
Energy Saving EDF Scheduling for Wireless Sensors
on Variable Voltage Processors

Hussein EL Ghor
Lebanese University - IUT Saida,

SNCS Research Center, UT, Saudi Arabia
B.P. 813 Saida, Lebanon

Email: hussein.ghor@ul.edu.lb

El-Hadi M Aggoune
Electrical Engineering Department,

Sensor Networks and Cellular Systems (SNCS) Research Center,
University of Tabuk, 71491 Tabuk, Saudi Arabia

Email: haggoune.sncs@ut.edu.sa

Abstract—Advances in micro technology has led to the de-
velopment of miniaturized sensor nodes with wireless communi-
cation to perform several real-time computations. These systems
are deployed wherever it is not possible to maintain a wired
network infrastructure and to recharge/replace batteries and the
goal is then to prolong as much as possible the lifetime of the
system. In our work, we aim to modify the Earliest Deadline First
(EDF) scheduling algorithm to minimize the energy consumption
using the Dynamic Voltage and Frequency Selection. To this end,
we propose an Energy Saving EDF (ES-EDF) algorithm that
is capable of stretching the worst case execution time of tasks
as much as possible without violating deadlines. We prove that
ES-EDF is optimal in minimizing processor energy consumption
and maximum lateness for which an upper bound on the
processor energy saving is derived. In order to demonstrate the
benefits of our algorithm, we evaluate it by means of simulation.
Experimental results show that ES-EDF outperforms EDF and
Enhanced EDF (E-EDF) algorithms in terms of both percentage
of feasible task sets and energy savings.

I. INTRODUCTION

Wireless sensors have gained wide interest as a new
generation of embedded systems with a broad range of real-
time applications. Examples include agriculture, environment,
health care, urban development, habitat monitoring, medical
care, military applications [2], fire monitoring [3], volcano
monitoring [4] and highway traffic coordination. Many wire-
less sensors are powered by batteries with limited capacity
and in many scenarios it is impossible to replace them after
deployment, therefore a fundamental objective is to optimize
the sensor life time.

The problem of reducing energy consumption imposes ad-
ditional challenges on the design of many real-time embedded
systems. Such systems are characterized by a time varying
processor utilization. Simply adapting the operating voltage
and frequency of the processor results in improving energy
efficiency and therefore battery life of wireless sensors. Dy-
namic voltage and Frequency scaling (DVFS) is the most well-
known technique that trades off the performance for energy
consumption by lowering the operating voltage/frequency [5].

In our work, we deal with dynamic scheduling for unipro-
cessor systems that support periodic tasks. EDF has been
shown to be an optimal dynamic scheduling algorithm in
the sense that if a set of tasks can be scheduled by any
algorithm, then it can be scheduled by EDF [6]. EDF algorithm
is typically preemptive, in the sense that, a newly arrived task

may preempt the running task if its absolute deadline is shorter.
This dynamic priority assignment allows EDF to exploit the
full processor, reaching up to 100% of the available processing
time [7].

Already having the EDF scheduler, it was only necessary
to find a way to reduce energy consumption of tasks so as
to prolong as much as possible the lifetime of the system.
Dynamic voltage and frequency scaling (DVFS) is the most
efficient technique for reducing CPU energy. It is feasible to
run the processor at the weakest frequency while still admiring
the deadlines of tasks. In other words, when the frequency is
reduced, the processor can operate at a lower supply voltage
and so reducing the energy consumption. However, when
reducing the processor speed, tasks must take more time to
complete their execution. Therefore, it is important to identify
the slack time under which we can safely slow down the
processor without missing any deadline.

In this paper, we present an approach to find the least-
energy voltage schedule for executing real-time tasks on a
DVFS processor according to a dynamic priority, preemptive
policy, denoted by Energy Saving EDF (ES-EDF). For the
minimization of energy consumption, we use DVFS technique
that reduces the processor energy by slowing down the DVS
processor and stretching the task execution time. We propose
a slack-based method for stretching tasks as much as possible
while still guaranteeing deadlines. Off-line computing by how
long the tasks should be stretched is possible thanks to EDL
properties [8].

The rest of the paper is organized as follows. The paper be-
gins with a summary of the related work. Section III defines the
system model and terminology used throughout this paper. The
necessary background is presented in section IV. In section V,
we propose the Energy Saving EDF (ES-EDF) algorithm. In
section VI, we present the feasibility analysis for our proposed
algorithm. An upper bound on energy savings is derived in
section VII. The simulation results for performance evaluation
are presented in section VIII. The paper is concluded in section
IX.

II. RELATED WORK

The majority of real-time schedulers are on-line and based
on the concept of priority. If the priority is fixed at the
initialization for all tasks, the algorithm is called fixed priority
algorithm. Rate monotonic scheduling (RM) [9] and deadline

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

158| P a g e
www.ijacsa.thesai.org

monotonic scheduling (DM) [11] are examples of such algo-
rithms. If it evolves over time, the algorithm is said to be driven
by a dynamic priority. The most known algorithm among such
scheduling approaches is the Earliest Deadline First (EDF)
algorithm [7]. The study reported in this work deals with
dynamic priority scheduling, preemptive and without resource
and precedence constraints.

Recently, researchers have started exploring energy-
efficient scheduling for real-time embedded systems such as
wireless sensors. Algorithms proposed in literature have either
dynamic or fixed priority, also they can be preemptive or
non-preemptive. Although DVS is one of the most important
techniques, still some of them consider non-DVS techniques
especially when the study of the energy consumption is for
processor and devices.

Among the earliest works, Yao et al. [13] proposed an
optimal offline-scheduling algorithm for independent set of
jobs to minimize energy consumption. The same problem
was targeted in [14], but for dependent tasks. Authors have
proposed a scheduling algorithm using a variable voltage
processor core.

Shin and Choi [22] proposed a power reduction technique
for a processor by exploiting the slack times inherent in the
system and those arising from variations of execution times
of task instances. In this technique, the processor can either
be shut down if there is no current active job or adopt the
speed such that the current active job finishes at its deadline
or the release time of the next job. Later in [24], the same
authors have proposed a method that combines an off-line
component with an on-line one. By applying this method, they
first determine the lowest possible maximum processor speed
where the task set is feasible while all deadlines are met.
These tasks apply the WCET at all times and consequently
some idle time will be obtained. An on-line component is then
introduced that can dynamically reduce the processor speed
according to the status of task set in order to exploit execution
time variations and idle intervals, the only situation a task is
stretched is when it is the only one running and has enough
time until the next task arrives.

With the aim to find the least energy schedule for executing
real-time tasks, authors in [15] proposed an optimal fixed
priority policy. Later in [16], Kwon et al. presented important
results for task scheduling over a fixed number of voltage
levels.

Based on exploiting slack times, Aydin et al. [17] have
addressed the problem of minimizing energy by proposing a
dynamic speculative scheduling algorithm. Later in [18], au-
thors have considered that task deadlines are different from the
task period. Under this assumption, authors have addressed the
problem of computing task slowdown factors. Recent works
have proposed further dynamic voltage scaling techniques to
enhance the energy gains at run-time [19] [20] [21].

For scheduling periodic real-time tasks on a variable speed
processor with realistic discrete speeds, Mejia et al. [25] have
proposed a heuristic algorithm that finds near-optimal solutions
at low cost. This method produces a 2-approximate solution
to the optimization problem. Later in [26], authors proposed
a polynomial time (1 + ε)-approximation algorithm for the

scheduling of periodic real-time tasks, where ε is the tolerable
error margin given by users (0 < ε < 1).

Recently, reliability became as important as energy effi-
ciency especially in real-time embedded systems like satellite
and monitoring systems. Following this idea, several schedul-
ing policies have been proposed for various task models. Zhu et
al. [28], [27] proposed a reliability-aware power management
(RAPM) algorithm for periodic real-time tasks that can study
the negative effects of voltage scaling on system reliability.
This work was later extended in [29], authors improved the
quality of assurance for all tasks by managing only a subset
of jobs from each task.

In a preemptive scheme certain low priority tasks may
be suspended if higher priority tasks need to be executed.
This will lead to a more flexible scheme but with a certain
time overhead. Jejurikar et al. [30] focused on the system
level power management via the computation of static slow-
down factors under synchronization constraints where tasks
are scheduled based on a preemptive scheduling policy. For a
similar task model, authors in [31] proposed the concept of
frequency locking and extended the Priority Ceiling Protocol
(PCP) by locking the processor frequency in a restricted way,
so that the cost in frequency switching is better managed. The
major inconvenient is that frequency switching is shown to be
not found. This work was later extended in [32] by avoiding
voltage emergency. Authors explored one of the pioneering
real-time task synchronization with the minimization of energy
consumption and voltage emergency prevention.

III. SYSTEM MODEL AND TERMINOLOGY

A. Task Set

The real-time system considered in this work consists
of two major units: Real-time Operating System and the
Storage unit. The considered RTOS is equipped with a DVFS-
enabled processor. The variable speed processor is assumed
to be working with N discrete frequencies ranging from
fmin = f1 ≤ f2 ≤ · · · ≤ fn = fmax. The power consumption
of the tasks running in the processor and frequency levels are
in a way coupled together. When we change the speed of a pro-
cessor, its operating frequency is changed and hence the power
consumption of tasks is proportionately changed the voltage to
a value which is supported at that operating frequency. We
denote by Pn and Vn respectively the power consumption
and voltage level correspondent to clock frequency fn. We
consider that Pn is the overall power consumption of the
RTOS. This means that Pn is a combination of both dynamic
power consumption and leakage power consumption. We also
ignore the time and energy overhead incurred in changing the
frequency and voltage of the processor.

We use the term slowdown factor Sn as the ratio of the
scheduled speed to the maximum processor speed. Sn ranges
from Smin to 1:

Sn =
fn
fmax

(1)

We consider in our work that each job has different power
dissipation that varies according to its frequencies. Conse-
quently, a task will have maximum power dissipation at its
maximum frequency and this power consumption decreases as

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

159| P a g e
www.ijacsa.thesai.org

the frequency decreases. Consequently, the power dissipation
of a task must be defined as function of the task index and its
corresponding slowdown factor Pi(τi, Si).

Any application executed on this RTOS is normally com-
posed of multiple tasks with different levels of priority. We
consider here independent and preemptive periodic tasks. A
task set Γ of n tasks is denoted as follows: Γ = {τi | 1 ≤
i ≤ n}. τi is characterized by four-tuple (ri, Ci, Di, Ti)
where ri, Ci, Di and Ti indicate the release time, the worst
case execution time (WCET), the relative deadline and the
period respectively. Release time ri of task τi is equal to kTi,
k = 0, 1, 2, · · · . We assume that 0 ≤ Ci ≤ Di ≤ Ti for each
1 ≤ i ≤ n.

When a task τi is stretched by a slowdown factor Si, then
its actual execution time (Ci(a)) at frequency fi will be Ci/Si.
When the processor is running at it maximum frequency, then
Ci(a) = Ci. The energy dissipation (Ei) of a task τi is
computed as:

Ei = Pi(τi, Si)× (Ci/Si) (2)

B. Energy Storage

Our RTOS relies on an ideal energy storage unit, battery for
example, that has a nominal capacity, namely E, corresponding
to a maximum energy (expressed in Joules or Watts-hour). The
energy level has to remain between two boundaries Emin and
Emax with E = Emax − Emin.

We denote by E(t), the energy stored in the battery at time
t. At any time, the stored energy is no more than the storage
capacity, that is

E(t) ≤ E ∀t (3)

IV. NECESSARY BACKGROUND

The main objective behind a scheduling algorithm is to
determine, for a given set of jobs, the order in which tasks
are to be executed [23]. In real-time systems, the main goal
of the scheduling algorithm is to complete the execution of
all jobs while guaranteeing their deadlines. Before we get into
the details of the scheduler implementation it is important to
understand some of the more important real-time scheduling
approaches, namely fixed-priority algorithms, including rate
monotonic [9] and deadline monotonic [11], and dynamic-
priority algorithms, including the earliest deadline first (EDF)
algorithm [10]. EDF schedules at each instant of time t, the
ready task (i.e. the task that may be processed and is not
yet completed) whose deadline is closest to t. EDF is an
optimal scheduling algorithm on preemptive uniprocessors.
The EDF algorithm can achieve an utilization of 100% of
the available processing time. The processor utilization of a
system is computed as follows:

Up =
n∑
i=1

Ci
Ti

(4)

A periodic task set with deadlines equal to periods is
schedulable by EDF if and only if the total processor utilization
Up is less than or equal to one [9].

A. Static EDS Scheduling

The implementation of EDF consists in ordering tasks
according to their priority and executing them as soon as
possible with no inserted idle time. Such implementation is
known as Earliest Deadline as Soon as possible (EDS) [12].
For a given periodic task set, the EDS schedule can be
pre-computed and memorized in order to reduce scheduling
overheads at run time.

B. Static EDL Scheduling

EDL algorithm is based on the notion of delaying the
execution of jobs by as much as possible without causing their
deadlines to be missed. Although the usual scheduling scheme
is EDS, EDL is very often considered for processor idle time
analysis. In [12], Chetto and Chetto presented a simple method
to determine the location and length of idle time in any window
of a sequence generated by the two different implementations
of EDF and EDL.

Before the system begins to operate, static EDL schedule
is computed for a given task set. More precisely, the duration
and position of the idle times is determined by mapping out
the EDL schedule produced from time zero up to the end of
the first hyperperiod. Let TLCM the hyperperiod be equal to
the least common multiple of the task periods where TLCM =
lcm(T1, T2, · · · , Tn). Hence, determining the EDL schedule
for the interval [0, TLCM] is realized by means of the two
following vectors [8]:

Static deadline vector K: it represents the times at
which idle times occur within the first hyperperiod. K =
{k0, k1, · · · , ki, ki+1, · · · , kq} where k0 = 0, xi = Ti − Di

and ki < ki+1 for all 1 ≤ i ≤ n.

Let us consider q ≤ N + 1 where N denotes the number
of jobs within the first hyperperiod. Then kq is equal to

kq = TLCM −min{xi | 1 ≤ i ≤ n} (5)

Static idle time vector D: it represents the lengths of the
idle times which start at time instants given by K.

D = (∆0,∆1, · · · ,∆i,∆i+1, · · · ,∆q). ∆i corresponds to
the length of the idle time that starts at time ki.

Vector D is defined by a recurrent formula as follows:

∆q = min{xi | 1 ≤ i ≤ n} (6)

∆i = max(0, Fi), where i = q − 1 down to 0 (7)

Fi = (TLCM − ki)−
n∑
j=1

dTLCM − xj − ki
Tj

eCj −
q∑

k=i+1

∆k

(8)

Where dye is the least integer greater than or equal to y.

Under energy constraints, executing the jobs as late as
possible within the time interval [0, TLCM [consists in first
ordering the jobs according to the EDF rule and second
stretching the execution time Ci by its corresponding ∆i.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

160| P a g e
www.ijacsa.thesai.org

Illustrative Example: Consider a periodic task set Γ that
is composed of three tasks, Γ = {τi | 1 ≤ i ≤ n} and
τi = (Ci, Di, Ti). Let τ1 = (1, 3, 5), τ2 = (2, 7, 10) and
τ3 = (3, 12, 20).

From formulae 6, 7 and 8, we have K =
(0, 3, 7, 8, 12, 13, 17, 18) and D = (2, 2, 0, 1, 0, 2, 0, 2).
The EDL schedule for Γ produced at the first hyperperiod is
described in figure 1.

10

10

3 5 8 13 15 18 20

20

20

120

0

0

7 17

Ƭ1

Ƭ2

Ƭ3

K0 K1 K2 K3 K4 K5 K6 K7

Δ0 Δ1 Δ3 Δ5 Δ7
D

Fig. 1. Static EDL scheduling of task set Γ

V. ENERGY SAVING - EDF (ES-EDF) SCHEDULING
ALGORITHM

In this section, we describe the ES-EDF task scheduling
algorithm that minimizes the CPU energy. In ES-EDF, an
optimal voltage and frequency for a given task instance is
computed that guarantees schedulability and minimizes energy
consumption.

A. Presentation of the Algorithm

The aim from ES-EDF is to develop dynamic task schedul-
ing algorithm based on EDF that schedule any periodic task set
feasibly, and minimize the CPU energy consumption. We use
a modified Earliest Deadline First (EDF) strategy to reduce the
CPU energy consumption by using the Dynamic Voltage and
Frequency Selection. For this sake, We propose a slack-based
method for stretching tasks as much as possible while still
guaranteeing deadlines. Off-line computing by how long the
tasks should be stretched is possible thanks to EDL properties.

B. Slack Time Method

In the following analytical analysis, we determine the
maximum scaling time of a DVFS system that results in
minimum energy consumption for the processor and without
any deadline violation. That is, we have to determine the lowest
maximum processor speed to execute a real-time task set on a
variable speed processor while guaranteeing the deadlines of
tasks. This scaling time for each task instance is called the
optimal scaling time.

Our approach is based on the assumption that the param-
eters of each task is well known off-line and that all tasks
are released at time t = 0. This assumption is very important
since otherwise we may not be able to fully utilize the benefits
provided by the used variable speed processor.

As an initial schedule, we try to execute all task instances
according to the earliest deadline first strategy. Let us consider
that there are M task instances in the ready queue. The start
time and finish time of task τi are represented by Sti and Fti
respectively.

Assume that the start time of the first task instance τ1 in
the ready queue is equal to its release time.

St1 = k0 = 0 (9)

In order to stretch the execution time Ci of task τi
as much as possible without violating the deadline Di, the
determination of the latest start time for every task instance
requires preliminary construction of the schedule produced
by the so-called Earliest Deadline as Late as possible (EDL)
algorithm.

To involve an acceptable overhead at run-time, off-line
computations are done by ES-EDF in order to compute effi-
ciently the static EDL schedule without losing any time. Before
the system begins to operate, we estimate the localization and
the duration of the idle times produced at time t = 0 till the
end of the hyperperiod. This means that ES-EDF computes the
static deadline vector K and static idle time vector D.

Thus, the start time of the remaining task instances is:

Sti = ki−1 (10)

The total time executed by the task set within [0, Sti] is
denoted by Ak where

Ak =
∑

Dk≤Sti

Ck (11)

Consequently, the finish time of the remaining task instances
is:

Fti = Ci +
∑

kj≤Sti

∆j +Ak (12)

where 1 ≤ i ≤M − 1

To decrease the processor speed as much as possible and
as long as the system will be able to meet all the deadlines,
we have to compute the static idle time vector ∆i at each task
start time Sti. Consequently, the task’s execution time will be
stretched to the actual execution time Ci(a) where:

Ci(a) = Ci + ∆(Sti) (13)

The slowdown factor is thus calculated thanks to the following
equation:

Si =
Ci

Ci(a)
(14)

C. ES-EDF Algorithm

The ES-EDF works as follows: First ES-EDF computes
the static EDL schedule including static deadline vector K and
static idle time vector D. Before authorizing the execution of
the task instance with highest priority, ES-EDF adds the static
idle time at Sti to the execution time Ci. Now, the execution
time of the task instance will be stretched to its actual execu-
tion time (Ci(a)) without violating deadlines. Upon stretching

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

161| P a g e
www.ijacsa.thesai.org

the execution time of a task instance, the energy dissipation
decreases. ES-EDF can now compute the slowdown factor of
the corresponding task instance and consequently the energy
dissipation can be chosen.

The major components of ES-EDF are: E(t), K and D
where t is the current time, E(t) the amount of energy that is
currently stored at time t that means the remaining amount
of energy in the energy storage at time t. K and D are
respectively the static deadline vector and the static idle time
vector. Moreover, we use the function execute() to put the
processor to run the ready job with the earliest deadline.

We describe in algorithm 1 the pseudo code of the ES-EDF
scheduler:

Algorithm 1 Energy Saving - Earliest Deadline First (ES-EDF)
Algorithm
Require: A Set of M periodic Tasks Γ = {τi|τi =

(ri, Ci, Di, Ti, Ei) i = 1, · · · ,M} According to EDF ,
current time t, battery with capacity ranging from Emax
to Emin, energy level of the battery E(t).

Require: A processor working with N discrete frequencies
ranging from f1 (fmin) to fN (fmax).

Ensure: ES − EDF Schedule.
1: Sort task instances according to the EDF rule
2: Determine the start time of task instances
3: Compute the static EDL vectors K and D
4: for i=1:M do
5: if i==1 then
6: St1 = k0 = 0
7: else
8: Sti = ki−1

9: end if
10: end for
11: while E(t) > 0 do
12: Actual Execution Time Ci(a) = Ci + ∆(Sti)
13: Fti = Sti + Ci + Ci(a)
14: Slowdown factor Si = Ci/Ci(a)
15: Update execution time
16: Select the relative Energy Consumption (Ei)
17: Calculate the remaining energy in the battery at the end

of the execution.
18: E(Fti) = E(Sti)− Ei(Sti, F ti)
19: execute()
20: Remove task τi from ready task list
21: end while

D. Illustrative Example

Consider a periodic task set Γ that is composed of three
tasks, Γ = {τi | 1 ≤ i ≤ n} and τi = (Ci, Di, Ti). Let τ1 =
(1, 3, 5), τ2 = (2, 7, 10) and τ3 = (3, 12, 20). We assume that
the energy storage capacity is E = 350 energy units at t = 0.
The processor is assumed to be working with ten discrete slow-
down factors Si = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}.
The power dissipation of tasks τi is shown in table I:

First of all, we have to schedule Γ according to EDF within
the first hyperperiod, from 0 to 20. We verify that Γ is not
schedulable since the battery capacity is equal to zero at t =
11 and consequently the deadline miss rate is about 30%. In
details:

At time t = 0, all tasks are ready. τ1 is the highest priority
task and is executed until t = 1 where E(1) = 320 energy
units. At time t = 1, τ2 is the highest priority task and is
executed until t = 3 where E(3) = 240 energy units. τ3
is now the highest priority task and is executed until t = 5
where it is preempted by τ1. τ3 resumes its execution at time
t = 6 and is completed at t = 7 where E(7) = 30 energy
units. The remaining energy in the battery unit is sufficient
only to execute τ1 until t = 11. Now, the battery is empty and
consequently the scheduling is terminated where the deadline
miss rate is about 30% (3(a)).

103 5 8 13 15 18 200

Ƭ3

time (sec)

Ƭ1 Ƭ2

E(
10
)=
0

(a) EDF Scheduling

S

103 5 8 13 15 18 200

Ƭ3

time (sec)

S=0.8

Ƭ1 Ƭ2

S=0.4

S
=1

S=0.5

E(
10
)=
0

S
=1

S=0.5 S
=1

(b) ES-EDF Scheduling

Fig. 2. Scheduling of task set Γ

To increase the efficiency of the processor and decrease
the energy consumption, let us try scheduling the same task
set Γ but with ES-EDF. We find that Γ is schedulable since
all tasks are executed without violating deadlines and without
getting out of energy. Let us explain how ES-EDF constructs
the schedule (3(a)). Before beginning the execution of tasks,
ES-EDF computes K and D. K = (0, 3, 7, 8, 12, 13, 17, 18)
and D = (2, 2, 0, 1, 0, 2, 0, 2).

At time 0, the residual capacity i.e. remaining energy is
maximum since the storage is full. τ1 is the highest priority
task where ∆0 = 2. Thus, the actual execution time for τ1 is
equal to three and the slowdown factor S1 is S1 = 1/3 = 0.33.
Consequently, the the energy dissipation for τ1 is E1 = 12
(see table I). Now, τ1 is executed from t = 0 to t = 3 with a
slowdown factor S1 = 0.33 where E(3) = 388 energy units.

τ2 has now the highest priority and it begins its execution
at time t = k1 = 3. Its execution time is stretched until t =
C2 + ∆1 = 4. The slowdown factor is then S2 = 0.5 and the
residual capacity at time t = 7 is E(7) = 298 energy units.

At time 7, ∆2 = 0. Consequently τ1 must be executed at
full processor speed. τ1 executes completely until time 8 and
consumes 30 energy units. The residual capacity then equals
268 energy units.

This procedure continues until t = 18 where no task
requires to be processed in the interval [18, 20]. At the end
of the hyperperiod, the battery capacity is equal to 28 energy
units.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

162| P a g e
www.ijacsa.thesai.org

TABLE I. ENERGY DISSIPATION OF TASKS τi

Energy Dissipation S = 1 S = 0.9 S = 0.8 S = 0.7 S = 0.6 S = 0.5 S = 0.4 S = 0.3 S = 0.2 S = 0.1
Task τ1 30 27 24 21 18 15 12 9 6 3
Task τ2 80 72 65 56 48 40 33 25 16 8
Task τ3 180 160 140 125 110 90 70 55 36 18

VI. FEASIBILITY ANALYSIS

In contrast to EDF, ES-EDF feasibly schedules the task set
in the first hyperperiod, with the same characteristics of the
storage unit and the processor. It is important here to note that
the processor remains busy as long as there are ready tasks in
the queue. This means that the processor is busy from [0, kq].
Thus, the processor utilization is equal to 1−∆q/TLCM = 0.9.
This leads to deduce that ES-EDF is optimal with respect to
minimizing processor energy.

THEOREM 1: A task set Γ that is schedulable with EDF
remains schedulable with ES-EDF.

Proof: Let us consider the Up and U ′p as processor uti-
lization of EDF and ES-EDF respectively. If Γ is schedulable
by EDF, then Up ≤ 1. We have to prove that if Up ≤ 1, then
U ′p ≤ 1.

Suppose that Γ is not schedulable by ES-EDF, then
U ′p > 1. But U ′p =

∑M
i=1

Ci(a)
Ti

=
∑M
i=1

Ci+∆(Sti)
Ti

=

Up +
∑M
i=1

∆(Sti)
Ti

. This implies that Up +
∑M
i=1

∑q
j=1

∆j

Ti
>

1. By multiplying the whole equality by TLCM , we get
TLCMUp + TLCM∑M

i=1
Ti

∑q
j=1 ∆j > TLCM .

But since Γ is periodic, then TLCM∑M

i=1
Ti

∑q
j=1 ∆j = tidle,

where tidle is the total idle time. By substitution, we get
TLCMUp + tidle > TLCM , then tidle > TLCM (1− Up)

According to EDL, if Γ is schedulable, then the total idle
time during a whole hyperperiod TLCM is equal to TLCM (1−
Up). Contradiction. Consequently, U ′p must be less than or
equal to one.

COLLABORY 1: The processor utilization U ′p for ES-EDF
is equal to 1− min(xi)

TLCM
where xi = Ti −Di.

Proof: Let K and K be respectively the static deadline
vector and the static idle time vector, as defined in IV-B.
According to ES-EDF, the busy period within the initial
window , denoted W (l), is equal to Kq where Kq is the latest
component of K. We note that ∆q = TLCM − kq so that the
length of busy period at kq is zero. As no task requires to be
processed in such interval, the collabory is true.

THEOREM 2: Given a set of independent tasks with ar-
bitrary computation times, deadlines and periods, ES-EDF is
optimal with respect to minimizing the maximum lateness.

Proof: Given a set of independent tasks τi with arbitrary
computation times, deadlines and periods. According to Horn
[6], any schedule that puts the jobs in order of non-decreasing
deadlines minimizes the maximum lateness. Alternatively, we
concern ourselves with constructing the ES-EDF schedule that
complete all tasks by their deadlines. To capture this, given the
ES-EDF schedule that at every scheduling instant ki executes
the task with the earliest absolute deadline among all the ready
tasks and stretches its computation time Cj until its deadline

Dj . Consequently, ES-EDF minimizes the maximum lateness.
What is left in this theorem is the optimality criterion.

The maximum lateness is defined in [7] as Lmax =
maxi(fi−Di) where fi is the finish time of the ith task. We
can show that ES-EDF has a maximum lateness equal to zero.
Let us consider τ1 to be the ready task with the highest priority
at t = k0 = 0. According to ES-EDF, τ1 will be executed until
t = D1 and hence its lateness is zero. If we repeat the above
schedule until there are no more tasks in the queue, then we
have constructed the ES-EDF schedule. Since this schedule
has a maximum lateness Lmax = 0, the ES-EDF schedule
is optimal with respect to minimizing the maximum lateness.
This optimum processing utilization is equal to 1 − ∆q

TLCM

where TLCM is the period, ∆q = min{xj | 1 ≤ j ≤ n}
and xj = Tj −Dj .

VII. UPPER BOUND ON ENERGY SAVINGS

Scaling the processor frequency and voltage based on the
performance requirements can lead to considerable energy sav-
ings. This is due to the quadratic relationship between voltage
and dynamic power. In addition, the processor slowdown is
based on slowdown factors Si in such a way that energy
savings increase with decreased slowdown factor. However,
the maximum energy savings possible by the any dynamic
voltage and frequency selection algorithm must be bounded
by the amount of energy savings with respect to the minimum
slowdown factor (processing rate).

THEOREM 3: [33] A set of periodic tasks is guaranteed to
be schedulable with maximum energy savings iff the process-
ing rate is

rmin =
∑
i

Ci
Ti

(15)

From this theorem, authors concluded that the maximum
energy savings occurs when all tasks have the same averaged
processing rate. This means that the minimum processor
energy consumption occurs when all tasks are slacked by
the same amount, to the maximum allowable limit such that
rmin =

∑
i
Ci

Ti
.

Unfortunately, this conclusion is not always evident. To
prove this, let us consider the following illustrative example:
Consider a periodic task set Γ that is composed of three tasks,
Γ = {τi | 1 ≤ i ≤ n} and τi = (Ci, Di, Ti). Let τ1 = (1, 3, 5),
τ2 = (2, 7, 10) and τ3 = (2, 12, 20). We assume that the
energy storage capacity is E = 350 energy units at t = 0. The
processor is assumed to be working with ten discrete slowdown
factors Si = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}. The
power dissipation of tasks τi is shown in table I.

In order to demonstrate our theory, we have to schedule
Γ according to the assumption in [33] and then according to
different processing rates as in ES-EDF.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

163| P a g e
www.ijacsa.thesai.org

Following the assumption in [33], the minimum processing
rate (slowdown factor) is equal to rmin =

∑
i
Ci

Ti
= 0.5 and

consequently, the computation time for each task instance is
doubled (figure 3(a)). Since the same static slowdown factors
are used, Γ is scheduled till the end of the hyperperiod where
the battery capacity is equal to 90 energy units.

S

103 5 8 13 15 18 200

Ƭ3

time (sec)

S=0.5

Ƭ1 Ƭ2

S=0.5 S=0.5

E(
10
)=
0

S
=1

S=0.5 S
=1

S=0.5

(a) Scheduling according to same slack amount

S

103 5 8 13 15 18 200

Ƭ3

time (sec)

S=0.5

Ƭ1 Ƭ2

S=0.4

S
=1

S=0.5
E(
10
)=
0

S
=1

S=0.5 S
=1

(b) ES-EDF Scheduling

Fig. 3. Scheduling of task set Γ

Now, let us try scheduling the same task set Γ but with ES-
EDF (figure 3(b)). We find that Γ is schedulable since all tasks
are executed without violating deadlines and the remaining
energy in the battery at the end of the hyperperiod is equal to
108 energy units.

From this example, we can deduce that ES-EDF feasibly
schedules the task set in the first hyperperiod and with more
energy saving than when considering the same averaged pro-
cessing rate.

THEOREM 4: A set of periodic tasks is guaranteed to be
schedulable with maximum energy savings iff the optimal
slowdown factor is approximated by

Sopt = (1− xq
TLCM

)Up (16)

Proof: It has been proved in [9] that a periodic task set is
guaranteed to be schedulable by EDF iff

∑
i
Ci

Ti
≤ 1. Theorem

3 demonstrated that the maximum allowable limit, in case of
equal slowdown factors, is bounded by Esave(Smin) where the
minimum slowdown factor Smin =

∑
i
Ci

Ti
. We will now show

the minimum energy consumption under different slowdown
factors. Let us consider Si and Sopt as the slowdown factor of
task instance τi and the optimal slowdown factor respectively.
From equation (14), Si = Ci

Ci(a) . We can derive the condition
that Sopt has to satisfy in order to guarantee the schedulability
of the task set, then Sopt =

∑
i

Ci

Ci(a) . But since tasks are
periodic, then we have to multiply by TLCM∑

i
Ti

. Therefore, the

average of slowdown factors is equal to

Sopt =
1

T

∑
i

Ci
(Ci(a))(Ti)

(17)

Now, let’s consider the following inequality that can be
verified using the Cauchy-Schwarz inequality

(
∑
i

Ci
(Ci(a))(Ti)

)(
∑
i

Ci(a)) ≥
∑
i

Ci
Ti

(18)

By making some arrangement and distribution of the terms,
we get

Sopt ≥ (1− xq
TLCM

)Up (19)

Then, the minimum speed Sopt that ensures feasibility is
Sopt = (1− xq

TLCM
)Up.

VIII. PERFORMANCE EVALUATION

This section provides performance evaluation of the algo-
rithms. Algorithms under simulations are ES-EDF, EDF and
Enhanced EDF (E-EDF). E-EDF is an enhanced version of
EDF in a way that tasks are slacked by the same slowdown
factor S =

∑
i
Ci

Ti
.

A. Experimental Setup

We implemented the proposed scheduling techniques in a
discrete event simulator using C/C++. To evaluate the effec-
tiveness of the ES-EDF algorithm, we consider a task generator
of periodic tasks based on that described by Martineau in
[34]. It accepts as input several parameters: the number of
desired tasks n, the hyperperiod of task periods TLCM and
processor utilization Up. At the output, we obtain a task
configuration of the scheduled task set. The execution times
of tasks are randomly generated such that

∑
i
Ci

Ti
≤ 1. The

simulator generates 30 tasks with least common multiple of
the periods equal to 3360. The worst-case computation times
are set according to the processor utilization Up. Deadlines are
less than or equal to periods and greater than or equal to the
computation times (Ci ≤ Di ≤ Ti).

To estimate the processor energy consumption, we use Intel
XScale processor supporting five frequency levels [35]. The
discrete frequencies, supply voltage and consumed power the
processor are listed in Table II. We assume that the energy

TABLE II. XSCALE FREQUENCIES, SUPPLY VOLTAGES, AND POWER

Frequency (MHz) 150 400 600 800 1000
Power (mW) 80 170 400 900 1600
Voltage (V) 0.75 1.0 1.3 1.6 1.8

storage is fully charged at the beginning of the simulation.
After a deadline violation is detected, the simulation terminates
for ES-EDF, EDF and E-EDF.

B. Percentage of Feasible Task Sets by Varying Up

Our simulation depicts the percentage of feasible task sets
by varying the processor utilization Up. Here, we take interest
in the percentage of task sets which are feasible with ES-EDF,
EDF and E-EDF. We report the results of this simulation study
where Up varies from 0.1 till 1 (figure 4).

Under low processor utilization, we observe that ES-EDF
maintain 100% of feasible task sets, and exceeds that of E-
EDF and EDF by about 31% and 49%. This is due to the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

164| P a g e
www.ijacsa.thesai.org

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

Processor Utilization(Up)

Pe
rc

en
ta

ge
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

E−EDF
EDF
ES−EDF

Fig. 4. Percentage of Feasible Task Sets by Varying Up

fact that the EDF algorithm runs at full processor speed and
does not utilize DVS technique to save energy. On the other
hand, in E-EDF, tasks are slacked with equal slowdown factor
and consequently not all deadlines will be met. Hence, ES-
EDF system significantly reduces the deadline miss rate due to
energy shortage. In other words, the more stored energy means
that more tasks are able to be finished before their deadlines.

As Up increases, the percentage of feasible task sets in
ES-EDF decreases. This is because ES-EDF utilizes the slack
time to slow down the execution for energy savings. Under
high values of Up, slack time decreases and most of tasks are
just executed at the full speed, as EDF algorithm does. Hence,
the ES-EDF system incurs much higher deadline miss rate but
still exceeds that of E-EDF and EDF by about 34% and 46%.

It is important to note that when the processor utilization
is set to one, ES-EDF, E-EDF and EDF has exactly the same
percentage of feasible task sets. This is because the processor
is always active and there is no processor idle time.

C. Percentage of Feasible Task Sets by Varying Battery Ca-
pacity

This experiment depicts the percentage of feasible task sets
over the energy storage capacity E. Here, we take interest in
the percentage of task sets which are feasible with ES-EDF
and not feasible with E-EDF and EDF. We report the results
of this simulation study where the processor utilization Up is
set to 0.4 and 0.8 respectively.

For each task set, we compute Efeas as the minimum
storage capacity which permits to achieve neutral operation
according to ES-EDF. i.e. all tasks are executed without
violating deadlines and the battery is not empty at the end
of the hyperperiod. After that, we vary E with E > Efeas so
as all task sets are feasible with E-EDF and EDF.

When Up is set to 0.4 (figure 5 (a)), we observe that the
battery capacity must be about 2.2 and 3.6 times bigger with
E-EDF and EDF to maintain 100% feasible task sets compared
to ES-EDF. This is due to the fact that EDF algorithm runs
at full processor speed and does not utilize DVS technique to
save energy. Thus, the SE-EDF and E-EDF systems signifi-
cantly reduce the deadline miss rate due to energy shortage.

Unfortunately, E-EDF considers equal slowdown factors and
this will reduce the percentage of feasible task sets.

In other words, the more stored energy means that more
tasks are able to be finished before their deadlines. Hence, the
ES-EDF system incurs much higher deadline miss rate when
compared to E-EDF and EDF.

Figure 5 (a) shows that the deadline miss rate of E-EDF
and EDF exceeds that of the proposed scheduling algorithm
by about 45% and 61% when battery capacity is respectively
the same. Hence, the ES-EDF algorithm is favorable even for
small battery capacity.

If we increase the processor utilization to 0.8 and run the
simulation again, we find that the gain in capacity savings is
decreasing (figure 5 (b)). ES-EDF obtains capacity savings of
about 24% and 41% compared to E-EDF and EDF respectively.
The decrease in capacity savings can be attributed to the fact
that as Up increases, the slacking gets harder and the SE-EDF
schedule tends to the EDF schedule with processor utilization
increasingly being set to 1.

D. Ratio of Energy Savings

We present in this section the energy gains achieved by ES-
EDF when compared to E-EDF. Experiments were performed
on task sets with varying processor utilization (Up). Figure 6
shows the normalized energy gains for ES-EDF and EDF, that
means the quantity of energy gains relative to battery capacity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Processor Utilization (Up)

N
or

m
al

iz
ed

 E
ne

rg
y

G
ai

ns

E−EDF
ES−EDF

Fig. 6. Ratio of Energy Savings of ES-EDF, E-EDF and EDF

From the beginning, we state that there are no energy gains
in EDF since it operates at maximum processor frequency.
As for ES-EDF and E-EDF, when the task execution time
is decreased, there is more slack which results in decreasing
the energy consumption by operating at a lower voltage.
Furthermore, the average energy gains in ES-EDF is about
28% more than E-EDF. This is due to the fact that ES-EDF
stretches tasks as much as possible while still guaranteeing
deadlines and consequently the processor is always active.
On the other hand, tasks in E-EDF are slacked with equal
slowdown factor and consequently not all deadlines will be
met.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

165| P a g e
www.ijacsa.thesai.org

1 1.5 2 2.5 3 3.5
30

40

50

60

70

80

90

100

E / Efeas

%
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

(a) Up=0.4

1 1.2 1.4 1.6 1.8 2 2.2
55

60

65

70

75

80

85

90

95

100

E / Efeas

%
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

(b) Up=0.8

ES−EDF
E−EDF
EDF

ES−EDF
E−EDF
EDF

Fig. 5. Percentage of Feasible Task Sets by Varying Battery Capacity

IX. CONCLUSION

In this paper, we considered the problem of developing an
energy saving algorithm for periodic task sets characterized
by real-time deadlines using variable voltage and frequency
assignments on a monoprocessor system. To this end, we
proposed and Energy Saving EDF (ES-EDF) algorithm that
is proved to be optimal in minimizing the maximum lateness
and the processor energy consumption. In addition, we demon-
strated through an illustrative example that it is not necessary
that all tasks must be slacked by the same amount so as to
obtain a minimum processor energy consumption. We then
determined the optimal scaling factor by which a task should
be stretched to maximize energy savings while still respecting
all deadline constraints. The proposed algorithm achieved an
average energy savings of about 28% when compared to EDF.
Further, ES-EDF yields higher percentage of feasible task sets
which exceeds that of E-EDF and EDF by about 33% and
47%.

We are currently looking at extending the proposed energy
saving scheduling algorithm to operate at multiprocessor sys-
tems.

ACKNOWLEDGEMENTS

This work is fully supported by the SNCS Research Center,
the University of Tabuk, and the Ministry of Higher Education
in Saudi Arabia.

REFERENCES

[1]
[2] G. Simon, M. Maroti, and A. Ledeczi, Sensor Network-Based Coun-

tersniper System. In Proceedings of the 2nd ACM Conference on
Embedded Network Sensor Systems (SenSys04), Baltimore, Maryland,
November, 2004.

[3] C. Hartung, R. Han, C. Seielstad, and S. Holbrook, FireWxNet: A Multi-
Tiered Portable Wireless System for Monitoring Weather Conditions in
Wildland Fire Environments. In Proceedings of the 4th International
Confernce on Mobile Systems, Applications, and Services (MobiSys06),
Uppsala, Sweden, June, 2006.

[4] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and yield in a volcano monitoring sensor network. In Proceedings
of the 7th USENIX Synposium on Operating Systems Design and
Implementation (OSDI06), Seattle, Washington, November, 2006.

[5] J. Zhuo and C. Chakrabarti, Energy-efficient Dynamic Task Scheduling
for DVS Systems. ACM Transactions on Embedded Computing Systems,
February, 2008.

[6] W. Horn, Some Simple Scheduling Algorithms. Naval Research Logistics
Quaterly, 21, 1974.

[7] ML. Dertouzos, Control robotics: the procedural control of physical
processes. Proceeding of International Federation of Information
Processing Congress, 1974.

[8] M. Silly-Chetto, The EDL Server for scheduling periodic and soft
aperiodic tasks with resource constraints. Real-Time Systems, 17(1),
pp.1-25, 1999.

[9] C-L Liu , J-W Layland, Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of ACM, 46-61, 1973.

[10] Dertouzos ML, Control robotics: the procedural control of physical
processes. Proceeding of International Federation of Information Process
Cong, 80713, 1974.

[11] J-Y-T Leung , J. Whitehead, On the complexity of fixed-priority schedul-
ing of periodic real-time tasks. Performance Evaluation, 1982.

[12] H. Chetto, and M. Chetto, Some results of the earliest deadline
scheduling algorithm. IEEE Transactions on Software Engineering,
15(10): 1261-1269, 1989.

[13] Yao, F., Demers, A.J., Shenker, S., A scheduling model for reduced
CPU energy. In: Proceedings of IEEE Symposium on Foundations of
Computer Science, 374382, 1995.

[14] T. Ishihara and H. Yasuura, Voltage scheduling problem for dynamically
variable voltage processors. In Proceedings of the International
Symposium on Low Power Electronics and Design, Monterey, CA, pp.
197-202, 1998.

[15] Quan, G., Hu, X., Minimum energy fixed-priority scheduling for vari-
able voltage processors. In Proceedings of Design Automation and Test
in Europe, 2002.

[16] Kwon, W., Kim, T., Optimal voltage allocation techniques for dy-
namically variable voltage processors. In Proceedings of the Design
Automation Conference, 125130, 2003.

[17] Aydin, H.,Melhem, R.,Mossé, D., Alvarez, P.M., Determining optimal
processor speeds for periodic real-time tasks with different power char-
acteristics. In Proceedings of EuroMicro Conference on Real-Time
Systems, 2001.

[18] Jejurikar, R., Gupta, R., Optimized slowdown in real-time task systems.
In Proceedings of EuroMicro Conference on Real-Time Systems, June,
2004.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

166| P a g e
www.ijacsa.thesai.org

[19] Aydin, H., Melhem, R., Mossé, D., Alvarez, P.M., Dynamic and
aggressive scheduling techniques for power-aware real-time systems. In
Proceedings of IEEE Real-Time Systems Symposium, 2001.

[20] Zhang, F., Chanson, S.T., Processor voltage scheduling for real-time
tasks with non-preemptible sections. In Proceedings of IEEE Real-Time
Systems Symposium, Dec., 2002.

[21] Kim,W., Kim, J., Min, S.L., A dynamic voltage scaling algorithm for
dynamic-priority hard real-time systems using slack time analysis. In
Proceedings of Design Automation and Test in Europe, March, 2002.

[22] Y. Shin and K. Choi, Power Conscious Fixed Priority Scheduling for
Hard Real-Time Systems. In Proceedings of the 36th Design Automation
Conference, DAC99, 1999.

[23] Arezou Mohammadi and Selim G. Akl, Scheduling algorithms for real-
time systems. Technical report no. 2005-499, 2005.

[24] Y. Shin, K. Choi, and T. Sakurai, Power optimization of real-time
embedded systems on variable speed processors. In Proceedings of the
2000 IEEE/ACM International Conference on Computer-Aided Design,
pages 365-368, 2000.

[25] P. Mejia-Alvarez, E. Levner, and D. Mosse, Adaptive scheduling server
for power-aware real-time tasks. ACM Transactions on Embedded
Computing Systems, 3(2):284-306, 2004.

[26] J.-J. Chen, T.-W. Kuo, and C.-S. Shih, 1 + ε approximation clock rate
assignment for periodic real-time tasks on a voltage-scaling processor.
In the 2nd ACM Conference on Embedded Software (EMSOFT), pages
247-250, 2005.

[27] D. Zhu and H. Aydin, Reliability-aware energy management for periodic
real-time tasks. In Proc. of the IEEE Real-Time and Embedded
Technology and Applications Symposium, 2007.

[28] D. Zhu, X. Qi, and H. Aydin, Priority-monotonic energy management
for real-time systems with reliability requirements. In Proc. of the IEEE
International Conference on Computer Design (ICCD), 2007.

[29] Dakai Zhu, Xuan Qi and Hakan Aydin, Energy Management for
Periodic Real-Time Tasks with Variable Assurance Requirements. In
Proceedings of the 2008 14th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications. Pages 259-
268, 2008.

[30] Ravindra Jejurikar and Rajesh Gupta, Energy-Aware Task Scheduling
With Task Synchronization for Embedded Real- Time Systems. IEEE
Transactions on Computer Aided Design of Integrated Circuits and
Systems, vol. 25, no. 6, JUNE, 2006.

[31] Y.-S. Chen, C.-Y. Yang, and T.-W. Kuo, Fl-pcp: Frequency locking for
energy-efficient real-time task synchronization. In the 13th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2007.

[32] Ya-Shu Chen and Tay-Jyi Lin, Voltage Emergence Prevention for
Energy-Efficient Real-Time Task Synchronization. IEEE 8th International
Conference on Computer and Information Technology Workshops, 2008.

[33] Amit Sinha and Anantha P. Chandrakasan, Energy Efficient Real-
Time Scheduling. Asia-South Pacific Design Automation Conference
Proceedings (ASPDAC), 2001.

[34] P. Martineau: Ordonnancement en-ligne dans les systèmes informa-
tiques temps-réel. PhD Dissertation, University of Nantes, 1994.

[35] Intel Corp, Intel XScale Processor Family Electrical, Mechanical, and
Thermal Specification Datasheet. Santa Clara, CA, USA, 2004.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

167| P a g e
www.ijacsa.thesai.org

