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Abstract—Received signal strength (RSS)-based mobile local-
ization has become popular due to its inexpensive localization
solutions in large areas. Compared to various physical properties
of radio signals, RSS is an attractive approach to localization
because it can easily be obtained through existing wireless devices
without any additional hardware. Although RSS is not considered
to be a good choice for estimating physical distances, it provides
some useful distance related information in adding and indicat-
ing connectivity information in neighboring nodes. RSS-based
localization is generally divided into range-based and range-
free. Range-based localization can achieve excellent accuracy
but is too costly to apply to large-scale networks. Methods of
range-free localization are regarded as cost-effective solutions
for localization in sensor networks. However, the localizations
are subject to the effect of radio patterns that affect variations in
the radial distance estimates between nodes. It is a challenging
task to select an efficient RSS value that can provide small
variations in the radial distance in wireless environments. We
propose a method of Mobile Localization using the Proximities
of Selective coordinates (MoLPS) to localize target nodes by using
information on proximities between target nodes and mobile
receivers as a metric to estimate the location of target nodes.
We ran a simulation experiment to assess the performance of
MoLPS with 100 target nodes that were randomly deployed
along a sensory field boundary. We found from the results of the
simulation experiment that localization error had been reduced
to below 2m in more than 80% of the target nodes.

Keywords—Localization, proximity estimation, genetic algo-
rithm, wireless sensor networks, received signal strength.

I. INTRODUCTION

Wireless sensor networks (WSNs) [1] are composed of
many sensor nodes that have sensing and computational and
wireless communication capabilities. Although WSNs have
demonstrated their importance and capabilities in emergency
applications, if the positions of sensor nodes are known, the
use of these applications could be even more effective.

Localization is fundamentally a serious problem that deals
with how to use information from sensor nodes to determine
position coordinates. Locating an item is a critical process
at distribution centers since poor performance results in un-
satisfactory customer services (long processing and lagged
delivery) and high costs. Suppose that a sensor node is attached
to an item at a distribution center. Although placing an item

at a fixed location makes it easier to locate it, it is not always
the most space-efficient method of storage for products that
are less predictable due to uncertain demand [2]. In contrast,
random-location storage uses less storage space even though it
requires the use of a locator to identify the locations of items.
A straightforward solution would be to equip all sensor nodes
with GPS receivers that could provide them with the exact
locations of items. However, this is not a cost-effective solution
and it has limited applications because GPS only works in open
areas with no obstructions to satellite signals.

Receiver-assisted localization has attracted a great deal of
attention in estimating the positions of items that are equipped
with sensor nodes. Receivers detect sensor nodes by using
the radio signals received from them. There are generally two
types of deployments used to detect sensor nodes. The first is
to fix several receivers that cover particular regions [3]. Thus,
the numbers of receivers and their distributions have a direct
impact on the accuracy of localization. A large number of
distributed receivers will lead to improved accuracy. However,
costs will be high if they are applied to large areas. The second
method is to use mobile receivers to sense locations. Since
mobile receivers are portable and easy to use, they are suitable
for location sensing in large areas (e.g. distribution centers).

On this basis, we reassess existing localization scheme
and exlore the possibility of using selected coordinates of
mobile receivers. We evaluated the concentration of center
coordinates, which are computed from the selected coordinates
of mobile receivers, to estimate the position of a target node
without deploying fixed receivers or fixed anchors. We called
the coordinates of the mobile receivers footprints. We divided
the footprints into multiple sets in which each set represented
the footprints that received signals in the given range of path
loss values for each set. Path loss describes a signal’s energy
loss that varies continuously as it travels to a receiver [4].
Instead of selecting all the footprints to compute the average
for each set, we selected footprints that had fewer variations in
the radial distance to the true target node in each set. The center
coordinates of selected footprints were individually computed
and the concentration of center coordinates of selected foot-
prints were evaluated to estimate the true position of the target
node.

The rest of the paper is organized as follows: The motiva-
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Fig. 1: (a) Variations in distance using centroid and (b) com-
parison of localization accuracy with two different selection of
footprints

tion for our research is presented in Section 2. We investigated
state-of-the-art range-based and range-free localization tech-
niques, which are described in Section 3. Section 4 describes
the problem of how to localize target nodes by using our
proposed algorithm. Section 5 describes our overall algorithm.
Our evaluation of performance is described in Section 6. and
are followed by closing remarks in Section 7.

II. MOTIVATION

Mobile receivers are used in mobile localization to measure
the physical properties of collected radio signals from target
nodes. Localization based on received signal strength (RSS)
has become popular because it is an inexpensive solution to
the problem of localizing target nodes. Compared to various
physical properties of radio signals, such as Time of Arrival
(ToA) [5], Time Difference of Arrival (TDoA) [6] or Angle of
Arrival (AoA) [7], RSS is an attractive approach to localization
because it can easily be obtained through existing wireless
devices without the need for any additional hardware. The ma-
jor challenge to accurate RSS-based positioning results from
the variations in RSS that change over time and space due to
dynamic and unpredictable signal propagation. Although RSS
is not considered to be a good choice for estimating physical
distances in many scenarios that involve unknown radio path
loss factors, hardware discrepancies, and antenna orientation
[8], [9], it provides useful information that is distance related
in addition to indicating connectivity information between
neighboring nodes. Many techniques of RSS-based localization
have been proposed in the past two decades. They generally
fall in two categories of range-based and range-free.

RSS readings are used in range-based localization tech-
niques [8], [9] to directly estimate the physical location of
target nodes. However, RSS measurements are easily cor-
rupted by surrounding environments. Moreover, techniques of
range-based localization require expensive and power-intensive
measuring devices or synchronization that may incur cost
and energy problems. In contrast, range-free approaches have
been proposed as an alternative to pursue cost and energy
effectiveness in WSNs [10], [11]. Range-free approaches are
typically used for connectivity between nodes as a metric to
estimate the position of target nodes without computing the
actual distance between nodes.

The accuracy of localization in range-free approaches is
subject to the effect of radio patterns that affect variations

TABLE I: Set of footprints.

Set, q Path Loss [dB], PL
1 41.5 < PL ≤ 42.5
2 42.5 < PL ≤ 43.5
3 43.5 < PL ≤ 44.5
4 44.5 < PL ≤ 45.5
5 45.5 < PL ≤ 46.5
6 46.5 < PL ≤ 47.5
7 47.5 < PL ≤ 48.5
8 48.5 < PL ≤ 49.5
9 49.5 < PL ≤ 50.5

10 50.5 < PL ≤ 51.5

in estimates of the radial distance between nodes. Many of
these techniques use an average of all anchor positions in their
communication range [10] or in the same hop-count values
[11] to localize the target nodes, which results in variations in
the radial distance being underestimated thereby causing large
localization errors. Localization errors vary between estimates
of target nodes caused by variations in the radial distance
that result from target nodes that have not been uniformly
deployed. It is a challenging task to select efficient RSS
values that can provide small variations in the radial distance
from accumulated RSS values in wireless environments where
complex and dynamic RSS values can affect the estimates of
radial distances.

We propose a method of Mobile Localization using Prox-
imities of Selective coordinates (MoLPS) to localize target
sensor nodes by using the connectivity between them and
mobile receivers as a metric to estimate their locations to
solve these stated challenges. Locations are estimated from the
coordinates of footprints where the signals are collected from
target sensor nodes. MoLPS assume the presence of a tentative
coordinate that is arbitrarily located at a known location in the
field in which it is deployed. The distance between a tentative
coordinate and center coordinates of selected footprints are
iteratively compared to select effective footprints to localize
target nodes. We used a genetic algorithm (GA) to search the
best selection of footprints that had fewer variations in the
radial distance from other selected footprints to the tentative
coordinates. We iteratively improved the positions of the
tentative coordinate by evaluating the concentration of center
coordinates of selected footprints in the vicinity of the tentative
coordinate.

III. RELATED WORKS

Theoretical or empirical models are used in range-based
localization techniques to translate RSS into estimates of
distance. Range-based localization can achieve better accuracy
but is costly in requiring either per-node ranging hardware
[12] or careful system calibration and environment profiling
[13], [14], and thus it is not appropriate for large-scale
sensor networks. The correlation of noise due to shadowing
from obstacles in wave propagation has been exploited to
estimate the locations of transmitters [15]. Cumulative errors
in measurement with positioning methods have been treated as
problems with localization where data sampled over time have
generated points in high dimensional space [16], [17], [18].
The multi-dimensional scaling (MDS) model has been used to
reduce dimensionality to estimate locations [16]. However, the
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linear relationship requirement between correlation coefficients
and radial distance in MDS has restricted its applications
to wireless environments where RSS correlations are highly
nonlinear if there is a radial distance [19] between receivers.
Manifold learning (reduced nonlinear dimensionality) algo-
rithms such as Isomap, Local Linear Embedding (LLE) and
Hessian LLE have been used to centralize localization [17],
[18]. The linearity between correlation measurements and
radial distance is restricted in these approaches to a small area
containing K nearest neighbors. However, the linearity between
RSS and radial distance does not hold in Li and Liu [19], even
in the immediate vicinity of operating frequencies greater than
10 MHz.

Range-free approaches localize nodes based on simple
sensing, such as wireless connectivity [11], [20], [21] and
anchor proximity [10], [22], [23]. Wireless connectivity in-
formation between neighboring nodes is used to estimate the
location of a target node by using MDS [20]. Their major
limitation is that they all rely on a large number of uniformly-
distributed anchors in the networks. Embedding the combi-
natorial Delaunay complex in the landmark Voronoi diagram
[21] has improved the localization of target nodes in various
network topologies. However, using a number of landmarks to
achieve precise accuracy in localization is costly.

The approximate-point-in-triangulation (APIT) algorithm
[22] was proposed for area-based range-free localization,
where all sensor nodes were localized by using the location
information of GPS-equipped anchors. The areas occupied
by sensor nodes were divided into many triangular regions
between anchors in this approach by using the location in-
formation provided by GPS. This approach provided excel-
lent accuracy when irregular radio patterns and random node
placements were considered. Moreover, the large number of
distributed anchors will counteract problems such as high
deployment costs when applied to large areas. In Centroid
[10], all possible anchors broadcast their location information
to all other target nodes. The target nodes use the location
information from anchors that are located in their vicinity to
estimate their own location coordinates. The main difficulty
with the centroid is the large number of anchors to be consid-
ered in the estimates. Moreover, if anchors are not uniformly
distributed, the distance between them and target nodes varies,
which deteriorates the accuracy of localization. It is necessary
to take into consideration the distance between anchors and
target nodes to solve this problem. The distances between
anchors and target nodes are considered in the distance vector-
hop (DV-hop) localization algorithm [11] and resilient Ethernet
protocol (REP) [23] as a form of hop counting, which is a
range-free approach that does not use RSS to compute the
distance between nodes. DV-hop performs well when deployed
sensor nodes have regular node density and distances between
them. However, the resulting estimates may not be optimal if
the radio patterns are irregular and random node deployment
is used in practice.

In MoLPS, the coordinates of anchors were determined
from the selected coordinates of footprints by using our pro-
posed method. Instead of selecting all the anchors to estimate
the location of target nodes, we select the anchors that had
fewer variations in the radial distance which can minimize
the uncertain radial distance contamination problem to the

Fig. 2: Selection of footprints and improved T in MoLPS.

localization of target nodes.

IV. PROBLEM DEFINITION

We assumed that a mobile receiver would travel within a
sensory boundary field that was deployed by sensor nodes that
were transmitting their signals to the receiver on a periodic
basis in this research. The mobile receiver is traveling at a
constant speed while it is collecting signals from target nodes
at τ intervals. The mobile receiver and target nodes are capable
of communicating within their communication range D. Every
time the mobile receiver receives a signal from target node i, it
measures the RSS value of the signal and then stores it as tuple
(t, ri,t), where t is the time denoted as t = t1, t2, . . . , tτ and
ri,tj is an RSS value denoted as ri,tj = ri,t1 , ri,t2 , . . . , ri,tτ .
Each tuple contains a different RSS value, each of which is
collected from a different position of the footprint in each t.

We assumed that the ranging levels of RSS received from
a target node would decrease due to path loss effects as the
distances between each footprint and target node increased.
All footprints Pkq,q =

(
Xkq,q, Ykq,q

)
were divided into s sets

according to the path loss values. Here, Pkq,q denotes kq-th
footprints in set q where kq = 1, 2, . . . ,mq and q = 1, 2, . . . , s
as listed in Table I.

We took into consideration noisy environments in mea-
suring RSS that contributed to variations in radial distances
between footprints that received the same RSS values from
a target node. The average of the positions from surrounding
footprints are used in the centroid to estimate the locations
of target nodes [10]. Accuracy with this approach greatly
depends on variations in the radial distances of a target node
at each footprint. The propagation of wireless signals is ideal
in a noise-free environment, such that a target node can
communicate with a mobile receiver from any footprint that
is located within a perfect sphere centered on the target node
and with a radius equal to its standard interrogation range. It
is possible in this case to estimate the position of a sensor
node by averaging all footprint coordinates that are located
within its radius. However, it is difficult to guarantee whether
the radial distance of the target node will be accurate at each
footprint in practice in noisy environments. Moreover, since
the position of a true target node is unknown, there is no way
of selecting footprints that have fewer variations in distance to
estimate the position of a target node.

It is necessary to select footprints that have fewer variations
in radial distance in range-free mobile localization that relies
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Fig. 3: The chromosome representation and generation process
in GA.

on the average of the footprints as the positions of the esti-
mates. For example, the mobile receiver in Fig.1(a) is traveling
around the sensor node field and is collecting signals at each
time interval and d1, d2, . . . , d6 denote the radial distances of
a target node to all footprints. Assuming that there are two
sets of footprint coordinates in Fig.1(b), localization using
the information from Set1 is more accurate than that from
Set2. The small variations in radial distance between the target
node and each footprint in Set1 contribute to greater accuracy.
Therefore, it is important to select appropriate footprints that
have fewer variations in radial distance to estimate the posi-
tions of target nodes and to obtain accurate localization.

V. DESCRIPTION OF ALGORITHM

We iteratively improved the position of tentative coordi-
nates T = (XT , Y T ) in close proximity to the true position
of a target node to estimate the position of the target node.
Here, we used T to select the collection of footprints that had
a center coordinate nearest to T . The algorithm we propose
is outlined in Fig. 2. First, we arbitrarily define T in the
sensory boundary field without any knowledge of the position
of the target node. Then, we select the collection of footprints
that have the nearest center coordinates to T for each set
q. After the footprints have been selected, we determine the
moving distance for T by evaluating the concentration of
plotted center coordinates of selected footprints in the vicinity
of T by iteratively improving T until the number of cycles of
improvements to obtain the best solution is satisfied.

A. Selection of footprints

We selected collections of footprints that had fewer varia-
tions in radial distance to obtain accurate estimates of a target
node with MoLPS. We used a genetic algorithm (GA) approach
in this research to select Pkq,q by searching the nearest center
coordinates of selected footprints to a tentative coordinate, T .
The pseudocode for the GA in selecting the footprints is given
in Algorithm 1. GA is a search algorithm that searches an
optimal solution to solve a combinatorial problem, such as the
NP-complete traveling salesman problem (TSP). The solution
to a given problem is represented as a chromosome in GA.
A population of solutions is created, and operators such as
mutation and crossover are applied to derive the solutions.

Algorithm 1 Selection of footprints with GA

1: r ← rand()
2: S1← Chromosome1 = {P1,q, P2,q, . . . , Pr,q}
3: S2← Chromosome2 = {Pr+1,q, Pr+2,q, . . . , Pmq,q}
4: F1← Distance between center of S1 and T
5: F2← Distance between center of S2 and T
6: while loop < 50 do
7: if F1 < F Best then
8: S Best← S1
9: F Best← F1

10: end if
11: if F2 < F Best then
12: S Best← S2
13: F Best← F2
14: end if
15: crossover()← Generation of offspring
16: S1← Offspring1
17: S2← Offspring2
18: F1 ← Distance between center of S1 and T after

crossover
19: F2 ← Distance between center of S2 and T after

crossover
20: loop← loop+ 1
21: end while

The relative accuracies (fitnesses) of the solutions are then
compared to find the best solution.

Assuming we have a total of mq footprints in a q set, we
determine all footprints in Pkq,q as an initial solution, Sq =
{P1,q, P2,q, . . . , Pmq,q}. We determine the center coordinates
of Sq as Cq , which is computed as:

Cq =
(∑mq

kq=1Xkq,q

mq
,

∑mq
kq=1 Ykq,q

mq

)
(1)

The chromosome representation and the generation process
in GA is outlined in Fig.3. We let Sq represent the initial
population in GA and compute the distance between Cq and
T as the initial fitness of GA, Fq as:

Fq =
√

(XT −XCq )2 + (Y T − Y Cq )2 (2)

where (XCq , Y Cq ) denotes the center coordinate Cq for Sq .
We divide Sq into two sets of footprints at randomly chosen
points to represent two chromosomes in GA and compute the
fitness of each chromosome as F1,qand F2,q using the same Eq.
(2). The best solution is selected from a pair of chromosomes
based on the least fitness (i.e., nearest distance) by comparing
F1,q and F2,q . A chromosome that has better fitness is selected
as the best solution, Sbestq .

Crossover is applied to generate offspring chromosomes
from dominant parent chromosomes. The crossover operator
separates each chromosome into two sets at randomly chosen
crossover points and exchanges separate sets to form new
offspring. If crossover does not occur, the new offspring
are exact copies of their parent chromosomes. Then, GA is
repeated using the new offspring until the number of iterations
of the computation satisfies a bound (e.g., fifty).
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We assume the selected footprints at the last iteration
of GA to be the best selection of footprints SBestq =
{P1,q, P2,q . . . , Pnq,q} where nq is the total number of selected
footprints. We search SBestq for each set of footprints and use
the center coordinates CBestq of SBestq , which are computed
with Eq. (3) to improve the position of T as will be described
in the next subsection.

CBestq =
(∑nq

kq=1Xkq,q

nq
,

∑nq
kq=1 Ykq,q

nq

)
(3)

B. Improvements to tentative coordinate

We compute a direction vector by evalu-
ating the concentration of center coordinates
{CBest1 , CBest2 , . . . , CBestq , . . . , CBests } in the vicinity of
T to improve the position of T .

As can be seen from Fig. 5, we assume a square region
centered at T that is divided into 3 × 3 frames. The square
region has an A length along each side that initially covers
all the center coordinates. We call the square region the
sequence spatial density (SSD). Each frame contains a value
that indicates the number of CBestq coordinates.

Let Ix,y denote the number of CBestq points in the frame
(x, y) where x, y are the indexes of the frames in SSD shown
in Fig. 5. We determine a direction vector by computing
the partial derivatives of SSD as the sum of the differences
between two adjacent frames in SSD as:

∂I

∂x
= (I2,1 − I1,1) + (I3,1 − I2,1)

+ (I2,2 − I1,2) + (I3,2 − I2,2)

+ (I2,3 − I1,3) + (I3,3 − I2,3)

∂I

∂y
= (I1,2 − I1,1) + (I1,3 − I1,2)

+ (I2,2 − I2,1) + (I2,3 − I2,2)

+ (I3,2 − I3,1) + (I3,3 − I3,2)

(4)

We compute the partial derivatives of SSD horizontally ∂I
∂x

and vertically ∂I
∂y to compute the direction vector at each h-

th cycle of the improvements by using the direction vector
function,

−−−→
DV F as:

−−−→
DV Fh =

(∂I
∂x
,
∂I

∂y

)
(5)

.

We improve Th by using
−−−→
DV Fh with length ∆Th propor-

tional to the vector’s magnitude, |
−−−→
DV Fh|, computed as:

|
−−−→
DV Fh| =

√
(
∂I

∂x
)2 + (

∂I

∂y
)2 (6)

∆Th =
( ∂I

∂x

|
−−−→
DV Fh|

× ν,
∂I
∂y

|
−−−→
DV Fh|

× ν
)

(7)

Here, ν denotes a scale factor parameter for the unit vector
computed from

−−−→
DV Fh to determine the length of improve-

ment, ∆Th. We improve the position of Th with direction
vector ∆Th for the next cycle of improvement as:

Th+1 = Th + ∆Th (8)

Fig. 5: Frames of Sequence of Spatial Density (SSD)

The improvement of T will also affect the concentration of
center coordinates. As we can see from Fig. 4, T has improved
its position approaching the true positions of target nodes at
20, 40, and 60 cycles. The concentration of center coordinates
has also simultaneously improved as they are computed by the
average of selected footprints that are nearest to T as described
in Subsection V-A.

Therefore, instead of using the same values of parameters
A and ν in all cycles, we reduced both parameters by the
fraction of a/b every m cycles of improvement to avoid
phenomena where improvement was not taking effect because
the frames were too large, as shown in Fig. 7. We called
these phenomena zero vector effects, where the direction vector
became zero as all the center coordinates were located inside
the center frame of SSD. If none of the center coordinates are
located in the frame other than the center frame of SSD, the
direction vector will become zero as they are computed from
the sum of the differences between two adjacent frames.

VI. PERFORMANCE EVALUATION

We conducted a simulation on the proposed algorithm to
evaluate the performance of MoLPS to localize sensor nodes in
a noisy environment. This simulation experiment was used to
demonstrate what effect a noisy environment and the shrinking
size of SSD had on the localization error of sensor nodes.

The remaining part of this section presents the simulation
setup, path loss model, and the results we obtained from
evaluating performance.

A. Simulation Setup

We implemented the algorithm in a custom C simulator,
where we randomly deployed a set of 100 sensor nodes with
one mobile receiver traveling in a 50m×50m square region at
a constant speed, as seen in Fig. 6. The mobile receiver and
sensor nodes had the same communication range of 10m.

The mobile receiver traveled in a sensory boundary field
and received signals from sensor nodes within their com-
munication range at each time interval t. The positions of
sensor nodes were estimated with our proposed algorithm
by measuring the direction vector of the SSD from T . The
tentative coordinate was arbitrarily deployed within the sensory
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(a) Number of cycles=20 (b) Number of cycles=40 (c) Number of cycles=60

Fig. 4: Improvement of T approaching true position of target node

boundary field. We deployed the tentative coordinate in the first
cycle of improvement at the center of the sensory boundary
field as an initial coordinate of T . The SSD frames were used
to compute the moving distance of T in which the initial value
of ν was 70m per number of cycles and the initial value of
A was 50m where all center coordinates were included in the
coverage area of SSD for each tentative coordinate.

We defined the criterion in MoLPS for the error in local-
ization as the difference between T and the true position of a
target node in the cycle of improvement, h. Localization error
indicated the degree of accuracy in estimates that the algorithm
could achieve.

B. Path Loss model

We used an extended model of log-distance path loss by
combining it with the DoI model [22]. The log-distance path
loss model is used in many indoor and outdoor environments
in which multipath propagation is presented.

The RSS reading was a value from our degree of irregu-
larities (DoI) extended log-distance path loss in Eq. 9. There
is a plot of the path loss values with our model in Fig. 8.

PL = {(PLo+10γlog
d

do
)× (1± (rand()×DoI))}+S (9)

Here, do is the reference distance (i.e., 1 m) and PLo
denotes the path loss in decibels at do, which was assumed
to be 47 dB. The d is the distance between sensor nodes and
the mobile receiver computed from the real coordinates of the
simulation system. The γ refers to the path loss exponent,
which depends on channels and the environment. According
to residential indoor models [24], the path loss exponent, γ,
in this model is a random variable, and requires sufficient
measurements on the spot in various residential environments
before effectively being applied to generic scenarios. We have
used the measurements in Sohrabi et al. [25] in this paper,
which denote the value of average path-loss exponents as 1.9
in an engineering building. The S is log-normal shadow fading
in decibels. The S is usually a random variable with a Gaussian
distribution with zero mean and standard deviation σ, which
was assumed to be 5.7 according to Sohrabi et al. [25]. The

Fig. 6: Deployment of sensor nodes.

DoI is the radio irregularity and rand() is a random number,
U(0, 1). We ran five simulations with different DoI values in
a range of 0 ∼ 1.0.

C. Experiment Results

We compared the cumulative distribution function (CDF)
of cycles for the number of nodes that had their localization
error reduced below 2m with different values of parameters a
and b when parameters A and ν were reduced by the fraction
of a/b through cycles of improvement. As shown in Fig. 9,
less than 71% of tentative coordinates had their localization
error reduced below 2m approaching the true position of target
nodes when the number of cycles reached 35 where parameters
A and ν were reduced by the fraction of a/b = 1/4. However,
the percentages were larger where parameters A and ν were
reduced by the fraction of a/b = 3/4, as seen in Fig. 10. In
this case, the percentage of tentative coordinates that had their
localization error reduced below 2m was more than 80% when
the number of cycles reached 80.

The size of the square region for sequence spatial den-
sity (SSD) has an impact on computing the direction vector
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Fig. 7: Reduced A length for SSD every m cycles of improve-
ment.

to improve T . A larger SSD will increase the number of
center coordinates included in SSD that increases the total
value of differences between the number of center coordinates
between two adjacent frames. However, if A is reduced too
much between the two cycles of improvement, the number of
center coordinates that are included in SSD will decrease. The
decreased number of center coordinates in SSD will increase
the possibility of zero vector effects that take place when the
center coordinates are only located in the center frame of SSD.
As we can see from Fig. 9, the zero vector effects took place
when the number of cycles reached 35 and many of the center
coordinates were excluded from SSD because the value of
parameter A was reduced too much when a/b = 1/4 compared
to the improvement in Fig. 10 where the T coordinates were
continuously improved when a/b = 3/4 until the last number
of cycles.

We also compared the required number of cycles to im-
prove the tentative coordinates in different numbers of foot-
prints. We fixed two values of localization error as a threshold
in this evaluation scenario to assess how many cycles were
needed for the tentative coordinates to improve their positions
below these two thresholds (i.e., 2m and 5m). The average
number of cycles for each tentative coordinate was used to
represent how many cycles were required for each number
of footprints. As shown in Figs. 11 and 12, the numbers of
cycles were almost equal in all numbers of footprints under
both conditions. However, the parameter of a/b affected the
number of cycles that reduced the localization error of T . The
tentative coordinates required less than 21 cycles (2m) and 17
cycles (5m) for each threshold in which parameters A and ν
were reduced by the fraction of a/b = 1/4, as seen in Fig. 11.
However, the tentative coordinates required greater numbers
of cycles to reduce their localization error below 2m and 5m,
as seen in Fig. 12. They needed 46 cycles for the former and
35 cycles averagely for the latter in which parameters A and
ν were reduced by the fraction of a/b = 3/4.

SSD reduced by a large fraction of a/b yielded a small
difference in the number of center coordinates in the frames in
SSD between cycles compared to the condition in which SSD
was reduced by a small fraction of a/b. The small fraction
of a/b enabled SSD to reduce its size by a larger A, which
created large differences in the number of center coordinates
in each frame as the center coordinates that were located were

Fig. 8: Plot of path loss values

separated from one another. These will increase the value of
the moving distance that improved the position of T in fewer
numbers of cycles.

We also compared what impact DoI had on localization
error in the estimates of target node positions in various
locations. The average localization error for our proposed
algorithm was not entirely different for all DoI values, as
seen in Fig. 13. MoLPS use range-free approaches that only
use RSS to detect the proximity of footprints. Therefore, the
irregularities in RSS did not have a huge impact on localization
error in any target nodes on average as they did not directly
use the RSS values as a metric to estimate the position of
target nodes. The mean number of cycles under both conditions
where the threshold of localization error was set to 2m and 5m
corresponded to about 45 and 34.

VII. CONCLUSION

We proposed range-free mobile localization based on the
proximities of selected footprints in noisy environments. We
used GA to iteratively search the best selection of footprints
that had the nearest center coordinates to T . We improved the
positions of tentative coordinates by measuring the direction
vector from the concentration of center coordinates in the
vicinity of T . The footprints in our proposed algorithm were
divided into sets by using ranging levels to decrease variations
in the radial distance between footprints in a set. We evaluated
our method based on a variety of metrics that proved that it
was resistant to the number of footprints used in calculations
and high DoI environments at a given number of cycles while
providing low localization error.

The ability to localize sensor nodes without any reference
nodes in noisy environments for mobile localization can im-
prove the localization environment in large areas. However,
determining the estimates of target node positions still remains
unsolved as we determined the positions of estimates by
continuously improving the tentative coordinates approaching
the true target nodes until the number of cycles to improve
tentative coordinates satisfied a boundary (i.e., 100 cycles).

Determining suitable values for parameters A and ν were
major causes of difficulties in our investigations. We plan to
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Fig. 9: Cumulative distribution of number of cycles for number
of nodes that had their localization error reduced below 2m
when parameters A and ν were reduced by fraction of a/b =
1/4.

Fig. 10: Cumulative distribution of number of cycles for
number of nodes that had localization error reduced below
2m when parameters A and ν were reduced by fraction of
a/b = 3/4.

design a method of determining receiver mobility to obtain
accurate estimates by using localization based on proximity
techniques. We also plan to apply our method to a real
environment by running empirical experiments that focus on
accurate proximity-based estimates of positions for mobile
localization in the future.
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