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Abstract— A new machine learning tool has been developed to 

classify water stations with similar water quality trends. The tool 

is based on the statistical method, Weighted Regressions in Time, 

Discharge, and Season (WRTDS), developed by the United States 

Geological Survey (USGS) to estimate daily concentrations of 

water constituents in rivers and streams based on continuous 

daily discharge data and discrete water quality samples collected 

at the same or nearby locations.  WRTDS is based on parametric 

survival regressions using a jack-knife cross validation procedure 

that generates unbiased estimates of the prediction errors. One of 

the disadvantages of WRTDS is that it needs a large number of 

samples (n > 200) collected during at least two decades. In this 

article, the tool is used to evaluate the use of Boosted Regression 

Trees (BRT) as an alternative to the parametric survival 

regressions for water quality stations with a small number of 

samples. We describe the development of the machine learning 

tool as well as an evaluation comparison of the two methods, 

WRTDS and BRT. The purpose of the tool is to evaluate the 

reduction in variability of the estimates by clustering data from 

nearby stations with similar concentration and discharge 

characteristics. The results indicate that, using clustering, the 

predicted concentrations using BRT are in general higher than 

the observed concentrations. In addition, it appears that BRT 

generates higher sum of square residuals than the parametric 
survival regressions.  
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I. INTRODUCTION 

The United States Geological Survey (USGS) has 
developed linear models for predicting daily concentration of 
water constituents in rivers and streams using physical and 
temporal explanatory variables. The majority of these models 
are based on regressions that evaluate the correlation between 
observed concentrations and other variables including water 
discharge and time. Recently, a new model has been developed 
by the USGS to estimate daily concentrations using Weighted 
Regressions in Time, Discharge, and Season (WRTDS) [1]. 
Two main advantages of WRTDS include the possibility of 
conducting regressions with censored information (non-detects) 
using parametric survival regressions. In addition, WRTDS 

uses a jack-knife cross validation approach that evaluates the 
importance of each survival regression by selecting subsets of 
the complete dataset. The cross validation approach is also used 
to identify trends of the constituent concentration in time.  

WRTDS has been created by a series of routines written in 
R, a free package for statistical computing and graphics [2]. 
The statistical method estimates the concentration using two 
libraries: dataRetrieval and EGRET. The first library, 
dataRetrieval [3], automatically downloads existing records of 
water discharge and water constituent concentrations from a 
dedicated server. Approximately 14,500 parameters are 
available for download using the dataRetrieval tool. The list of 
parameters available in the server includes nutrients, pesticides, 
organics, and physical properties among others. The second 
library, EGRET [4], was created to explore and generate 
graphics associated with river concentration trends. EGRET 
conducts the parametric survival regressions and estimates 
daily concentrations in those periods when samples were not 
collected. 

WRTDS has been tested in more than two dozen stations in 
the U.S. [1][5-11]. The use of this technique has become 
popular in recent years because it uses locally weighted 
regressions to estimate daily concentrations. During the 
regression process, WRTDS establishes the regression 
coefficients using only observed concentrations with similar 
discharge, season, and time to the day that is being estimated 
[9]. However, one of the restrictions of this method is that 
requires a large number of samples (minimum 200) collected at 
the specific station with daily water discharge records collected 
for at least 20 years without major gaps [1]. 

There are approximately 26,000 USGS stations installed 
throughout the U.S. A large percentage of these stations have 
long historical records of daily water discharge but only a few 
have more than the required 200 water quality samples. 
Fortunately, other agencies (including state and local 
environmental agencies) have been collecting additional water 
quality samples for several decades. The information collected 
by these agencies has been motivated by cities, non-profit 
organizations and communities to assess and manage the 
quality of rivers and streams.  
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Improvements on these water quality stations include the 
installation of real time stations. Currently there are 
approximately 1,700 stations in the U.S. that collect water 
discharge with a frequency of 15 minutes or less. The 
information collected by these stations can be downloaded 
automatically via Internet.   

In this paper, we analyze the possibility of generating 
nitrate + nitrite-N concentration estimates in stations that have 
few samples. To achieve that, we generate a training data set 
with samples collected in stations with similar concentration 
and discharge characteristics and generate a Boosted 
Regression Tree (BRT). BRT is a non-parametric technique 
that successfully identifies the influence of the predictors in the 
response when the interaction occurs in a complex and non-
linear way [12]. It has been used to investigate high variance 
traffic crash data in Taiwan [13], predict fishing effort 
distributions [14], and the identification of processes that drive 
the richness, composition, and occurrence of plants species in 
northwest Finland [15]. Machine learning methods using BRT 
have also been used to determine the best set of automatic 
methods for fine-tuning the code executed on the graphics 
processing unit (GPU) in different computer architectures [16].  
Although BRT has been used for a variety of problems, no 
literature was identified on its use for water quality modeling. 
Our work reported in this paper on applying BRT to this 
problem is thus novel.   

The selection of training set stations is obtained from an 
arbitrary set classified by a clustering algorithm. Once the 
subset of similar stations is identified, the tree model is created 
using the stations located within a cluster. To evaluate the 
estimates, lack of fit of predicted and observed concentrations 
are compared for both WRTDS and BRT.  

It is hypothesized that the use of Boosted Regression Trees 
could improve the concentration estimates in stations with less 
than 200 samples.  A machine learning approach appears to be 
an ideal solution for such situations. As the model is analyzing 
new stations, a routine or program could identify patterns, 
similarities, and differences with previous runs and decide 
which combination of stations produces the best estimates. 

II. WEIGHTED REGRESSIONS IN TIME, DISCHARGE, AND 

SEASON (WRTDS) METHOD 

Weighted Regressions in Time, Discharge, and Season 
(WRTDS) is one of the most recent methods developed by the 
United States Geological Survey (USGS) with the purpose of 
analyzing long-term, water quality data sets. One of the 
strengths of the method is that parameters of the mathematical 
model adjust to changes that occur with time. In addition, it has 
the capability of downloading data and metadata automatically 
from the National Water Information System (NWIS). It also 
includes multiple routines that allow the user to conduct 
preprocessing of the original data sets and identify the presence 
of outliers and influential observations that may cause bias in 
the estimated concentrations.  

Equation (1) shows the mathematical equation that serves 
as the foundation of the WRTDS method: 

ln(c)0 + 1 t + 2 ln(Q) + 3 sin(2t) + 4 cos(2t) +  

Where c is the concentration, the β terms are the unknown 
regression coefficients, Q is the discharge, t is the time, and ɛ 
are the independent random errors.  

In a regular regression, the fitted coefficients are constant 
for the entire data set. In WRTDS, each observed concentration 
is recalculated using a jack-knife cross validation procedure in 
which a subset is extracted based on windows that involve 
ranges in time, discharge, and season. The parametric survival 
regression conducted by the method has the advantage of 
accepting the presence of censored information. 

Due to the generation of subsets, the number of samples 
and the period of data collected must be large in order to 
identify trends. Stations with few collected samples cause the 
method to calculate poor fitted coefficients. 

III. BOOSTED REGRESSION TREES (BRT) 

Classification trees are an alternative to regression models 
to predict the concentration using the same terms included in 
equation (1). Classification trees have several advantages: (1) 
trees are very flexible and can accept broad types of responses 
including categorical, numerical, and survival data; (2) trees are 
invariant to monotonic transformations of the independent 
variables; (3) trees are easy to construct; and (4) trees are easy 
to interpret [17].  At the same time, trees have the disadvantage 
that they create poor predictors and in the case of large trees 
they are difficult to interpret [18].   

When the response variable is numeric, the tree is 
considered a regression tree. On the other hand, when the 
response is categorical, the tree is called a classification tree. 
One advantage of classification trees is that they can be 
represented in a figure with branches and leaves representing 
the different homogeneous groups. 

The tree is constructed by repeatedly breaking the data into 
exclusive subsets of homogeneous data to the extent possible.  
The splitting process continues until an overlarge tree is 
created, and then the tree is pruned to the desired size. In order 
to select the size of the tree that accurately predicts the 
prediction error, the method uses a procedure called cross 
validation. During cross validation, a portion of the 
observations is deleted and recalculated using the remaining 
observations. The recalculated values are compared with the 
original observations to calculate the prediction error.  

Boosting appeared as a method to improve the poor 
prediction capabilities of classification trees [18-19].  Boosting 
is based on the idea that it is easier to find and average many 
weak classifiers than trying to find a single highly accurate 
prediction rule. The advantage of this method is that it is 
sequential. At each step the model is fitted iteratively to the 
training data by the current sequence of trees, and these 
classifications are used as weights to the next step. Incorrect 
classifications will have higher weights in the next step than 
cases that were hard to classify, increasing their chance to be 
correctly classified. 

IV. MODEL BASED CLUSTERING 

Preliminary analysis of the BRT method indicated that the 
station is one of the parameters with the highest influence 
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during the generation of the tree.   The initial step during the 
generation of the BRT model is the selection of a training set 
for the model.  Nitrate + nitrite-N concentration in rivers and 
streams varied greatly due to land use practices, location, and 
fluctuations in discharge [20-21]. The concentration of nitrate + 
nitrite-N at the test station could be estimated by selecting 
nearby stations with similar discharge and concentration 
distribution. For this reason, it was proposed to create a large 
database with nitrate + nitrite-N concentrations and discharge 
values for multiple stations located throughout the U.S. and, 
using a clustering method, select those stations with 
concentration distribution similar to the distribution observed at 
the test site. 

The R package mclust was chosen to select the nitrate + 
nitrite-N concentration and discharge values from those 
stations similar to the test station [22]. The package mclust 
implements a Gaussian hierarchical clustering algorithms and 
the expectation–maximization (EM) algorithm for a 
parameterized mixture of models with the possible addition of 
a Poisson noise term [23].  One of the advantages of mclust is 
that it automatically selects among 10 different combinations of 
the parameterizations of the covariance matrix finding the 
clusters with the best Bayesian Information Criterion (BIC). 

V. RESEARCH METHODS 

A Python program was combined with an R script to select 
information from desired stations and evaluate if there was an 
improvement in the estimation of nitrate + nitrite-N 
concentration using the BRT model. The program and script 
perform four steps during the process: (1) generation of a 
master dataset; (2) identification of stations with similar 
characteristics; (3) generation of BRT model; and (4) 
comparison between WRTDS and BRT models for stations 
along the Sipsey River (located near Tuscaloosa, Alabama). 

A. Generation of Master Dataset 

The first step in the process was to retrieve relevant 
information from two previous studies (Mississippi River 
[7,11] and the Chesapeake Bay [1] basins) and stations located 
near the Sipsey River. An interface tool was created to generate 
the training dataset. The user has the capability of either using 
the tool or creating a text file that includes the list of stations, 
the parameter to be analyzed, and the period of analysis. In the 
text file, each row corresponds to a station of the training 
dataset. The tool and interface are explained in section VI. 
Once all the stations have been entered into the system, the 
program will classify those stations with similar nitrate + 
nitrite-N concentration and discharge distributions. 

The stations near the Sipsey River were selected from a 
recent analysis on the variability of nitrate + nitrite-N 
concentration and discharge completed for rivers of the Mobile 
Alabama River System (MARS) [8]. Table I shows a summary 
of the data for stations included in the comparison. Note that 
the station located in Sipsey River was not included in the 
training dataset (USGS station 02446500). The last column in 
the table indicates the assigned cluster that will be discussed in 
Section VII Results. The stations included in Table I were 
based on previous references, geographic proximity to the 
Sipsey River, similar drainage area size, and similar land uses 

in the basin. Indeed, the MARS stations were selected because 
they have similar climate conditions to those expected at the 
Sipsey River. 

TABLE I.  DATA FOR SELECTED STATIONS 

Basin 

USGS 

Station 

Number 

 

Nitrate + Nitrite 

Concentration 

(mg-N / L) 

 

Logarithm of 

Discharge 

(m
3
/s) Cluster 

x̄ σ x̄ σ 

C
H

E
S

A
P

E
A

K
E

 

01491000 1.28 0.405 1.288 1.432 3 

01578310 1.09 0.375 7.353 1.077 3 

01594440 1.17 0.406 2.451 1.018 3 

01646580 1.12 0.491 5.54 1.272 3 

01668000 0.49 0.291 3.644 1.581 3 

01673000 0.268 0.106 3.013 1.402 1 

01674500 0.155 0.088 2.74 1.615 1 

02035000 0.23 0.144 5.102 1.214 1 

02041650 0.171 0.139 3.133 1.587 1 

M
O

B
IL

E
 A

L
A

B
A

M
A

 R
IV

E
R

 S
Y

S
T

E
M

 
02411000 0.135 0.088 5.082 0.949 1 

02419890 0.172 0.067 4.163 1.016 1 

02424000 0.315 0.081 3.504 0.824 1 

02429500 0.142 0.086 5.553 0.678 1 

02444160 0.046 0.145 4.355 0.867 1 

02446500
 a
 0.105 0.071 2.256 1.23 1 

02454055 0.046 0.191 1.567 1.343 1 

02462000 5.03 2.458 1.334 0.701 4 

02464000 5.03 2.458 -0.197 2.146 4 

02466031 0.229 0.155 4.215 0.956 1 

02469762 0.207 0.125 5.893 0.994 1 

02411000 1.11 0.4 9.034 0.795 3 

M
IS

S
IS

S
IP

P
I 

05420500 1.67 0.954 7.377 0.608 2 

05465500 5.39 2.508 5.47 0.928 4 

05586100 4.17 1.719 6.743 0.828 4 

05587455 3.06 1.271 8.007 0.646 2 

06934500 1.345 0.738 7.789 0.637 2 

07022000 2.41 0.913 8.836 0.614 2 

07373420 1.38 0.508 9.698 0.537 2 

a. USGS Station Sipsey River near Elrod, not included in the training dataset 

B. Identification of Stations with Similar Characteristics 

In general, the distribution of water discharge follows either 
power law or lognormal distribution [24].  Stations with similar 
median logarithm of discharge and median logarithm of nitrate 
+ nitrite-N concentration could originate from areas of similar 
land use, catchment area, or times of concentration. Clustering 
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analysis was conducted on stations that shared similar median 
and standard deviation of the natural logarithm of the discharge 
and nitrate + nitrite-N concentration.  

It was hypothesized that, as the number of stations in the 
cluster increased, the results of the BRT would improve by 
increasing the number of observations in the training set. The 
statistical program R was selected to calculate the median and 
standard deviation of the natural logarithm of the nitrate + 
nitrite-N concentration and discharge of all the stations 
included in the analysis.  

One of the assumptions behind the idea of clustering 
stations of similar characteristics was that all the stations in the 
clusters would be affected by the same phenomena that were 
regional or national in scope. For example, it was hypothesized 
that if a specific year was wet, all the instruments included in 
the cluster recorded large discharge values that year. These two 
conditions could impact the coefficients related to time and 
discharge in equation 1. On the other hand, it was also 
considered that clustering stations located in regions with 
different climate patterns (i.e., northern versus southern U.S.) 
may affect the seasonal terms of the equation. For this reason, 
it was also considered preferable to select stations located 
within the same region. 

C. Generation of the BRT Model 

In the previous step the function mclust identified four 
clusters. In this step, mclust identified which cluster was 
associated with the station located in the Sipsey River (in this 
case, Cluster 1). The stations within the same cluster of the 
Sipsey River were selected for the generation of the Boosted 
Regression Tree. The BRT model was created using the library 
gbm for the General Boosted Model [25].  

The R function gbm.step was used to generate the General 
Boosted Model. This function determines the optimal tree size 
using the k-fold cross validation procedure [26]. The default 
option in gbm.step uses 10 folds and a bag fraction of 0.5, 
which indicates that 50 percent of the observations of the 
observed variables are selected to construct the model. As 
indicated previously, since the distribution of nitrate + nitrite-N 
concentration and discharge followed a lognormal distribution, 
it was assumed that the logarithm of these parameters should 
follow a normal distribution. The model requires the selection 
of a method to calculate the loss function. Because both 
discharge and nitrate + nitrite-N concentration are continuous 
variables, it was decided to use the Gaussian option to focus on 
minimizing the square error between the observed and 
predicted values.  

The last two parameters in the function gbm.step are the 
tree complexity and learning rate. The learning rate refers to 
how quickly the estimated value is calculated based on the 
previous estimated value plus a portion of the value obtained 
by the fitted regression model. On the other hand, tree 

complexity refers to the depth of the tree (also known as the 
interaction depth), which is a function of the number of 
terminal nodes in the tree. It has been recommended for the 
learning rate to be as small as possible and obtain the optimum 
number of iterations by cross validation [25]. It is important in 
BRT models to avoid a large number of iterations because that 
can cause overfitting [27]. Overfitting occurs when the model 
starts depicting the random error instead of the relation 
between the predictors and the response. 

The authors conducted preliminary analyses using sites 
located in Alabama, varying the tree complexity between 2 and 
20 and the learning rate between 0.0001 and 0.05. The results 
of these analyses indicated that, as the tree complexity 
increases, the number of trees decreases. The same pattern was 
observed between the learning rate and the number of trees. 
The lowest cross validation correlation standard error was 
observed when the tree complexity was 5 and the learning rate 
was 0.01. 

D. Comparison between WRTDS and BRT Model 

In WRTDS the estimates are based on the observations 
from the same station. On the other hand, BRT estimates are 
based on observations from other stations. The goal is to 
observe which method generates better estimates of nitrate + 
nitrite-N concentration for each of the observed concentrations. 
A perfect fit creates a straight line between the observed and 
predicted values. The sum of square errors (SSE) was selected 
as a measure of fitness between the WRTDS and BRT models. 
The model with the lowest SSE would produce the best 
estimates. 

VI. SYSTEM DESCRIPTION 

The interface tool was developed in Python. The WRTDS 
model, BRT model, clustering analysis, and comparison 
between models were completed using the statistical program 
R. Figure 1 shows a flow diagram describing how the Python 
tool and the R script interact during the estimation of the nitrate 
+ nitrite-N estimates. 

The graphical interface tool was developed using the 
Tkinter/ttk package that provides dynamic interaction between 
the program and the routines executed by R. The interface 
performs two main tasks: (1) processes information about the 
stations and parameters included in both models; and (2) 
executes an R script that creates and compares the WRTDS and 
BRT models.  Figure 2 shows the interface tool that runs the 
simulation.  The user enters the information of each station by 
completing the fields available on the main screen. Among the 
parameters needed by the model are the station number, 
parameter to be analyzed, discharge information, and period of 
analysis. The interface allows the user to either download 
automatically the information from the USGS website or 
access it from a text file that follows the format required by 
WRTDS.  
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Fig. 1. Flow diagram of the steps involved in the development of the tool. 

The “Add Station” button adds the information to a text file 
that will be read by the R script. The user adds as many stations 
as needed to run the model. The “Start” button initiates the R 
script program. In the background, R reads the information 
from the text file created by the interface tool and creates a data 
frame with all the records obtained from the selected stations. 
During this process, the tool automatically generates three 
figures for each station: concentration versus time, discharge 
versus time, and a multi-plot data overview (Figure 3). All the 
figures generated by the script are saved as images and pdf files 
in a separate folder. 

 

Fig. 2. Interface of the machine learning tool for comparison of WRTDS and 
BRT methods to estimate nitrate + nitrite-N concentration. 

The script also generates three text files that could be used 
for further analyses: (1) a summary table with all the 
observations from all the stations; (2) a table that includes the 
median, standard deviation, and first and third quartiles of 
concentration and discharge for each station; and (3) a table 
that indicates the cluster assigned to each station during the 
cluster analysis.  

VII. RESULTS 

In this article, we present the results for the stations 
included in Table I. Figure 3 shows an example of one of the 
multi-plot data overview figures generated by WRTDS (station 
02411000, Coosa River, near Wetumpka, AL). The chart 
allows the identification of gaps, outliers, as well as influential 
points, and provides a general idea of the number of samples 
collected by month. The figure has four panels. In the upper 
left panel is a scatterplot of concentration versus discharge. 
This plot shows extreme events and potential correlations 
between discharge and concentration. Notice that both axes are 
in log scale matching the terms included in Equation (1). In the 
upper right box there is a scatterplot of the concentration versus 
time. This plot shows gaps and major changes in concentration 
with time. In the lower left corner is the distribution of samples 
by month. This box plot confirms that samples were collected 
throughout the year with a relative similar frequency. The lack 
of samples during specific times of the year could have an 
impact on seasonal components. Finally, in the lower right 
corner there are two box plots that compare the distribution of 
the discharge records for the whole period of analysis and when 
samples were collected.  

In this case, the results demonstrated that there was a 
positive correlation between discharge and nitrate + nitrite-N 
concentration, no significant gaps or censored observations, a 
good distribution of samples collected during the year except 
for January, February, and May, and that the discharge 
distribution of the sampling dates was similar to the 
distribution of the whole period of analysis. 

  

Fig. 3. Example of one of the multi-plot data overview figures generated by 
WRTDS. 

Read Station Information
(Python)

Add New Station 
(Python)

Start R Routine
(Python)

ADD / START

WRTDS -Create Multi Plot 
Overview 

(R)

Create Master Table and 
Calculate Statistics 

(R)

Cluster Analysis 
(R)

Boosted Regression Tree
(R)

WRTDS –  Cross Validation of 
Test  Dataset    

(R)

Comparison WRTDS – Boosted Regression Tree
(R)

StartStart
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Fig. 4. Clustering example using the library mclust for USGS stations based 

on median and standard deviation of nitrate + nitrite-N concentration and 

logarithm of discharge. The four clusters are: Cluster 1 (blue circle), Cluster 2 
(red square), Cluster 3 (green triangle), and Cluster 4 (purple plus symbol). 

 

Fig. 5. Fitted values from the BRT models for Cluster 1 (low nitrate + nitrite-

N concentration and intermediate discharges) and Cluster 3 (samples collected 

mainly in the northern part of the Chesapeake Basin). 

Figure 4 and Table I show the results of the clustering 
analysis based on the concentration, discharge median and 
standard deviation of all the stations included in the analysis. 
The clusters are identified by colors: Cluster 1 (blue circle); 
Cluster 2 (red square); Cluster 3 (green triangle); and Cluster 4 
(purple plus symbol). The analysis indicated that the best 
cluster model was the one that uses equal volume, equal shape, 
and variable orientation (EEV) with four clusters.  

Figure 4 shows that there is a linear relation between the 
nitrite + nitrate-N concentration median and its standard 
deviation. This relation appeared in all the clusters. Another 
panel that shows a potential correlation involves the median 
nitrate + nitrite-N concentration with the median logarithm of 
the discharge. The results show that clusters are mainly 
generated by the range of concentration and geographical 
location. For example, all the stations with elevated median 
nitrate + nitrite-N concentration (greater than 4 mg/L as N) 
were clustered together (Cluster 4). Two of the stations were 
located in the Mobile Alabama River System (MARS) and two 
in the Mississippi Basin. These four basins appeared to be 
associated with urban and agricultural activities.  

Cluster 2 appeared to be associated with elevated discharge 
and nitrate + nitrite-N concentrations. All of the stations in 

Cluster 2 were located in the Mississippi Basin; Cluster 1 
includes those sites with low nitrate + nitrite-N concentrations 
and intermediate flows. All of the Alabama sites and stations 
located in the Chesapeake Basin south of the Rappahannock 
River were included in this cluster. None of these sites have a 
median concentration greater than 0.5 mg/L as N. Finally, 
Cluster 3 shows similar discharge values to Cluster 1 but 
median nitrate + nitrite-N concentrations were between 0.5 and 
1.5 mg/L as N. Based on these four clusters, four BRT models 
were created, one for each cluster. 

Figure 4 also shows the clearly identified clusters in the plot 
of median nitrate + nitrite-N concentration and logarithm of 
discharge. It suggests that no large variation exists in the 
median concentration for a wide range of discharge variation 
except for Cluster 2. This could indicate that specific ranges of 
concentrations could be present for a wide range of discharges. 
In this panel, Clusters 1 and 3 show a similar range of 
discharge for small variations in nitrate + nitrite-N 
concentration.  

Figure 5 shows the fitted values using the BRT models for 
these two clusters. There is a similar downward trend in 
concentration as the discharge increases until reaching a value 
of 50 m3/s. From that point the nitrate + nitrite-N concentration 
increases again with the increase in discharge until reaching a 
plateau for values larger than 400 m3/s. Figure 6 shows these 
patterns for the four clusters. Clusters 1 and 3 have a similar 
pattern. In these two clusters changes in discharge have a 
significant effect on concentrations with the initial decrease of 
concentration (dilution), increasing for values higher than 50 
m3/s (re-suspension) and the plateau after 400 m3/s. 

 

Fig. 6. Estimates of nitrate + nitrite-N concentration from the Boosted 
Regression Tree model at different conditions of time and discharge. 
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Fig. 7. Observed versus predicted nitrate + nitrite-N concentration values for 

the Sipsey River station at Elrod, AL. Predicted concentrations were obtained 
using WRTDS and BRT models. 

Cluster 4 shows a similar pattern to the previous two 
clusters, but it is clear that there has been a strong decrease in 
nitrate + nitrite-N concentration with time in these four 
stations. This could be associated with changes in agricultural 
activities since 2008. In Cluster 2 the pattern is different than in 
the other clusters. It does not appear to have an initial dilution 
or change in concentration with time. Cluster 2 shows constant 
increase in nitrate + nitrite-N concentration until discharge 
values near 8,000 m3/s. A decrease in nitrate + nitrite-N 
concentration occurred in this cluster for larger discharges.  

Finally, Figure 7 shows the observed versus predicted 
values at the Sipsey River station near Elrod, Alabama using 
both BRT and WRTDS models. It is expected that good 
estimates should all fall along a straight line with slope 1 that 
crosses the origin. This station was assigned to Cluster 1 with 
other 12 stations that have similar discharge and nitrate + 
nitrite-N concentration values.  

The results of the WRTDS model are in white circles while 
the results of the BRT model are in black. Both models have 
similar results. Some of the predicted nitrate + nitrite-N 
concentrations using the BRT model fall directly on top of the 
straight line with slope 1, including the observation with the 
highest concentration. However, the sums of the square errors 
for both models indicated that the WRTDS model was better 
than the BRT.  In fact, except for one estimate, all the estimates 
from the BRT model were higher than the observed nitrate + 
nitrite-N concentrations.  

VIII. DISCUSSION 

In this paper, we presented an alternative method to 
WRTDS for the estimation of nitrate + nitrite-N concentrations 
in large rivers and streams. The results indicated that, even if 
the current estimates are not perfect or better than those 
obtained with WRTDS, the method has the potential of 
identifying stations with similar characteristics, correlations 
with several ranges of discharge, and trends with time. The 
method is promising because it can improve the estimates as 
data is collected and more stations are added to the system.  

WRTDS is disadvantageous because it only uses data from 
the station that is being analyzed. For this reason, it requires a 
large number of samples collected during a period longer than 
20 years. The combination of clustering and BRT allows the 
generation of large datasets with the goal of improving the 
accuracy of the estimates.  

One of the advantages of combining clustering and BRT is 
the possibility of classifying streams and rivers based on the 
distribution of nitrate + nitrite-N concentration and discharge.  
Land uses and sources of nitrate + nitrite-N are in general 
different for each site included in the cluster. However, rain 
patterns, extreme events, and droughts can affect large areas of 
the country in a similar manner. The fact that many of the 
clusters were associated with geographical location suggest that 
changes in atmospheric deposition, human activity, and climate 
conditions will be observed in multiple stations at the same 
time.  

Nitrate + nitrite-N concentration appeared to be highly 
correlated with water discharge in all the clusters. If stations 
located within the same cluster have the tendency to increase 
concentration as the discharge increases, it is expected that 
during a wet year the concentration estimates will be above 
average for all stations included in the cluster. It is important to 
continue research on methods or procedures that allow the 
extrapolation of trends and patterns observed in a group of 
stations to the station of interest.  

IX. CONCLUSIONS 

The use of a machine learning tool combined with cluster 
analysis offers great potential for the advancement of 
hydrological models. Clusters and the use of trees help identify 
trends and potential correlations between nitrate + nitrite-N 
concentration and discharge. In the past, these correlations 
were assumed to be linear. New methods like WRTDS enhance 
the capability of modeling non-stationary processes in rivers 
and streams. 

The possibility of analyzing multiple stations with similar 
nitrate + nitrite-N concentration and discharge distributions 
opens the potential for developing simple models that 
effectively simulate dilution and re-suspension conditions. 
Boosted Regression Tree (BRT) models have the potential of 
simulating these processes as well as identifying trends with 
time. 

The use of BRT and clustering did not appear to be a good 
alternative for the estimation of nitrate + nitrite-N 
concentration in sites with small number of samples. The 
combination of samples from multiple stations increases the 
variability of estimates. The machine learning tool could be 
improved if the influence of the multiple stations is removed 
during the process.   

Recently, there has been an interest in the importance of 
representing the non-stationarity of the physical processes in 
future hydrological models [28]. The possibility of identifying 
regional trends by clustering stations with similar patterns 
could help future models rapidly identify changes caused for 
variations due to climate change, water infrastructure, and 
changes in land use and land cover. This approach makes the 
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use of machine learning techniques and algorithms a powerful 
tool for the next generations of hydrological models.  

Future work in this area includes the design of systems that 
are able to identify patterns in the data collected in real time or 
from forecasting models. Such systems can identify variables 
that reduce the magnitude of errors in the estimates and 
potential correlations that reduce variability.  
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