classes. Spatial modeler and additional rule based procedures 
were adopted to overcome these classification challenges and 
differentiate between classes. 

C. Modelling using UGM 

Model calibration of UGM involved running the model 
using default parameters of slope, breed, dispersion, road and 
spread. The default parameter values were 1, 50 and 100. 
Model calibration was done iteratively in four sequences from 
coarse to fine calibration as the parameters were varied using 
Monte Carlo technique. The MRV method was used to achieve 
the optimal parameterization for the UGM during the 
calibration phase as well as for the validation of the model 
results. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 2, 2014 

5 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Flow chart of urban growth modelling 

Three scenarios were explored in the modelling process. 
This involved varying the exclusion layer so as to achieve three 
scenarios. In the first scenario there was no restriction on the 
exclusion layer and thus the exclusion was at zero percentage. 
In the second scenario we achieved exclusion at 60 % 
exploring a managed growth with moderate protection. In the 
third scenario we achieved exclusion at 90 % exploring a 
managed growth with maximum protection. Thus it was not 
practical to achieve 100 % exclusion in scenario three since 
urbanization has already taken place. 

VI. RESULTS AND DISCUSSION 

Land-use summary for Nairobi was performed and results 
tabulated in Table 1 and Fig. 3. Land-use maps for Nairobi are 
illustrated on Fig. 4, Fig. 5 and Fig. 6. The urban/built-up areas 
increased from 35.16 km

2
 in 1986 to 52.50 km

2
 in 2000 and 

79.38 km
2
 in 2010. Forest increased from 62.87 km

2
 in 1986 to 

71.14 km
2
 in 2000 but decreased to 66.86 km

2
 in 2010. In areas 

where forest decreased such land was classified as agriculture 
or urban due encroachment of the forest. Agriculture increased 
from 144.72 km

2
 in 1986 to 152.53 km

2
 in 2000 but decreased 

to 148.21 km
2
 in 2010.  

Typical agriculture land-use include small-scale crop 
gardens and peri-urban agriculture for cultivation, and such 
land-use was converted to urban land-use namely building up 
of residential and commercial buildings to cater for the 
increased urban population in Nairobi. Open/Transition areas 
increased from 99.54 km

2
 in 1986 to 146.94 km

2 
in 2000 but 

decreased to 117.94 km
2
 in 2010. Rangeland increased from 

361.11 km
2
 in 1986 to 261.74 km

2
 in 2000 but decreased to 

257.61 km
2
 in 2010. Water increased from 9.60 km

2
 in 1986 to 

11.15 km
2
 in 2000 and increased further to 26.00 km

2
 in 2010.   

The final model coefficients obtained after successful 
calibration of UGM for the three scenarios are illustrated in 
Table 2. We can see the values as follows: slope at 50, spread 
at 25, dispersion at 1, breed at 50, road at 75, and a weighted 
value of 0.9449 for scenario one; slope at 52, spread at 25, 
dispersion at 1, breed at 50, road at 25, and a weighted value of 
0.9470 for scenario two; and slope at 52, spread at 27, 
dispersion at 1, breed at 52, road at 2, and a weighted value of 
0.9477 for scenario three. We adopted scenario three since it 
will ensure sustainable development is met in the future. 
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TABLE I.  LAND-USE SUMMARY AND ERROR ESTIMATES FOR NAIROBI 

 

Year 1986 2000 2010 

Land-use classes 
Area (km2) % Area (km2) % Area (km2) % 

Urban  35.16 4.9 52.50 7.4 79.38 11.1 

Forest  62.87 8.8 71.14 10.0 66.86 9.4 

Agriculture  144.72 20.3 152.53 21.4 148.21 20.8 

Open/transition areas 99.54 14.0 146.94 20.6 117.94 16.5 

Rangeland 361.11 50.6 261.74 36.7 257.61 36.1 

Water 9.60 1.3 11.15 1.6 26.00 3.6 

Total  696 100 696 100 696 100 

    

Overall Accuracy (%) 92.64   90.9   91.87   

 

 

 

Fig. 3. Land-use estimates for Nairobi 
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Fig. 4. Land-use map for Nairobi in 1986 

 

 

 
Fig. 5. Land-use map for Nairobi in 2000 
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Fig. 6. Land-use map for Nairobi in 2010 

TABLE II.  BEST MODEL PARAMETERS OBTAINED IN THE THREE SCENARIOS 

 
Model parameters 

 

Scenario Slope Spread Dispersion Breed Road Weighted value 

1 50 25 1 50 75 0.9449 

2 52 25 1 50 25 0.9470 

3 52 27 1 52 2 0.9477 

 

An evaluation of the three scenarios was conducted as 
shown in Table 3. The simulated urban growth values of 
scenario one, two and three were 82.87 km

2
, 76.61 km

2
, and 

73.14 km
2
 in 2010 and 141.72 km

2
, 127.96 km

2
, and 118.35 

km
2
 in 2030 respectively. The urban growth simulation maps 

for all scenarios are illustrated in Fig. 7, Fig. 8, Fig. 9, Fig. 10, 
Fig. 11 and Fig. 12.  

We conducted two map comparisons in Erdas imagine 2011 
model maker for scenario three for the city of Nairobi. 
According to [35] there are three possible two-map 
comparisons namely observed change, prediction change and 
prediction error as described above in urban growth modelling 
of Nairobi. Observed change compares the reference map of 
time 1 and the reference map of time bearing in mind the 
dynamics of the landscape. Prediction change compares 
between the reference map of time 1 and the prediction map of 
time 2 and thus revealing the behavior of the model. Prediction 
error compares between the reference map of time 2 and the 
prediction map of time 2 and thus ascertains the accuracy of the 

prediction. In our case time 1 referred to as the year 1986 and 
time 2 as the year 2010. 

The observed change in urban land-use between 1986 and 
2010 is illustrated on Fig. 13. Here we have observed built gain 
of 65.25 km

2
, observed built persistence 17.80 km

2
, observed 

non-built persistence of 607.19 km
2
 and observed built loss of 

3.41 km
2
 obtained from the observed map of the year 2010. 

The predicted change in urban land-use between 1986 and 
2010 is illustrated on Fig. 14. Here we have predicted built 
persistence of 73.79 km

2
 and predicted non-built persistence of 

620.51 km
2
 obtained from the predicted map of the year 2010. 

The predicted error in urban land-use between 1986 and 2010 
is illustrated on Fig. 15. Here we have: non-built observed and 
built predicted of 57.95 km

2
; and built observed and built 

predicted of 40.99 km
2
 obtained using the observed map of the 

year 2010 and the predicted map of the year 2010. Our UGM 
for Nairobi predicts the year 2010 accurately since our gain of 
built is larger than the loss of built by16.96 km

2
. 
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TABLE III.  MODEL EVALUATION FOR NAIROBI 

Year 2010 2030 

Scenario 1 2 3 1 2 3 

Actual Urban (km2) 79.38 79.38 79.38       

Simulated Urban (km2) 82.87 76.61  73.14 141.72 127.96  118.35 

 

 

Fig. 7. Urban growth simulation in Nairobi in scenario one (2010) 

 

 

Fig. 8. Urban growth simulation in Nairobi in scenario one (2030) 
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Fig. 9. Urban growth simulation in Nairobi in scenario two (2010) 

 

 

 
Fig. 10. Urban growth simulation in Nairobi in scenario two (2030) 
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Fig. 11. Urban growth simulation in Nairobi in scenario three (2010) 

 

 

Fig. 12. Urban growth simulation in Nairobi in scenario three (2030) 
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In order for an urban growth model to be resourceful to 
various stakeholders such as policy makers and urban planners, 
simulation of urban growth has to be performed after 
calibration. Scenarios three was selected as the best plausible 
cause for urban planning management with maximum 
protection on resources. Thus the likelihood of new settlements 
or built-up areas in Nairobi was obtained at a weighted value of 
0.9477 as per scenario three. This indicates that new urban 
growth is most likely to be caused by breed (at 52), i.e. 
probability that a newly generated settlement starts its own 
growth, then followed by slope (at 52) influenced growth and 
spread (at 27), and finally followed by road and dispersion as 
least likely factors for new urban growth. Thus, this implies 
that new areas are developed for residential and commercial 
uses, which lie in proximity to roads. Such growth could be as 
a result of high rural urban migration witnessed in Nairobi as 
new people move immigrate in search for employment, social 
amenities and business opportunities. 

VII. CONCLUSION 

We used Nairobi, Kenya’s capital city as an example of a 
fast expanding African city to analyze the dynamics of land-use 
changes between 1986 and 2010, and to simulate urban growth 
into 2030 using cellular automata. Land-use change analyzed 
demonstrated that substantial changes have taken place as a 
result of rapid urban growth. Urban land-use maps from image 
classification were used alongside other datasets in modelling 
urban growth in Nairobi using UGM. The Monte Carlo 
iterative method was applied in the UGM calibration. Three 
scenarios were explored in the urban modelling process; 
unmanaged growth with no restriction on environmental areas, 
managed growth with moderate protection, and a managed 
growth with maximum protection on forest, agricultural areas, 
and urban green. Scenario three was selected as a plausible 
paradigm to ensure sustainable development is achieved. 

Kenya plans to achieve Vision 2030 in the year 2030 and 
this can be guided using scenario based urban growth. Thus to 
achieve the economic and social strategy there is need for land-
use scenarios as we conducted in this research in order to cater 
for anticipated urban growth in the future. Urban growth 
modelling is vital for guiding decision making for resource 
management.  

Simulated urban growth results for the year 2030 using 
scenario three indicate that there is the need for tactical 
planning so as to address rapid urban growth in Nairobi. 
Therefore cellular automata are a valuable approach for 
regional modelling of big African cities such as Nairobi. Hence 
it is noble to explore the use of UGM in other cities in Africa 
and its performance documented accordingly 
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