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Abstract—The accurate estimation of the remaining useful life 

(RUL) of various components and devices used in complex 

systems, e.g., airplanes remain to be addressed by scientists and 

engineers. Currently, there area wide range of innovative 

proposals put forward that intend on solving this problem. 

Integrated System Health Management (ISHM) has thus far seen 

some growth in this sector, as a result of the extensive progress 

shown in demonstrating feasible and viable techniques. The 

problems related to these techniques were that they often 

consumed time and were too expensive and resourceful to 

develop. In this paper we present a radically novel approach for 

building prognostic models that compensates and improves on 

the current prognostic models inconsistencies and problems. 

Broadly speaking, the new approach proposes a state of the art 

technique that utilizes the physics of a system rather than the 

physics of a component to develop its prognostic model. A 

positive aspect of this approach is that the prognostic model can 

be generalized such that a new system could be developed on the 

basis and principles of the prognostic model of another system. 

This paper will mainly explore single switch dc-to-dc converters 

which will be used as an experiment to exemplify the potential 

success that can be discovered from the development of a novel 

prognostic model that can efficiently estimate the remaining 

useful life of one system based on the prognostics of its dual 

system. 

Keywords—Prognostic Model; Integrated System Health 

Management (ISHM); Degradation; Duality; Cuk Converter 

I. INTRODUCTION 

Integrated System Health Management (ISHM) [1] is a 
future advancement incondition based asset management that 
attempts to create automated prognostic and diagnostic systems 
to maintain and improve the integrity and readiness expected 
from legacy Health and Usage Monitoring Systems. ISHM is 
functioned (over a certain period of time) to detect, predict, 
diagnose and mitigate adverse events caused by degradation, 
fatigue and faults in components. For instance, the following 
problems may occur during an important function related to a 

system’s aircraft, regardless of whether the adverse event had 
been erupted by one of the subsystems. In order to diligently 
address this problem, it is important to develop technologies 
capable of integrating large heterogeneous distributed system 
[2] and asynchronous data streams from multiple subsystems; 
hence making it easier to detect a potential adverse event. The 
following technologies will later be used for diagnosing what 
caused the event, forecasting what consequences the event will 
have on the RUL of the system (i.e.,whether the entire system 
will be put at risk), and lastly to take appropriate precautions to 
mitigate the event [1]. 

Moving on, in order to accurately estimate the remaining 
useful life of devices solely depends on developing prognostic 
models. This will require additional care and attention to be 
invested towards preparing the degradation profiles and 
establishing the physics of failure for every component. 
Therefore, it’s necessary to gather and obtain the degradation 
profiles of every subsystem, including their individual 
components. This further result’s as a new degradation profile 
being formulated for whenever a component is upgraded. This 
degradation profile is calculated from either analysing the 
accumulated damage or the data driven. A drawback of 
calculating the degradation profile is that any changes made in 
the design of the system willconsume time and incur additional 
costs, since the prognostics model will need to be re-upgraded. 
It’s therefore safe to say that the proposals discussed above are 
very expensive and consume a lot of time to process while also 
being unreliable, noisy and inaccurate [3]. 

We intend to overcome these problems by developing a 
System – Level Reasoning (SLR) to at least provide the system 
with significant capabilities that can potentially reduce costs by 
adding a System Integrated Prognostic Reasoner (SIPR) to the 
system prognostics [1][4]. For Instance, a Vehicle Integrated 
Prognostic Reasoner (VIPR) is a project funded by NASA for 
developing the next generation VLRS. A typical functional 
module within the SLR is a System Reference Model. The 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 6, 2014 

44 | P a g e  

www.ijacsa.thesai.org 

System Reference Model divides the system into partitions. It 
also provides the necessary relationships between subsystems, 
which is required for the inference process. This partitioning 
allows the inference engine to reuse and link the same 
prognostic models to multiple subsystems and further minimize 
certification and qualification costs [1][4]. 

Although various methods and techniques including: neural 
network, fuzzy, statistics, semantic computing, graph theory, 
etc., have been thus far utilized for the development and 
enhancement of ISHM; however, ISHM continues to suffer 
from problems related to inefficient models, uncertainties and 
inadequate reasoning. Additionally, prognostic models also 
remain to be very costly and time consuming to prepare. The 
reason these problems exist is mainly because of the systems 
prognostics heavily relying on the physics of failure models 
and degradation profiles which are often considered to be 
inaccurate, inconsistent or even very noisy. We therefore 
believe that the ISHM system will greatly benefit if the 
prognostic of a component and system were to be perceived as 
a feature of a system rather than being perceived as the physics 
of components. The advantage of this approach is that it will 
enable SLR to develop prognostics for a new subsystem based 
on a collection of features (encompassing various 
models/patterns) already known from the previous prognostics 
of subsystems; hence saving a lot of time and resources. In 
order to successfully fulfil this task, SLR may need to employ 
various techniques associated with Soft Computing (SC),such 
as fuzzy and neural network within its Inference Engine and 
System Reference Model units, so that the subsystems 
properties can be linked to one another. In regards to this 
project, we expect that a duality connection will be found 
between the prognostics of dual systems, assuming that the 
prognostics of dual systems are seen as its parameters and 
features rather than physics of components. 

The prognostics of the system shall be further explained in 
section 2. The principles of duality in electrical systems, along 
with brainstorming the duality concept of system’s prognostics, 
are covered in section 3. Section 4 covers the prognostics of 
dc-to-dc converters with details of Cuk and its dual circuit. The 
proposed algorithm to develop prognostics for dc-to-dc 
converters using duality concept is presented in section 5. 
Simulation results are discussed in section 6. Section 7 
discusses future work. Lastly, section 8 concludes the major 
points discussed in the paper. 

II. PROGNOSTICS 

In condition-based maintenance, prognostics can be defined 
as a controlled engineering discipline that focuses on the 
prediction and estimation of the future course of a system or 
component that tries to establish when the system/component 
starts to slowly develop irregularities and faults to the point 
where it eventually malfunctions. A system or component that 
malfunctions means that it can no longer operate accordingly. 
The predicted lifecycle of a system or component is referred to 
as the Remaining Useful Life (RUL). RUL is used in decision 
making for contingency mitigation and maintenance. There are 
various scientific techniques used that help construct the 
prognostics of a system or component including: failure mode 
analyses, early detection of aging signs, and damage 

propagation models.Failure mechanisms are often used in 
conjunction with system lifecycle management to create 
prognostics and health management (PHM) disciplines. PHM 
is also sometimes known as system health management (SHM) 
or within the field of transportation applications; it is either 
known as vehicle health management (VHM) or engine health 
management (EHM). Building prognostic models constitutes 
of three main technical approaches which fall within the 
categories of data-driven approaches, model-based approaches, 
and hybrid approaches [1][4][5]. 

A. Data-Driven Prognostics 

Data-driven prognostics [6] are mainly based on pattern 
recognition and machine learning approaches that help identify 
and detect trends and changes in the individual phases of a 
system’s state. A way to predict trends in nonlinear systems is 
by using classical data-driven methods,such as stochastic 
models, an autoregressive model, the bilinear model, the 
projection pursuit, etc. Soft computing techniques that involve 
using various types of neural networks (NNs) and neural fuzzy 
(NF) systems have also been commonly adopted to deal with 
data-driven forecasting of a system state [7][8]. This prognostic 
approach applies to applications that havecomplicated system 
architecture, i.e., systems that incur high amount of cost when 
developing an accurate prognostic model. So by adopting this 
approach to deal with complex systems will lead the 
prognostics of a system to be much faster and cheaper to set up 
as compared to other approaches. Contrarily, data driven 
approaches may have a wider confidence intervals than other 
approaches which mean it will require a substantial amount of 
data for training purposes [9]. 

There are various strategies used to develop data-driven 
prognostics which involve the analysis of either (1) modelling 
cumulative damage and then extrapolating out to a damage 
threshold, or (2) directly learning from the data based on the 
remaining useful life. 

As it is a lengthy and rather costly process to fail each and 
every system one by one, we thus seek to obtain the run-to-
failure data which refers to the main fundamental setback, 
especially for new systems. In order to retrieve adequate data-
driven prognostics, the accelerated aging data should be 
extracted cautiously from a number of similar/related products 
by using appropriate measuring tools. This means that both the 
quality and quantity aspects of the data driven prognostics will 
add to expenses; especially since the data sources may have 
been derived from a wide range of factors including: 
temperature, pressure, oil debris, currents, voltages, power, 
vibration and acoustic signal, spectrometric data, as well as 
calibration and calorimetric data. As a result, it is important to 
fully understand what parameters and signals will be necessary 
to measure, and which features will need be extracted from the 
noisy and high-dimensional data [6][7][9]. 

B. Model-Based Prognostics 

Attempts made towards integrating a physical model of a 
system which is (either accomplished via micro or macro 
levels) into the estimated remaining useful life (RUL) is 
referred to as model-based prognostics [5]. The micro level 
(also known as material level) is often referred to as damage 
propagation model which is a physical model that is integrated 
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in a series of dynamic equations. The following dynamic 
equations define the very relationships between damage and 
degradation of a system or component. They further define 
how the system or component operates under environmental 
and operational conditions. Despite it being almost impossible 
to measure many critical damage properties, an alternative 
solution would be to use sensed system parameters. However, 
it is possible that the level of uncertainty and inaccuracy to be 
increased. Even though uncertainty and inaccuracy is added as 
a result of sensed system parameters, uncertainty management 
would be considered with the realistic assumptions and 
simplifications, which may potentially overcome the 
limitations caused by the sensed system parameter [4][5][10]. 

In contrast to physical expressions used in micro-levels, 
macro-level models alternatively use mathematical models at a 
system level that help define the relationship among system 
input, system state, and system measurable variables. This 
mathematical model is often a simplified representation of the 
system. Simplification may lead to making prototyping faster; 
but the trade-off to this is that although the coverage of the 
model is increased, the accuracy of a particular degradation 
model is consequently decreased. In addition, within a complex 
application, such as a gas turbine engine, there would be a lack 
of knowledge in attempting to develop the proper mathematics 
for all subsystems or components. Again, this leads to 
uncertainty and inaccuracy, similar to micro-level models; 
which means simplifications must be considered by performing 
uncertainty management procedures [1][4][10]. 

C. Hybrid Approaches 

In reality, it is almost impossible to either have a purely 
data-driven or purely model-based approach. However, both 
these models do share parts of one another’s mechanisms. The 
intention of hybrid approaches is to show the strength of both 
‘data-driven’ approaches and ‘model-based’ approaches into 
one prognostic strategy. Two well-known categories of Hybrid 
approaches are, 1) Pre-estimate fusion and 2) Post-estimate 
fusion. The first technique applied, hardly has any ‘ground 
truth’ data or ‘run-to-failure’ data available. The second 
technique is fitted for situations where uncertainty management 
is required. This means that the second technique helps to 
narrow down uncertainty intervals of data-driven or model-
based approaches while also improving accuracy [11][12]. 

III. PROGNOSTICS OF DUAL SYSTEMS 

Duality is one of the fundamental properties which can be 
consistently seen in physical systems, such as, electrical, 
mechanical systems, etc. [13][14]. It has an interesting history 
in mathematics, engineering and science. Duality relations 
have been identified between geometric objects, algebraic 
structures, topological constructs and various other scientific 
constructs. In regards to electrical systems, duality relations 
have appeared in the core principles for any theorem within an 
electrical circuit analysis, for situations where there is a dual 
theorem that replaces one of the quantities with dual quantities.  

Examples of such dual quantities in electrical systems are 
current and voltage, impedance and admittance, meshes and 
nodes found in electrical systems (shown in Table 1) [15]. 

TABLE I.  DUALITY PRINCIPLE IN ELECTRICAL SYSTEMS 

System Dual of System 

Voltage of nodes or across device Current of branch or mesh 

Current of branch or mesh Voltage of nodes or across device 

Resistor (R) Conductivity (1/R) 

Capacitor (C) Inductance (C) 

Inductance (L) Capacitor (L) 

Voltage Source (Vs) Current Source (Vs) 

Current Source (Is) Voltage Source (Is) 

Kirchhoff’s Current Law Kirchhoff’s Voltage Law 

Kirchhoff’s Voltage Law Kirchhoff’s Current Law 

Mesh/Loop Node 

In regards to duality concepts, a duality relationship 
between two electrical circuits is expected to be found, if the 
values of the parameters and topologies of both circuits are 
linked to one another based on details in Table 1. Looking at it 
from a mathematical perspective, dual circuits are known to 
have the same mathematical model, apart from their parameter 
differing. Even though the function of systems are different, 
their prognostics still can be assigned to each other on the basis 
of dual relationships found between the systems, along with 
having the same mathematical model with dual parameters 
shown in Table 1. This provides us with the required facilities 
to develop the prognostics of a system based on the prognostics 
of its dual system. 

Graph theory [13] well established that the behaviour and 
the functionality of a system can be recognized by knowing the 
topology of a system without having to know the components 
and devicesused in the system (considering we already know 
the nodes voltages and currents of the branches in the circuits). 
It can thus be expected that graph theory provides us with the 
capability to construct the prognostic of a system based on its 
topology rather than concentrating on the integrated devices 
and components within the system. It is also to be expected, 
systems that share similar or dual topologies and mathematical 
models will also share similar prognostics regardless of the 
components integrated within the system. This makes it 
possible to investigate how prognostic models can be 
constructed from knowing the topology of system rather than 
having to know thephysics of failure of a system. This 
therefore makes the process of modelling the prognostics of a 
system much more feasible and realistic, as it saves a 
substantial amount of resources and time, since you wouldn’t 
have to go through the process of individually testing every 
system in order to identify its prognostics. 

Fig. 1 shows an example of dual circuits. Using Kirchhoff’s 
laws, it can be said that both circuits have the same 
mathematical model as shown in equation 1 for circuit in Fig. 
1-a; and equation 2 for circuit in Fig. 1-b: 

    (   ⁄     ⁄     ⁄ )    

    (        )    

If for instance a degradation mechanisms is added, R2 in 

circuit of Fig. 1-b is aged towards a short circuit (R2→ 0), this 

is turned as (1/R2→∞) in circuit of Fig. 1-a.  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 5, No. 6, 2014 

46 | P a g e  

www.ijacsa.thesai.org 

In reality, this represents the duality principles shown in 
Table 1 which proves that the resistor is a dual of a conductive; 
or in regards to this example, it can be known since the short 
circuit is a dual of an open circuit. 

 

 

 

 

 

 

 

 

 

Fig. 1. a, b) Resistive circuit with duality relationship, c,d) Graphs for 

circuits 1-a and 1-b. 

The same rules can be applied to more complicated circuits 
where various components, including capacitors and 
inductances are also used. The most critical point that needs to 
be taken into account is the fact that degradation and failure 
mechanisms of dual components are not truly related to one 
another. For instance, the degradation mechanism of capacitor 
is not in any shape or form related to degradation mechanisms 
of inductance. 

A way to deal with this problem is to rely on the well-
known physics principles, such as Ohm’s and Kirchhoff’s 
laws. In reference to these two laws, it can confidently be said 
that any electric component can be formulated by using voltage 
across the component and current through the component. 
Alternatively, in regards to graph theory’s basic principles of 
circuit and system design, it has been well known that the 
behaviour of a system is fully formulated if the voltage of all 
nodes and current through all the branches in the circuit are 
also known. This means that behaviour and the function of 
circuit can be fully formulated no matter what components are 
used in the circuit, as long as all the voltages and currents are 
known Fig. 1-c and 1-d, respectively show the graph of the 
equivalent circuits in Fig. 1-a and 1-b. 

Perceiving it from a circuit level, the details required for the 
development of a prognostics model for a circuit does not 
necessarily need to be known. Essentially, sensors are used to 
measure voltages, currents, temperature, etc. By basing it on 
the meaning of the sensed values, allows the experiences of a 
degraded circuit or system of any form, to be interpreted as a 
circuit not functioning properly. Although this principle can be 
applied for greater purposes, i.e., to design a device 
independent prognostic model, this paper will for now mainly 
concentrate on presenting a realization of duality principles for 
the development of prognostics for dual circuits. 

In addition, duality concept has already been recommended 
for diagnosing faults. Reference [16] proposes a fault diagnoser 
based on the duality principle and the optimal control theory 
for linear systems. However, this paper will present duality 
applications in system prognostics. 

IV. PROGNOSTICS OF DC-TO-DC CONVERTER 

A basic building block for power convertor type systems is 
dc-to-dc converter. There are many dc-to-dc voltage and 
current converters that have various topologies. These 
topologies can be defined algebraically [17]-[20], graphically, 
[21][22] or in a matrix form [23]-[25]. It is of significant 
interest in unifying converter topological characteristics, 
relationships, and analysis [26]. In regards to health 
management, the aim would be to develop a basic structure, 
model or concept that shows where all the converters, 
including their prognostics may have been derived and 
mapped. This unified model can lead to many advantages in 
developing conditional based monitoring, and System- Level 
Reasoning (SLR). 

The underlying concepts related to basic converters can be 
unified on the basis of what has been already presented in [27] 
with regard to duality principles and in relation with current 
and voltage-source converters. The authors in [27] used circuit 
transformations to unify the basic converters, ultimately 
showing that other converters are derivable transformation 
topologies of the basic converter. 

This section shows how duality concept can be used to 
develop prognostic models for Cuk converter and its dual 
circuit. The following simulations were all conducted with 
ORCAD and MATLAB. Schematic of Cuk converter and its 
dual circuit are shown in Fig. 2-a and 2-b. 

 

 

 

 

 

 

 

 

 

Fig. 2. a) Cuk Converter, b) Dual circuit for Cuk converter in 2-a. 

We use certain values for Cuk converter devices, as well as 
all the equations depicted in reference [28] for all the 
simulations in this paper. Cuk is a step-down/step-up converter 
that shares a similar switching topology with buck-boost 
converter. It thereby presents the voltage ratio of a buck-boost 
converter [28]: 

     ⁄    (    )⁄  

where vo is output voltage, vg is the input voltage, Ds is the 
duty cycle of the switch ton/(ton+toff); and ton and toff are 
durations for when the switch is on and off. Equation 3 is 
calculated from the principle of conservative energy and the 
fact that the inductor currents relate to the input and output 
currents. This equation shows that the output voltage can be 
controlled by maintaining the duty cycle of the switch. 
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Basedon the type of switching scheme, output voltage can be 
either higher or lower than the input voltage. The state 
equations for Cuk converter are: 

               

     

  [           ] 

The Cuk converter has two inputs, a control input (Vc) and 
an input from the power supply (vs) and one output (vo). 
Therefore, matrix [A B C D] relates to ‘state space matrices’ 
for the open-loop model from the vs to the vo. Similarly, [A Bc 
C D] is the state space matrices from the control input d to the 
output vo. Values for A, B, Bc, C, and D are given in [17]. The 
same equation can be extracted for dual circuit of Cuk 
converter in Fig. 2-b; however, parameters are used in a dual 
form as shown in table 1. Switches in Fig. 2 are IGBT with a 
control voltage Vc. Yin and Zin are input admittance and input 
impedance of Cuk circuit and its dual circuit. 

Inside converters, the components that are mainly damaged 
refer to the IGBTs and capacitors. Alghassi et al has discussed 
different failures mechanisms related to IGBT and they have 
also presented prognosis model for the dominant failure at a 
component level in [29][30]. IGBT experiences a number of 
failure mechanisms including: bond wire fatigue, bond wire lift 
up, corrosion of the wires, static and dynamic latch up, loose 
gate control voltage, etc. The resulting affects mentioned are 
too complex, but we assume that these failure mechanisms can 
cause IGBT to behave as either an open circuit on a collector-
emitter or a device encountering malfunction on its gate-
emitter control. For instance, IGBTs thermal junction is 
increased due to solder crack which turns to wire bond lift off 
that increases the resistor relating to the collector-emitter. On 
the other hand, hot carrier injection is increased due to 
electrical stress. This causes short circuit on the IGBTs gate-
emitter junction. The result of this failure, leads to IGBT’s gate 
controllability being missed (loose gate control voltage) 
causing IGBT to malfunction. The result of this effect is an 
increase in current through collector-emitter which means that 
the resistor of collector emitter is decreased. Therefore, it can 
be established that wire bond lift off and loose gate control 
voltage are failure mechanisms that presents some kind of 
duality relationship. While one of them increases the resistor, 
the other one decreases the resistor. Generally, we assume that 
IGBT’s failure and malfunction mechanisms are parameters 
that have duality relationships. 

Fig. 3 shows IGBT run to failure data relating to four 
different IGBTs. This data is very noisy and needs to be 
filtered, but there are still a number of states that can be seen in 
the data. These states refer to cracks or wires that were lifted 
up due to degradation mechanisms. The resulting effects are 
changes in the IGBT’s functionality; and changes in the 
channel resistor of that IGBT. We assume that degradation is 
processed in a form of duality for Cuk and its dual circuit, so 
that if IGBT of Cuk experiences degradation towards its open 
circuit, IGBT of dual circuit of Cuk is degraded towards short 
circuit.  

By the time that the IGBTs are damaged, Cs and Ls are 
fully charged, as well as the other energy storage components 
lose energy, so Vo would be 0. It is, however, impossible to 
have a real short circuit in IGBT, thus we assume that it may 
have happened when the current through the collector-emitter 
exceeds over its limit just before the IGBT is burned out. 

Based on the level of accuracy, there are number of models 
that can be applied to a real capacitor and an inductance. To 
simplify a simulation, we assume that the capacitor and the 
inductance can both be modelled like Fig. 4 for the purposes of 
this paper. These models will present duality relationship 
between capacitance and inductance while also presenting the 
energy lost by the resistors. R1 typically has had very large 
values, while R2 has a small value; but due to degradation, 
these resistors are changed towards either open or short 
circuits. 

 

 

 

Run to failure data for four different IGBTs. 

 

 

 

 

 

Fig. 3. Real model for a) Capacitor, b) Inductance. 

Fig. 4. Real model for a) Capacitor, b) Inductance. 

V. ALGORITHM TO DEVELOP PROGNOSTICS 

Fig. 5 illustrates the proposed algorithm devised to develop 
this prognostics model. The same process that possesses 
different sets of run to failure degradation and malfunction 
profiles is repeated for both Cuk and its dual circuit. At first the 
components of the circuits are set to be in a good condition. 
Then as soon as the time step for the circuit is increased, the 
values of the components are changed by using a series of 
values provided within the degradation profile for the new time 
step. Signals, such as v1, v2, vo, i1, i2, io, are measured at each 
time step phase.  

The following signals are used for calculating the 
properties of the system, such as transfer functions, input and 
output impedances and admittances. Subsequently, the system 
degradation is turned according to changes it has encountered 
during the transfer functions (Zc(d,t), Yc(d,t), Zdc(d,t), Ydc(d,t)). 
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So where d is an index of a selected degradation profile, c is 
Cuk and dc is the dual circuit of the Cuk converter. Whenever 
d is altered, time step (t) is reset to zero which resets the 
process of the circuit to a healthy condition for the new 
degradation scheme.  

The reason for measuring the mentioned signals and 
parameters is that it would make it possible to understand how 
energy is transferred between capacitances and inductances; 
and how that transferred energy is lost when the system is also 
degraded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Algorithm used to develop prognostic model. d/m: 

degradation/mulfunction number; t: time step or cycle. 

To successfully estimate the remaining useful life of both 
converters, the same process is to be repeated for numbers of 
different degradation and malfunction profiles. The implication 
of such a process is to obtain standard Tee and Pi models for 
Cuk converter and its dual circuit, as shown in Fig. 6. This 
means that there would be a number of time dependent Tee and 
Pi models, one for each degradation and malfunction profile. 
There are many different techniques, such as neural network, 
fuzzy, statistics, etc., that can be utilised in order to generate a 
universal prognostic model for the converters (Cuk and its 
dual) out of all time dependent Tee/Pi models needed to be 
trained. Here, we just use a mean value to simplify and speed 
up the process.  

The resulted time dependent transfer function which is 
known as prognostic model is excited with step function 

(u(t)) during the RUL estimation. Step function u(t) 

provides a fixed input of  for the converter over the period of 
t>0. We later assign fuzzy values to the output of transfer 
function excited with u(t). The fuzzy values represents whether 
there are a small, medium, normal, transient and big changes 
experienced at the output of the converter.  

The term ‘normal’ in the fuzzy set, means that changes in 
the signals can be ignored and transient means that the circuit 
is in a transient mode and should be settled in a steady state 
during a specific time constant. RUL is estimated using the 
MAX fuzzy function which is applied on the triggered fuzzy 
values. MAX fuzzy function selects the maximum fuzzy value 
among the fired membership functions.  

During this process, RUL is estimated in a fuzzy form, and 
therefore needs to be de-fuzzified. During the de-fuzzification 
step, RUL is also scaled up, so that the integration of the 
estimated RUL (in fuzzy form) reflects the maximum life cycle 
of the circuit, Fig. 7. Confidence levels are implemented using 
fuzzy adjectives and adverbs found in fuzzy base knowledge 
and fuzzy rules. 

 

Fig. 6. Tee and Pi Models 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Simplified Algorithm for RUL Estimation. 

VI. SILUMATION RESULTS AND DISCUSSION 

Simulation results, using ORCAD 16.6 that reflect the 
circuits shown in Fig. 3 are presented in Fig. 8 and 9. Looking 
at these figures, it is apparent that Vo1 has the same trend as 
Io2; and the same for Iin1 and Vin2.  
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These in turn reflect the similarities encountered within the 
transfer functions, such as Z, Y, Av and Ai shown in Fig. 10. 
As shown in Fig. 11, we used the IGBT model for our 
simulations. To add degradation to our simulations, we 
changed the IGBT’s parameters, such as Ron in such a way that 
a trend of failure in Fig. 2 will be obtained from the IGBT 
model in Fig. 11.  

To speed up the simulation, we intend to have all 4500 
cycles shown in Fig. 2 in just 25 ms. The result from this 
mapping is that the degradation will be accelerated in such a 
way that the first degradation will be experienced around 8 ms 
after exciting the circuit with step function, u(t); however, the 
threshold needed to estimate whether the IGBT has aged 
enough to incur damage in an earlier time is around 10 ms. The 
same life time and threshold can be expected from energy 
transfer and power of Co and Lo, respectively shown in Fig. 12 
and 13 for Cuk and its dual circuit.  

The figures illustrate that as a result of degradation, energy 
is not sufficiently transferred in the circuit. So this informs us 
that the health state of a circuit can just as well be understood 
from the state equations of a circuit, whereby energy signals 
from storing elements, capacitors and inductors are used as 
state variables. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Changes in Iin1 and Vin2 due to degradation in IGBTs. 

 

 

 

 

 

 

 

 

Fig. 9. Changes in Vo1 and Io2 due to degradation in IGBTs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Changes in transfer functions due to degradation. 
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Fig. 11. IGBT Model for Simulation. 

 

 

 

 

 

 

 

 

Fig. 12. Energy in Co of Cuk converter in Fig. 3. 

 

 

 

 

 

 

 

 

Fig. 13. Energy in Lo for dual circuit of Cuk in Fig. 3. 

The timings presented here are not realistic as we 
accelerated the aging mechanisms in the simulation. 
Nevertheless, it does clearly prove that the concept of the 
circuits with duality relationships or even with similarities in 
components and topologies may also have similar prognostics 
models. 

Every signal, energy and transfer function monitored in the 
figures have similar information with regard to the effects of 
degradation of a circuit. However, some of these parameters 
are rapidly changing due to the switching scheme of IGBT and 
energy transfer in Capacitors and Inductors, but in most cases 
the same trend can be found in all these signals. This 
experiment only refers to the degradation profile concerning 
the IGBT which refers to the component that mostly 
experiences degradation during real time; while simultaneously 
all other components are assumed to behave as non-aged 
devices (in all simulation). As shown in Fig. 10, Av1 and Ai2 
seem to be the best for RUL calculation. Other transfer 
functions and signals are viewed as noisy data, thus requiring 

further care to be conducted, such as filtering in order to reduce 
uncertainties for accurate RUL estimation. For instance, 
instead of making direct decisions based on monitored signals, 
the monitored signals can be shifted in the FIFO (First-In First-
Out stack) one by one, and the mean value of available data in 
the FIFO could be hence used for the RUL estimation. FIFO 
has a fixed storage length, so that shifting a new sample to the 
FIFO will release the sample that had been already shifted into 
the stack at the earliest time. Mean value of FIFO captures the 
trend of signals and eliminates noise, unwanted information 
and uncertainties. The following FIFO will increase system 
reasoning within RUL estimation. The length of FIFO has had 
a great impact on eliminating noise, but it normally shouldn’t 
take that long to lose trend of system degradation. 
Additionally, implementing a mean value on the stored data in 
the FIFO may add DC value (i.e., mean value) to the estimated 
RUL. As DC value is constant (i.e., meaningless information), 
it will make it easier to eliminate the DC value from RUL. 

In order to simplify the process, we use Av1 and Ai2 for the 
RUL estimation using fuzzy logic techniques to estimate the 
remaining life time of circuit, as shown from the algorithm in 
Fig. 7. All the input and output membership functions are set in 
Gaussian form with input fuzzy values as {small, medium, 
normal, transient and big} and output fuzzy values as 
{health_state_1, health_state_2, health_state_3, health_state_4 
and health_state_5}. Fuzzy values at input refer to the changes 
in the trend of Av1 and Ai2. Fuzzy values at output refer to the 
life state of circuit, such as young for health_state_1 and, aged 
for health_state_5. We also use number of adverbs and 
adjective to address 10% and 90% confidence levels in life 
estimation. Fig. 14 shows the final RUL in fuzzy form. This 
figure shows how the circuit behaves in different life/health 
states during its life cycle. LF1 to LF5 show the life domain of 
each health state. LF1 comes from having huge transient period 
at the beginning of Av1 and Ai2. In reality, we are not faced 
with such a big transient period, but it is included in our 
simulation just because of the acceleration in the degradation 
process. LF2 represents the how long the system works without 
the inclusion of degradation, and the rest refer to durations to 
which the circuit does experience degradation. The reason LF4 
appears twice is that the circuit is not experiencing big changes 
in its transfer functions, but there are meaningful transient 
periods found that split the LF4 into two separated Gaussian 
fired fuzzy values. 

 

 

 

 

 

 

 

 

 

Fig. 14. Resulting RUL after testing prognostic model with data test. 
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The results reflecting the prognostic model is tested with an 
additional degradation profile. This will be handled as a test 
data which will assist us in estimating the remaining useful life 
time for the converter. Fig. 15 shows the de-fuzzified RUL that 
represents the remaining useful life with 10% and 90% 
confidence levels. Ideally, it is expected that the life of a circuit 
is decreased as a negative ramp in Fig. 15; however, our 
simulation shows that the RUL is slightly wavy. 

 

 

 

 

 

 

 

 

 

Fig. 15. Resulting RUL after testing prognostic model with data test. 

We realized that if a degradation profile is used for Cuk, 
such that it’s converted to a malfunction profile for its dual 
circuit so that the IGBTs in both circuits always remain in dual 
forms; then a duality relationship would be found between the 
transferred functions of these two circuits. For instance, Zc(t) is 
equal to Ydc(t). This is because as the degradation profile 
changes the IGBT of Cuk towards an open circuit; its 
malfunction profile also changes the IGBT of dual circuit 
towards a short circuit. 

If the malfunction profile for dual circuit of Cuk is not 
extracted from the degradation profile of a Cuk circuit, then 
Zc(t) is not identical to Ydc(t). However, we come to a 
conclusion that if the whole process is repeated for number of 
different degradation and malfunction profiles and that the 
mean value of Zc(t) and Ydc(t) are used for comparison; leads to 
meaningful similarity patterns to be found between Zc(t) and 
Ydc(t). Zmc(t) can be used for the mean value of Zc(d,t) and 
Ymdc(t) can be used for the mean value of Ydc(d,t), in situations 
where m refers to the mean value. Zmc(t) and Ymdc(t) can be 
both used as prognostic models for Cuk and its dual circuit. 
However, these two transfer function are not exactly identical, 
but they would be more similar to one another if the process 
that is required to be executed to obtain the functions is 
repeated for various numbers of degradation and malfunction 
profiles for both circuits. By implementing more intelligent 
algorithms that use stochastic, neural network, fuzzy and other 
techniques instead of a simple mean value function will 
increase the accuracy of this prognostic model. Implementing 
such intelligent algorithms also reflects the future aim and 
direction of our research. Additionally, we should be aware 
that prognostics have always been a way to estimate the life 
time of devices and systems within different confidence levels. 
Confidence levels provide assurance, so that we can 
comfortably rely on the performance of an aged system. The 
point is the accuracy of prognostic models has always been 
under doubt and remains to be under margins of confidence 

levels. In summary, by using the prognostic model of a system 
for other systems where similarities in their properties (like 
duality) are found, would give us a more accurate and reliable 
representation of the state and condition of the system. This is 
assuming that the prognostics are developed from adequate 
number of degradation profiles, and that they also have the 
right minimum and maximum confidence levels. 

VII. FUTURE WORK 

In this paper, we have looked at the IGBT in a converter as 
a critical component, thus meaning that the life expectancy of 
the converter is dependent on the remaining useful life of the 
IGBT. However, as for another component, such as a capacitor, 
it is also susceptible to thermal and mechanical stress. Thereby 
we must investigate whether it is classed as a dominant 
component failure in a converter or not. So in order to improve 
the novelty of duality in prognosis, requires one to have a 
cluster of components. This may overall have a remarkable 
impact on developing ISHM for critical applications. 

VIII. CONCLUSION 

In conclusion, this paper shows that the prognostics of 
systems that share similar properties in the form of duality can 
be applied to one another. A prognostic model is developed in 
the form of a time dependant transfer function where based on 
the degradation mechanisms related to a system’s components, 
the values are subsequently altered over a certain period of 
time. So by having the prognostics assigned to a system’s 
property will thereby reflect the duality connection found 
within the degradation and malfunction profiles of a system. So 
if we were to consider that the components of a system are 
aged, this will mean that their dual components in the dual 
circuit will befaced with malfunction.  

The accuracy of the developed prognostic model is highly 
dependent on the number of degradation profilesavailable; and 
the methodology used to train the time dependant transfer 
function. The minimum and maximum confidence levels are 
used to guarantee and express the accuracy of this model. 
However, this approach is presented just for Cuk converter and 
its dual circuit, but it seems that the same technique can be 
used for systems that have slightly similar mechanisms, 
properties topologies and degradation. Thereby, further 
research needs to be conducted for systems that are not in dual 
forms, especially for the purposes of exploring how the 
prognostic model of a system could be mapped to the 
prognostic model of another system. 

The advantage and usage of such a technique is emphasized 
in the implementation stage of the inference engine for System- 
Level Reasoning (SLR) and System Integrated Prognostic 
Reasoner (SIPR). It additionally provides us with the required 
facility to transfer degradation knowledge and experiences 
between systems. This means that the development of 
prognostics for huge systems, such as heterogeneous 
distributed systems used in applications like aircraft will be 
much faster, while decreasing the cost assigned to accelerated 
aging tests and preparing degradation profiles. We ultimately 
intend on pushing forward with our research, in order to apply 
this technique to the development of the prognostic inference 
engine and reasoned for aircraft. 
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