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Abstract— The annual estimate of the availability of the 

amount of water for the agricultural sector has become a lifetime 

in places where rainfall is scarce, as is the case of northwestern 

Argentina. This work proposes to model and simulate monthly 

rainfall time series from one geographical location of Catamarca, 

Valle El Viejo Portezuelo. In this sense, the time series prediction 

is mathematical and computational modelling series provided by 

monthly cumulative rainfall, which has stochastic output 

approximated by neural networks Bayesian approach. We 

propose to use an algorithm based on artificial neural networks 

(ANNs) using the Bayesian inference. The result of the prediction 

consists of 20% of the provided data consisting of 2000 to 2010. A 

new analysis for modelling, simulation and computational 

prediction of cumulative rainfall from one geographical location 

is well presented. They are used as data information, only the 

historical time series of daily flows measured in mmH2O. 

Preliminary results of the annual forecast in mmH2O with a 

prediction horizon of one year and a half are presented, 18 

months, respectively. The methodology employs artificial neural 

network based tools, statistical analysis and computer to 

complete the missing information and knowledge of the 

qualitative and quantitative behavior. They also show some 

preliminary results with different prediction horizons of the 

proposed filter and its comparison with the performance 
Gaussian process filter used in the literature. 

Keywords—rainfall time series; stochastic method; bayesian 

approach; computational intelligence 

I. INTRODUCTION 

Climate variability in the semi-humid and arid parts of the 
northwestern part of Argentina poses a great risk to the people 
and resources of these regions [1] as the smallest fluctuations 
of weather parameters like precipitation not only damage the 
agriculture and economy of the region but disturb the overall 
water cycle [2]. 

The ANNs are mostly used as predictor filter with an 
unknown number of parameters performed by a lot of author, 
recently, such as in [3][4][5][6]. One famous black box model 
that forecast rainfall time series in recent decades is artificial 
neural network model. Artificial neural networks are free-
intelligent dynamic systems models that are based on the 
experimental data, and the knowledge and covered law beyond 
data changes to network structure by trends on these data [7]. 
The difficulties in modeling such complex systems are 

considerably reduced by the recent Artificial Intelligence tools 
like Artificial Neural Networks (ANNs); Genetic Algorithm 
(GA) [8] based evolutionary optimizer and Genetic 
Programming (GP).  

In turn, this work propose to estimate water availability 
horizon useful for control problems in agricultural activities 
such as seedling growth and decision-making using some 
ANNs approaches presented in recent earlier works [9]. An 
ANNs filter is used and their parameters are set in function of 
the roughness of the time series. These are considered as 
random variables whose distribution is inferred by posterior 
probability from the data, in which is included as an additional 
parameter, the number of hidden neurons and modelling 
uncertainty [10].  

The Bayesian approach permits propagation of uncertainty 
in quantities which are unknown to other assumptions in the 
model, which may be more generally valid or easier to guess in 
the problem. For neural networks, the Bayesian approach was 
pioneered in [11]-[12], and reviewed [13], [14] and [15]. The 
main difficulty in model building is controlling the complexity 
of the model. It is well known that the optimal number of 
degrees of freedom in the model depends on the number of 
training samples, amount of noise in the samples and the 
complexity of the underlying function being estimated. 

The procedure of determining the prior density and 
likelihood functions associated with rainfall time series 
uncertainty is very complicated and there is a requirement to 
assume a linear and normal distribution within the framework 
of the proposed parameters. The problem of model selection is 
often divided into discover an organization of a model’s 
parameters that is well-matched such as the network topology, 
e.g. number of patterns, layers, hidden units per layer, that 
results in the best generalization performance. A common 
result is with too many free parameters tend to overfit the 
training data and, thus, show poor generalization performance.  

A model attempting to estimate the value of a random 
variable may have potential access to a wide range of 
measurements regarding the state of the environment. Some of 
these quantities may provide the model with useful information 
regarding the random variable, whereas others may not. In the 
context of neural networks, only the useful quantities should be 
used as inputs to a network. A network that receives both 
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useful inputs and “nuisance” inputs will contain too many free 
parameters and, thus, be prone to overfitting the training data 
leading to poor generalization. 

II. DATA TREATMENT 

A rainfall time series can be actually regarded as an 
integration of stochastic (or random) and deterministic 
components [16]. Once the stochastic (noise) component is 
appropriately eliminated, the deterministic component can then 
be easily modeled. Rainfall is an end product of a number of 
complex atmospheric processes which vary both in space and 
time; The data that is available to assist the definition of control 
variable for the process models, such as rainfall intensity, wind 
speed, and evaporation, etc. are linked in both the spatial and 
temporal dimensions; even if the rainfall can be described 
concisely and completely, the volume of calculations involved 
may be prohibitive; and the temporal and spatial resolution 
provided by this approach is not accurate enough for many 
hydrologic applications. A second approach to forecast rainfall 
makes use of nonparametric models based on statistics and/or 
machine learning. 

The standard non-parametric approaches presented in this 
work by means of time-series analysis, is based on stochastic 
techniques that assume non-linear relationship among data that 
reproduce the rainfall time series only in statistical sense. Then, 
in principle, machine learning models, such as artificial neural 
networks, can improve the forecasting results obtained using 
models based on standard non-parametric approaches. 

The rainfall dataset used is from Cuesta El Portezuelo 
located at Catamarca, province of Argentina (-28°28'11.26";-
65°38'14.05") and the collection date is from year 2000 to 2010 
shown in Fig.1.  

 

Fig. 1. Original Rainfall times series from El Viejo Portezuelo, Catamarca, 
Argentina. 

III. METHODOLOGY AND BAYESIAN APPROACH   

When a time series is being analyzed, it is important to 
make use of the simplest possible models. Specifically, the 
number of unknown parameters must be kept at a minimum.  

For forecasting problems, Bayesian analysis generates point 
and interval forecasts by combining all the information and 
sources of uncertainty into a predictive distribution for the 
future values. It does so with a function that measures the loss 
to the forecaster that will result from a particular choice of 
forecasts.  

The gamma distributions have been chosen for this purpose. 
When a Bayesian analysis is conducted, inferences about the 
unknown parameters are derived from the posterior 
distribution. This is a probability model which describes the 
knowledge gained after observing a set of data. The application 
of the regression problem involving the correspond neural 
network function y(x,w)  and the data set consisting of N pairs, 
input vector lx and targets tn (n=1,….,N). 

Assuming Gaussian noise on the target, the likelihood 
function takes the form:  
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where 


 is a hyper-parameter representing the inverse of 
the noise variance. We consider in this work a single hidden 
layer of  ‘tanh’ units and a linear outputs units. 

To complete the Bayesian approach for this work, prior 
information for the network is required. It is proposed to use, 
analogous to penalties terms, the following equation 
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assuming that the expected scale of the weights is given by 
w set by hand. This was carried out considering that the 
network function f(xn+1,w) is approximately linear with 
respect to w in the vicinity of this mode, in fact, the predictive 
distribution for yn+1 will be another multivariate Gaussian. 

IV. PROPOSED APPROACH FOR TUNING THE NEURAL 

NETWORKS BY BAYESIAN APPROACH  

In the block diagram of the nonlinear prediction scheme 
based on a ANN filter is shown. Here, a prediction device [17]-
[18] is designed such that starting from a given sequence {xn} 
at time n corresponding to a time series it can be obtained the 
best prediction {xe} for the following sequence of 18 values.  

Hence, it is proposed a predictor filter with an input vector 
lx, which is obtained by applying the delay operator, Z-1, to the 
sequence {xn}. Then, the filter output will generate xe as the 
next value, that will be equal to the present value xn. So, the 
prediction error at time k can be evaluated as: 

 

                                     kxkxke en                         (6) 

 

which is used for the learning rule to adjust the NN 
weights. 
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Fig. 2. Block diagram of the nonlinear prediction. 

The coefficients of the nonlinear ANNs filter are adjusted 
on-line in the learning process, by considering an online 
heuristic criterion that modifies at each pass of the time series 
the number of patterns, the number of iterations and the length 
in function of the Hurst’s value H calculated from the time 
series taking into account the Bayesian inference and stochastic 
dependence of the output values. 

A. Bayesian model  

When a rainfall series is being analyzed, it is important to 
make use of the simplest possible models. Specifically, the 
number of unknown parameters must be kept at a minimum. 
For forecasting problems, Bayesian analysis generates point 
and interval forecasts by combining all the information and 
sources of uncertainty into a predictive distribution for the 
future values. It does so with a function that measures the loss 
to the forecaster that will result from a particular choice of 
forecasts.  

The gamma distributions have been chosen for this purpose. 
When a Bayesian analysis is conducted, inferences about the 
unknown parameters are derived from the posterior 
distribution. This is a probability model which describes the 
knowledge gained after observing a set of data. The application 
of the regression problem involving the correspond neural 
network function y(x,w) and the data set consisting of N pairs, 
input vector lx and targets tn (n=1,….,N) 

Assuming Gaussian noise on the target, the likelihood 
function takes the form:  
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where   is a hyper-parameter representing the inverse of 

the noise variance. We consider in this work a single hidden 
layer of  ‘tanh’ units and a linear outputs units. To complete the 
Bayesian approach for this work, prior information for the 
network is required. It is proposed to use, analogous to 
penalties terms, the following equation, 
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assuming that the expected scale of the weights is given by 
w set by hand. This was carried out considering that the 
network function f(xn+1,w) is approximately linear with 
respect to w in the vicinity of this mode, in fact, the predictive 
distribution for yn+1 will be another multivariate Gaussian. 

The computation test results were made on rainfall time 
series, which consist of 132 data. The Monte Carlo method was 
employed to forecast the next 18 values with an associated 
variance. Here it was performed an ensemble of 500 trials with 
a fractional Gaussian noise sequence of zero mean and variance 
of 0.11. The fractional noise was generated by the Hosking 
method [19] with the H parameter estimated from the data time 
series. The following figures yield the results of the mean and 
the variance of 500 trials of the forecasted 18 values. Such 
outcomes for one (30%) and two (69%) sigma are shown in 
Fig. 6, Fig. 7, Fig. 8, Fig. 10, and Fig. 11. The obtained time 
series has a mean value, denoted at the foot of the figure by 
“Forecasted Mean”, whereas the “Real Mean” although it is not 
available at time 114. This procedure is repeated 500 times for 
each time series. 

The assessment of the experimental results has been 
obtained by comparing the performance of the proposed filter 
against the Gaussian process based filter. The evolution of the 
SMAPE index for a neural network bayesian approach filter, 
which uses a learning algorithm and the GP filter has the same 
initial parameters in each algorithm, although such parameters 
and filter’s structure are changed by the proposed approach, not 
is the case of the GP filter. In the proposed filter, the 
coefficients and the structure of the filter are tuned by 
considering their stochastic dependency. It can be noted that in 
each one of Fig. 3 to Fig. 6. 

 

 
Fig. 3. Cuesta El Portezuelo Rainfall time series neural network Bayesian 

approach. 
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Fig. 4. Cuesta El Portezuelo Rainfall time series Bayesian approach forecast 

horizon. 

 
Fig. 5. Cuesta El Portezuelo Rainfall time series stochastic output with zero 

mean and 0.11 variance. 

 
Fig. 6. Cuesta El Portezuelo Rainfall time series stochastic forecast horizon. 

 

Fig. 7. Cuesta El Portezuelo Rainfall time series Gaussian process filter. 

 

Fig. 8. Cuesta El Portezuelo Rainfall time series Gaussian process filter 
forecast horizon 

.  

Fig. 9. Cuesta El Portezuelo Rainfall time series stochastic Gaussian Process 
output with zero mean and 0.11 variance. 
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Fig. 10. Cuesta El Portezuelo Rainfall time series stochastic forecast horizon. 

The measure of forecast performance is measured by the 
Symmetric Mean Absolute Percent Error (SMAPE) proposed 
in the most of metric evaluation, defined by  

   

                  (13)               (9) 

 
where t is the observation time, n is the size of the test set, s 

is each time series, Xt and Ft are the actual and the forecasted 
time series values at time t respectively. The SMAPE of each 
series s calculates the symmetric absolute error in percent 
between the actual Xt and its corresponding forecast value Ft, 
across all observations t of the test set of size n for each time 
series s. 

In each figure are detailed the testing and the computing 
data, where the testing are labelled “Validation data” and had 
not been used in the computation of the predictor filter. 

In table I, the better performance is shown by the stochastic 
NN Bayesian approach where the index is set to 4.66 and 
31.20. By means of this assessment, the approach can be 
applied for a class of high roughness rainfall time series, in this 
case measured by the Hurst parameter [20] to Cuesta El 
Portezuelo series, H=0.14. 

TABLE I. FIGURES OBTAINED BY THE PROPOSED APPROACH FOR 

EACH PREDICTOR FILTER 

Filters for Rainfall time 

series 
Real Mean 

Mean 

Forecasted 
SMAPE 

NN Bayesian   approach 13.05 13.56 4.66 

Gaussian Process 13.05 15.78 27.95 

Stochastic NN Bayesian 

approach 
13.05 17.65 31.20 

Stochastic Gaussian 

Process 
13.05 18.19 35.99 

 

V. CONCLUSIONS 

In this article, forecasting rainfall time-series with 
stochastic output approximated by neural networks Bayesian 
approach has been presented. In the first case, an ANNs 
algorithm based on Bayesian inference to model neural 
networks parameters were detailed. The learning rule proposed 
to adjust the ANN’s coefficients was based on the Levenberg-
Marquardt method. 

Furthermore, the rainfall series were related with the long 
or short term stochastic dependence of the time series assessed 
by the Hurst parameter H, then the stochastic approximation to 
forecast the next 18 month were implemented. Its main 
contribution lies in generating stochastic rainfall time series 
forecast from monthly cumulative rainfall data, which allows 
adjusting the filter parameters for each algorithm and then 
averaged over all the outputs.  The roughness of the resulting 
forecasted time series was again evaluated by the Hurst 
parameter H in the Bayesian approach. 

The main results show a good performance of the predictor 
system based on stochastic neural network Bayesian approach, 
applied to time series obtained from a geographical point when 
the observations are taken from a single point due to similar 
roughness for both, the original and the forecasted time series, 
respectively. 

These results encouraged us to continue working on new 
machine learning algorithms using novel forecasting methods.  
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