
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

Multilabel Learning
for Automatic Web Services Tagging

Mustapha AZNAG
Aix-Marseille University,
LSIS UMR 7296, France.

mustapha.aznag@univ-amu.fr

Mohamed QUAFAFOU
Aix-Marseille University,
LSIS UMR 7296, France.

mohamed.quafafou@univ-amu.fr

Zahi JARIR
University of Cadi Ayyad Marrakech,

LISI Laboratory, FSSM, Morocco.
jarir@uca.ma

Abstract—Recently, some web services portals and search
engines as Biocatalogue and Seekda!, have allowed users to
manually annotate Web services using tags. User Tags provide
meaningful descriptions of services and allow users to index
and organize their contents. Tagging technique is widely used
to annotate objects in Web 2.0 applications. In this paper we
propose a novel probabilistic topic model (which extends the
CorrLDA model - Correspondence Latent Dirichlet Allocation-)
to automatically tag web services according to existing manual
tags. Our probabilistic topic model is a latent variable model
that exploits local correlation labels. Indeed, exploiting label
correlations is a challenging and crucial problem especially in
multi-label learning context. Moreover, several existing systems
can recommend tags for web services based on existing manual
tags. In most cases, the manual tags have better quality. We also
develop three strategies to automatically recommend the best
tags for web services. We also propose, in this paper, WS-Portal;
An Enriched Web Services Search Engine which contains 7063
providers, 115 sub-classes of category and 22236 web services
crawled from the Internet. In WS-Portal, severals technologies
are employed to improve the effectiveness of web service discovery
(i.e. web services clustering, tags recommendation, services rating
and monitoring). Our experiments are performed out based
on real-world web services. The comparisons of Precision@n,
Normalised Discounted Cumulative Gain (NDCGn) values for
our approach indicate that the method presented in this paper
outperforms the method based on the CorrLDA in terms of
ranking and quality of generated tags.

Keywords—Web services, Tags, Automatic, Recommendation,
Machine Learning, Topic Models.

I. INTRODUCTION

The Service Oriented Architecture (SOA) is a model cur-
rently used to provide services on the Internet. The SOA
follows the find-bind-execute paradigm in which service
providers register their services in public or private registries,
which clients use to locate web services. Web services1 [27]
are defined as software systems designed to support interoper-
able machine-to-machine interaction over a network. They are
loosely coupled reusable software components that encapsulate
discrete functionality and are distributed and programmatically
accessible over the Internet. They are self contained, modular
business applications that have open, internet-oriented and
standards based interfaces [1]. Web services are autonomous
software components widely used in various SOA applica-
tions according to their platform-independent nature. Different
tasks like matching, ranking, discovery and composition have

1http://www.w3.org/standards/webofservices

been intensively studied to improve the general web services
management process. Thus, the web services community has
proposed different approaches and methods to deal with these
tasks.

Recently, some web services portals and search engines as
Biocatalogue2 and Seekda!3 (Currently, the portal is no longer
available.) and some other web services portals also support
tags, have allowed users to manually annotate Web services us-
ing tags. User Tags provide meaningful descriptions of services
and allow users to index and organize their contents. Tagging
technique is widely used to annotate objects in Web 2.0
applications. This type of metadata provides a brief description
of Web services and allows users to find appropriate services
more easily. Tagging data provides meaningful descriptions,
and is utilized as another information source for Web services.

Several web services tagging approaches have been pro-
posed, for example the tagging system proposed in [14],
[20]. However, most of them annotate web services manually.
Moreover, several existing systems can recommend tags for
web services based on existing manual tags [13], [9]. In most
cases, the manual tags have better quality. In this paper we
propose a novel approach based on our previous work on
probabilistic topic models [23] to automatically tag web ser-
vices according to existing manual tags. Our probabilistic topic
model is a latent variable model that exploits local correlation
labels. Indeed, exploiting label correlations is a challenging
and crucial problem especially in Multi-Label learning context.
We also develop three strategies to automatically recommend
the best tags for web services. Our experiments are performed
out based on real-world web services (i.e. Section IV). The
experiment results show that the performance of our approach
is affected by web services with or without user’s tags. For
this, we propose three strategies to learn the classifier before
recommendation task.

The main contributions of this paper can be summarized
as follows:

1) We propose an automatic tagging technique for web
services, in which both the WSDL documents and
service tags are effectively utilized. Our approach can
work without existing tags, and works better when
there exists manual tags.

2) We propose three tag recommendation strategies to
improve the performance of our approach. We exploit

2https://www.biocatalogue.org/
3http://webservices.seekda.com/

www.ijacsa.thesai.org 182 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

WSDL documents and related descriptions to extract
the most important words and user’s tags.

3) We generate tags for 22,236 real web services and
these tags are published online in our developed Web
Services Portal4

To validate the performance of our approach, a series of
experiments are carried out. The comparisons of Precision@n,
Normalised Discounted Cumulative Gain (NDCGn) values
for our approach indicate that the method presented in this
paper outperforms better when the selected tags from WSDL
description are combined with the existing manual tags.

In this paper we propose also an enriched web service
search engine called WS-Portal4 where we incorporate our
research works to facilitate web services discovery task (see
Section V) [6].

The rest of this paper is organized as follows. Section
II analyzes some related work. In Section III, we describe
in detail our web services tag recommendation approach.
Section IV describes the experimental evaluation. Section V
describes our developed web services search engine. Finally,
the conclusion and future work can be found in Section VI.

II. RELATED WORK

Generally, every web service associates with a WSDL
document that contains the description of the service. A lot
of research efforts have been devoted in utilizing WSDL
documents and Web service clustering [28], [19], [18], [12],
[11] has been demonstrated as an effective mechanism to
boost the performance of Web services discovery. Dong et al.
[11] proposed the Web services search engine Woogle that is
capable of providing Web services similarity search. However,
their engine does not adequately consider data types, which
usually reveal important information about the functionalities
of Web services [18]. Liu and Wong [19] apply text mining
techniques to extract features such as service content, context,
host name, and service name, from Web service description
files in order to cluster Web services. They proposed an inte-
grated feature mining and clustering approach for Web services
as a predecessor to discovery, hoping to help in building a
search engine to crawl and cluster non-semantic Web services.
Elgazzar et al. [12] proposed a similar approach which clusters
WSDL documents to improve the non-semantic web service
discovery. They take the elements in WSDL documents as
their feature, and cluster web services into functionality based
clusters. The clustering results can be used to improve the
quality of web service search results.

Recently, tagging data provides meaningful descriptions,
and is utilized as another information source for Web service.
In this section, we briefly discuss some existing research works
of tagging data related to different problems in web service.
Meyer et al. use tags to annotate web services semantically
[20]. Similary this idea, Gawinecki et al. use structured col-
laborative tags to matchmake web services [14]. However, all
these tags are generated manually and the authors spend 12

4WS-Portal is available online:
• http://wvmweb.esil.univ-mrs.fr/wsportal
• http://www.webvirtualmachine.fr/wsportal
• http://wsportal.aznag.net

days to generate tags for just 50 services. Thus, manual tagging
is very time-consuming and an automatic tagging system is
needed for web services. To handle the problem of limited
tags, Azmeh et al. [2] propose an automatic tagging system for
web services which extracts tags from WSDL documents using
machine learning technology and WordNet synsets. The system
uses relevant synonyms in WordNet to enrich tags. Fang et al.
[13] propose an approach to generate tags for web services
automatically using two tagging strategies, tag enriching and
tag extraction. In the first strategy, the system use clustering
technique to enrich tags with existing manual tags. In the
second strategy, recommended tags are extracted from WSDL
documents and related descriptions. Liang et al. [10] propose
a hybrid mechanism by using service-tag network information
to compute the relevance scores of tags by employing semantic
computation and HITS model, respectively.

In [9], the authors improve the performance of Web service
clustering by introducing a novel approach based on the
Author-Topic-Model [24] to explore the knowledge behind
WSDL documents and tags and by proposing three tag pre-
processing strategies to improve the performance of service
clustering. But the system can’t work if there is no manual
tag in the system. Topic models are successfully used for a
wide variety of applications including documents clustering
and information retrieval [26], collaborative filtering [15], and
visualization [16] as well as for modeling annotated data [8].
In our previous work [3], [4], we investigated the use of three
probabilistic topic models PLSA, LDA and CTM to extract
topics from semantically enriched service descriptions. These
topics provide a model which represents any web service’s
description by a vector of terms. In our approach, we assumed
all service descriptions were written in the WSDL and/or
SAWSDL. The results obtained from comparing the three
methods based on PLSA, LDA and CTM showed that the
CTM model provides a scalable and interoperable solution
for automated service discovery and ranking in large service
repositories. The CTM model assumes that the concepts of
each service arise from a mixture of topics, each of which
is a distribution over the vocabulary. In this paper, we use
CTM model to extract and select the candidates tag for a
web services in the dataset. Then, we use the extracted tags
from web service dataset to train our classifier using a latent
variable model based on LocLDA (Local Correspondence
Latent Dirichlet Allocation), which is a latent variable model
that exploits local correlation labels [23]. LocLDA was built on
Correspondence Latent Dirichlet Allocation (Corr-LDA) [8].

III. WEB SERVICES TAGS RECOMMENDATION SYSTEM

In this section, we describe the details of our web services
tags recommendation approach. The overall process of our
approach is divided into three phases:

1) Web Services Representation and Tags Extraction:
We process the service descriptions and we use a
probabilistic method to extract and select the can-
didates tag for a web services in the dataset (Section
III-A).

2) Training Web Services Tags Recommendation Clas-
sifier: We use the extracted tags from web services
dataset to train our classifier using a latent variable
model (Section III-B).

www.ijacsa.thesai.org 183 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

3) Web Services Tags Recommendation: Finally, we use
the trained classifier to recommend the best tags for
a new web service (Section III-C).

A. Web Services Representation and Tags Extraction

Web services are generally described with a standard Web
Service Description Language (WSDL). The WSDL is an
XML-based language, designed according to standards spec-
ified by the W3C, that provides a model for describing web
services. It provides the specifications necessary to use the
web service by describing the communication protocol, the
message format required to communicate with the service, the
operations that the client can invoke and the service location.
To manage efficiently web service descriptions, we extract all
features that describe a web service from the WSDL document
(i.e. such as services, documentation, messages, types and
operations).

As shown in Figure 1, our tags extraction process contains
two main components, features extraction and tags selection.
Before representing web services as TF-IDF (Text Frequency
and Inverse Frequency) [25] vectors, we need some prepro-
cessing. There are commonly several steps:

• Features extraction extracts all features that describe
a web service from the WSDL document, such as
service name and documentation, messages, types and
operations.

• Tokenization: Some terms are composed by several
words, which is a combination of simple terms (e.g.,
get ComedyFilm MaxPrice Quality). We use there-
fore regular expression to extract these simple terms
(e.g., get, Comedy, Film, Max, Price, Quality).

• Stop words removal: This step removes all HTML
tags, CSS components, symbols (punctuation, etc.)
and stop words, such as ’a’, ’what’, etc. The Standford
POS Tagger5 is then used to eliminate all the tags and
stop words and only words tagged as nouns, verbs and
adjectives are retained. We also remove the WSDL
specific stop words, such as host, url, http, ftp, soap,
type, binding, endpoint, get, set, request, response, etc.

• Word stemming: We need to stem the words to their
origins, which means that we only consider the root
form of words. In this step we use the Porter Stemmer
Algorithm [22] to remove words which have the same
stem. Words with the same stem will usually have the
same meaning. For example, ’computer’, ’computing’
and ’compute’ have the stem ’comput’. The Stemming
process is more effective to identify the correlation
between web services by representing them using
these common stems (root forms).

After identifying all the functional terms, we calculate
the frequency of these terms for all web services. We use
the Vector Space Model (VSM) technique to represent each
web service as a vector of these terms. In fact, it converts
service description to vector form in order to facilitate the
computational analysis of data. In information retrieval, VSM

5http://nlp.stanford.edu/software/tagger.shtml

is identified as the most widely used representation for doc-
uments and is a very useful method for analyzing service
descriptions. The TF-IDF algorithm [25] is used to represent a
dataset of WSDL documents and convert it to VSM form.
We use this technique, to represent a services descriptions
in the form of Service Transaction Matrix (STM). In STM,
each row represents a WSDL service description, each column
represents a word from the whole text corpus (vocabulary) and
each entry represents the TF-IDF weight of a word appearing
in a WSDL document. TF-IDF gives a weight wij to every
term j in a service description i using the following equation:

wij = tfij . log(
n

nj
) (1)

Where tfij is the frequency of term j in WSDL document i,
n is the total number of WSDL documents in the dataset, and
nj is the number of services that contain term j.

Fig. 1. An Overview of Web Services Tags Extraction Mechanism

Figure 1 presents an overview of our proposed Web Service
Tag Extraction mechanism. For each Web Service, we generate
top-K tags using our previous approach based on Correlated
Topic Model (CTM) described in [3]. We utilized CTM to
extract latent factors zf ∈ Z = {z1, z2, ..., zk} from web
service descriptions (i.e., STM). In our work we use STM as
training data for our implementation of CTM model. After the
CTM model is trained, the distribution of words for each topic
is known and all the services in the dataset can be described
as a distribution of topics. Let

1) θ(s) = P (z) refer to the multinomial distribution over
topics in the service description s.

2) φ(j) = P (w|zj) refer to the multinomial distribution
over words for the topic zj .

Then, we use the extracted topics to rank the related tags for
each web service. Each tag w in a service description s is
generated by sampling a topic z from topic distribution (i.e.
φ), and then sampling a word from topic-word distribution (i.e.
θ). The probability of the ith tag occurring in a given service
is given by Equation 2:

www.ijacsa.thesai.org 184 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

P (ti|s) =
k∑
f=1

P (ti|zf)P (zf |s) (2)

Where zf is a topic from which the ith word was drawn,
P (zf |s) is the probability of topic zf in the service s, and
P (ti|zf) is the probability of having tag ti given the f th
topic. The most relevant tags are the ones that maximize the
probability P (ti|s) for a service s (See Algorithm 1)

Finally, we represent the output of this step by a matrix that
contains for each web service the most related tags ranked
in the descending order (i.e. P (ti|s)). The main key of our
approach is that the selected tags for a web service are not
necessarily in its descriptions. In fact, we have represented all
services in a topic space and tags are related to these topics.
The result of this step will be used as input for the training
classifier phase (Section III-B).

Algorithm 1 Web services tags extraction
Require: • S = {s1, . . . , sD} web services set. (D

number of services).
• K Number of Topics.

Ensure: Ranked tags for each service.
1: Perform CTM on services set S = {s1, . . . , sD}.
2: for each service si ∈ S = {s1, . . . , sD} do
3: for each word wm,m ∈ {1, ...,M} do
4: Compute P (wm|si) (Equation 2)
5: end for
6: RankTags: The most relevant words are the ones that

maximize the probability P (wm|si).
7: end for
8: return Set of K ranked tags for each service.

B. Training Web Services Tags Recommendation Classifier

In this step we have a dataset of service descriptions and
extracted tags. From this training dataset, we first extract a
list of candidate words using the probabilistic method based
on CTM (Section III-A). Using this set of candidate tags,
service transaction matrix and the original tags (manual tags)
we train a classifier. We define our tags recommendation task
as follows: given a set of web services, in which each service
has not only a bag of words but also a bag of tags, our task is
to learn a model using this dataset; and, when given an unseen
service in which only the content words can be observed,
we should predict a ranked list of tags based on the learned
model and the observed words in the service. Our probabilistic
approach based on LocLDA model (Local Correspondence
Latent Dirichlet Allocation), which is a latent variable model
that exploits local correlation labels [23]. LocLDA was built
on Correspondence Latent Dirichlet Allocation (CorrLDA)
[8]. More precisely, our model calculates dynamically the
model structure depending on the data, and particularly, on the
interaction between annotations. We originally developed the
LocLDA model for generating captions for images. An image
contains multiple regions, and each word in the image caption
corresponds to one of the regions. The correspondence from
words to regions is assumed to follow uniform distributions
[23]. For our tags recommendation task, we adopt the Lo-
cLDA model for modeling the correspondence from the topic

Symbol Description
D Number of service in training set.
K Number of topics.
M Number of words related to a service.
T Number of tags.
V Neighborhood tags.
v A neighbor tag: v ∈ Index(Parents(tag)).
θ Multinomial distribution over topics: θi,

i ∈ {1, ..., K}
z Latent topic. zim = 1 if zm is the ith latent topic,

else zim = 0.
w Word. wj

m = 1 if wm is the jth word else wj
m = 0.

t Tag. tjn = 1 if tn is the jth tag else tjn = 0.
y Discrete indexing variable.
Ws Size of words vocaculary.
Wt Size of tags vocabulary.
α Dirichlet prior for θ: αi, i ∈ {1, ..., K}
π Multinomial: πij , i ∈ {1, ...,K}, j ∈ {1, ...,Ws}
β Multinomial: βij , i ∈ {1, ...,K}, j ∈ {1, ...,Wt}
φ Variational Multinomial: φmi, m ∈ {1, ...,M},

i ∈ {1, ..., K}
γ Variational Dirichlet: γi, i ∈ {1, ..., K}
λ Variational Multinomial: λnm, n ∈ {1, ..., T},

m ∈ {1, ...,M}
ψ The digamma function, the first derivative of the log

Gamma function.
TABLE I. NOTATIONS USED IN THIS PAPER

assignments for words and the topic assignments for tags of
web services. We apply this model to the cases of automatic
web services tagging. Given a service s with no tags, the task
is to predict its missing tags.

Let z = {z1, z2, ..., zK} be the latent factors that generate
the web service, and y = {y1, y2, ..., yT } be discrete indexing
variables that take values from 1 to T with equal probability.
Table I shows the notations used in this paper. Conditioned on
T (i.e. Number of tags) and M (i.e. Number of words related
to a web service), a K-topics (i.e. Number of topics), LocLDA
model (Figure 2) assumes the following generative process for
a pair service/tag (w, t):

1) Find the parents of each tag.
2) Sample θ ∼ Dirichlet(θ|α)
3) For each word wm,m ∈ {1, ...,M}

• Sample zm ∼Multinomial(θ)
• Sample wm ∼ p(w|zm, π) from a multino-

mial distribution conditioned on zm
4) For each tag tj , j ∈ {1, ..., T}

• Sample yj ∼ Uniform(1, ..., T)
• Sample tj ∼ p(t|yj , yv, z, β)

Fig. 2. (Left) Graphical model of LocLDA, (Right) Representation of
variational distribution used to approximate the posterior in LocLDA.

In our model, the correspondence between a tag tj and
its associated service is obtained via a latent variable yj .
We consider that yj is the parent of tj and we note it by

www.ijacsa.thesai.org 185 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

yj = Parent(tj). Thus, we would like to represent the
interaction between different tags describing the same service.
Let consider that the true caption of a given service S is
T = {t1, t2, ..., tn}. We no longer consider that a tag tj ∈ T
is connected to the service S via a single latent variable,
but through a set of latent variables yj which are parents of
tj ∈ T −tj} tags. To obtain the parents of a given tag, we first
determine its neighbors by performing a multiple regression
on each tag with respect to all other tags. Indeed, multiple
regression is a statistical analysis that describes the relation-
ships among variables [23]. Given a set of tags {t1, t2, ..., tn},
we seek to explain precisely the values taken by a single tag
from all other tags. This process is performed for all tags. The
theoretical model, formulated in terms of random variables,
takes the form:

tj = a0 + a1t1 + a2t2 + ...+ antn + εj

where ε is the model error that expresses the missing informa-
tion in the explanation values of tj from t−j . t−j represents all
the tags not including the jth one. a1, a2, ..., an are parameters
to be estimated. By setting a threshold for the parameters
ai, we obtain the neighbors of a tag. We use the notation
Index, which gives the indices of the parents of each tag (i.e.
v ∈ Index(Parents(tag)) where v is a neighbor tag).

LocLDA model defines the joint distribution of the service
description, tags and topics as follows:

P (w, t, θ, z, y|α, π, β) = P (θ|α)
M∏

m=1

P (zm|θ)P (wm|zm, π)

)
T∏

j=1

∏
v

P (yj |M)P (yv|M)P (tj |yj , yv, z, β)

)
(3)

where α, π and β are the parameters to estimate.

The exact probabilistic inference is intractable for LocLDA,
therefore, we turn to variational inference methods [17] to
approximate the posterior distribution of the latent variables
given a service/tag. We introduce a variational distribution q
on the latent variables:

q(θ, z, y) = q(θ|γ)
M∏

m=1

q(zm|φm)

)(
N∏

n=1

q(yn|λn)
∏
v

q(yv|λv)

)
(4)

where γ, φ and λ are variational parameters.

The objective is to optimize the values of the variational
parameters that make the variational distribution q close to
the true posterior p by minimizing the Kullback-Leibler (KL)
divergence between the variational distribution and the true
posterior. We bound the log-likelihood of a given service/tag
using Jensen’s inequality:

L(γ, φ, λ;α, π, β)
= Eq[logP (θ|α)] + Eq[logP (z|θ)] + Eq[logP (w|z, π)]
+Eq[logP (y|M)] + Eq[logP (t|y ∈ parents(t), z, β)]
−Eq[log q(θ|γ)]− Eq[log q(z|φ)]− Eq[log q(y|λ)] (5)

Thus, by expanding each term of the equation 5 with
respect to maximizing each variational parameter, we find the
following updates rules:

1) Update the posterior Dirichlet parameters

γi = αi +
M∑
m=1

φmi (6)

2) For each service, update the posterior distribution
over topics

φmi ∝ πiwm
exp

(
ψ(γi)− ψ(

K∑
j=1

γj)

+
N∑
n=1

∑
v

λnmλvm log βitn

)
(7)

3) For each tag, update the posterior distribution over
services

λnm ∝ exp

K∑
i=1

∑
v

φmiλvm log βitn

)
(8)

We maximize the lower bound with respect to the model
parameters α, π, β. Given a training services set D =
{(wd, td)}Dd=1, the objective is to find the maximum likelihood
estimation for α, π, β. The corpus log-likelihood is bounded
by :

L(D) =
D∑
d=1

logP (wd, td|α, π, β) ≥
D∑
d=1

L(γd, φd, λd;α, π, β)

We then find α, π, β that maximize this lower bound:

πij ∝
D∑
d=1

Md∑
m=1

φdmiw
j
dm (9)

βij ∝
D∑
d=1

Nd∑
n=1

tjdn

Md∑
m=1

∑
v

φdmiλdnmλdvm (10)

Finally, the Newton-Raphson algorithm [7] is used to
estimate the Dirichlet α.

After obtaining parents of tags using the regression method,
we present also in this section the variational EM algorithm
[21] which performs iterative maximization of a lower bound
of data in which some variables are unobserved. It maximizes
a lower bound of the data log-likelihood with respect to the
variational parameters, and then, for fixed values of the varia-
tional parameters, maximizes the lower bound with respect to
the model parameters. Indeed, we have the following iterative
algorithm:

• (E-Step) For each service, find the optimizing values
of the variational parameters using equations (6), (7)
and (8) with appropriate starting points for γ, φmi and
λnm.

• (M-Step) Maximize the resulting lower bound on the
log-likelihood with respect to the model parameters

www.ijacsa.thesai.org 186 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

for fixed values of the variational parameters, using
equations (9), (10) and the Newton-Raphson algo-
rithm.

These two steps are repeated until the lower bound on the
log-likelihood converges.

Fig. 3. An overview of Web Services Tags Recommendation mechanism

C. Web Services Tags Recommendation

Once our classifier has been trained, we can recommend
tags for a new web service by performing the variational
inference with fixed model parameters α, β and π. Thus, we
can compute the conditional distributions of untagged service
p(t|snew) (Equation 11).

P (t|snew) =
M∑
m=1

∑
zm

P (zm|θ)P (t|zm, β) (11)

The most relevant tags are the ones that maximize the
probability P (t|snew) for a service snew (See Algorithm 2)

Figure 3 presents an overview of our proposed Web Service
Tag Recommendation mechanism.

Algorithm 2 Web services tags recommendation
Require: .

• S = {s1, . . . , sD} web services set. (D number of
services).
• Set of extracted tags E = {e1, . . . , eM} (M num-

ber of extracted tags) (Algorithm 1).
• Set of original tags (manual tags) T =
{t1, . . . , tT } (T number of original tags).
• K Number of Topics.
• Given service snew.

Ensure: R Ranked tags for a given service.
1: Perform LocLDA on services datasets S , E and T
2: for each tag t ∈ T do
3: Compute P (t|snew) (Equation 11)
4: end for
5: RankTags: The most relevant tags are the ones that max-

imize the probability P (t|snew).
6: return Set of R ranked tags for a new web service snew.

IV. EVALUATION

A. Web Services Corpus

Our experiments are performed out based on real-world
web services that we collected from the web since 2011.
We have considered different web service sources like Web-
servicesX.net6, xMethods.net7, Seekda!8, Service-Finder!9 and
Biocatalogue10. We have collected 22,236 real web services.
For each Web service, we get the WSDL document and related
tags if they exist. We generate tags for all web services in the
dataset and these tags are published online in our Web Services
search engine4.

Before applying the proposed approach, we process the
WSDL corpus. The objective of this pre-processing is to
identify the textual words of services, which describe the
semantics of their functionalities. WSDL corpus processing
consists of several steps: Features extraction, Tokenization:,
Stop words removal, Word stemming and Service Transaction
Matrix construction. The observed words are represented in a
Service Transaction Matrix (STM). In our work we use service
transaction matrix as training data for our models.

To evaluate our method, we select 633 web services from
our dataset. all these services have manual tags. We selected
only the services having 3 to 10 manual tags, and there are
totally 739 manual tags belonging to them. Then we use
different approaches to tag these web services:

1) Original tags: In this approach, we just use the 633
web services and their tags to train our classifier and
recommend tags for new web services.

2) Extracted tags: In this approach, we just generate
extracted tags and select top-k extracted tags as final
results (III-A).

3) Original tags + Extracted tags: In this approach, we
mix original tags with extracted tags from WSDL
documents.

The proposed approach is evaluated using the Precision at
n (Precision@n) and the Normalised Discounted Cumulative
Gain (NDCGn) for the generated tags obtained for each of
the service in the test set.

All experiments were performed on a Dell 64-bit Server
with Intel R©Xeon(R) CPU X5560 @ 2.80GHz x 16 and 16
Go of RAM.

B. Metrics Evaluation

In order to evaluate the accuracy of our approach, we
compute two standard measures used in Information Retrieval:
Precision at n (Precision@n) and Normalised Discounted
Cumulative Gain (NDCGn). Precision@n and NDCGn are
widely accepted as the metrics for ranking evaluation in IR.
Formally, the previous metrics are defined as follows:

6http://www.webservicex.net/ws/default.aspx
7http://www.xmethods.net/ve2/index.po
8http://www.webservices.seekda.com
9http://demo.service-finder.eu/search
10https://www.biocatalogue.org/

www.ijacsa.thesai.org 187 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

1) Precision@n: In our context, Precision@n is a mea-
sure of the precision of the service tag recommendation and
ranking system taking into account the first n retrieved tags.
The precision@n for a list of retrieved tags is given by
Equation 12:

Precision@n =
|RelevantTags ∩RetrievedTags|

|RetrievedTags| (12)

Where the list of relevant tags to a given service is the ground
truth tags related to the service.

2) Normalised Discounted Cumulative Gain: NDCGn
uses a graded relevance scale of each retrieved tag from the
result set to evaluate the gain, or usefulness, of a tag based
on its position in the result list. This measure is particularly
useful in Information Retrieval for evaluating ranking results.
The NDCGn for n retrieved tags is given by Equation 13.

NDCGn =
DCGn
IDCGn

(13)

Where DCGn is the Discounted Cumulative Gain and
IDCGn is the Ideal Discounted Cumulative Gain. The
IDCGn is found by calculating the DCGn of the ideal first
n generated tags for a given service. The DCGn is given by
Equation 14

DCGn =
n∑
i=1

2relevance(i) − 1

log2(1 + i)
(14)

Where n is the number of tags retrieved and relevance(s)
is the graded relevance of the tag in the ith position in the
ranked list. The NDCGn values for all tags can be averaged
to obtain a measure of the average performance of a ranking
algorithm. NDCGn values vary from 0 to 1.

In Information retrieval, NDCGn gives higher scores to
systems which rank a result list with higher relevance first and
penalizes systems which return tags with low relevance.

3) Caption Perplexity: We compute the perplexity of the
given tags under P (t|s) for each service s in the test set
to measure the tags quality of the models. In computational
linguisticics, the measure of perplexity has been proposed
to assess generalizability of text models. The perplexity is
algebraically equivalent to the inverse of the geometric mean
per-word likelihood [8]. A lower perplexity score indicates
better generalization performance. Assume we have D web
services as a held-out dataset Dtest and each web service s
contains Nd tags. More formally, the perplexity for a dataset
Dtest is defined by:

Perplexity = exp −
D∑
d=1

Nd∑
n=1

logP (tn|sd)∑M
d=1Nd

)
(15)

Where P (tn|sd) is the probability of having tag tn given
the d-th. service.

C. Results and Discussion

The choice of the number of topics corresponding to the
original dataset has an impact on the interpretability of the
results. In LocLDA and CorrLDA model the number of topics
must be decided before training phase. There are several

methods to choose the number of topics that lead to best
general performance [26]. We evaluated the performance of
our system using AveragePrecision for increasing numbers
of topics and the results peak at K = 70 (where K is the
number of topics) before the performance starts to decrease.
These evaluation results are shown in Figures 4 and 5. As
observed from these figures, the better performance is obtained
for the approach when the extracted and original tags are used
to learne our models. We also evaluated the performance of our
system by computing the perplexity of LocLDA and CorrLDA
according to the three strategies discribed previousely. Figures
6 and 7 show the perplexity of the dataset test for each model
by varying the number of topics (lower numbers are better).
The results show that LocLDA and CorrLDA models achieve
best performance when we mix the original tags and extracted
tags.

As the manual creation of ground truth costs a lot of work,
we use the 10% service of the dataset test and we generate
top-10 tags using the probabilistic method based on CTM
(Section III-A). The generated tags are considered as the true
labels to evaluate the performance of our Web services tags
ranking system. In addition, for each service in the dataset
test, each of its tags is labeled as one of the five levels
relevance(s) ∈ {1, 2, 3, 4, 5} where 5 denotes Most Relevant,
4 denotes Relevant, 3 denotes Partially Relevant, 2 denotes
Weakly Relevant, and 1 denotes Irrelevant.

The averaged Precision@n and NDCGn were measured
for up to the first ten generated tags from the complete list
of results. These evaluation results are respectively shown in
Figures 8 and 9. The results show that our approach performs
better than the method based on CorrLDA model.

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
�
�
��
�
�
��
��
�
��
��
�

����������������

�������������
��������������

������������������������������

Fig. 4. Comparaison of average Precision values over all dataset test for
CorrLDA.

V. WS-PORTAL; AN ENRICHED WEB SERVICES SEARCH
ENGINE

In this section, we describe some functionalities for our
web services search engine where we incorporate our research
works to facilitate web service discovery task. Our WS-Portal4
contains 7063 providers, 115 sub-classes of category and
22236 web services crawled from the Internet [6]. In WS-
Portal, severals technologies, i.e., web services clustering, tags
recommendation, services rating and monitoring are employed

www.ijacsa.thesai.org 188 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
�
�
��
�
�
��
��
�
��
��
�

����������������

�������������
��������������

������������������������������

Fig. 5. Comparaison of average Precision values over all dataset test for
LocLDA.

���

����

�����

������

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
�
��
��
�
��
�

����������������

�������������
��������������

������������������������������

Fig. 6. Perplexity values obtained for learned CorrLDA model.

to improve the effectiveness of web services discovery. Specif-
ically, probabilistic topics models are utilized for clustering,
services/topics and tags recommendation [3], [4], [5]. We
use probabilistic topic models to extract topic from semantic
service descriptions and search for services in a topics space
where heterogeneous service descriptions are all represented
as a probability distribution over topics.

A. Service Clustering

By organizing service descriptions into clusters, services
become easier and therefore faster to discover and recommend.
Web services are described as a distribution of topics [4].
A distribution over topics for a given service s is used to
determine which topic best describes the service s. K clusters
are created where K is the number of generated topics.

B. Service Discovery

Service Discovery and Selection aim to find web services
with user required functionalities. A user query represented
by a set of words is represented as a distribution over topics
[3], [4], [5]. The service discovery is based on computing
the similarity between retrieved topic’s services and a user’s
query. We use the topics browsing technique as another method
search to discover the web services that match with users
requirements. Users can select the related topic to the their

���

����

�����

������

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
�
��
��
�
��
�

����������������

�������������
��������������

������������������������������

Fig. 7. Perplexity values obtained for learned LocLDA model.

����

�����

����

�����

����

�����

����

�� �� �� �� �� �� �� �� �� ���

�
��
�
��
��
�
�
�

��������������

��
��

Fig. 8. Comparaison of average Precision@n values for CorrLDA and
LocLDA over the third dataset test (Original Tags and Extracted Tags).

query and our system gives automatically the topic’s services
that match with user’s query.

C. Tags recommendation

We use the automatic tagging technique proposed in this
paper to recommend automatically the tags for all published
services in our repository.

D. Availability and performance monitoring

WS-Portal monitor all registered services. In addition, after
registering a service in our service registry its availability
will be monitored automatically. Our system measures the
availability by calling the service endpoints periodically.

E. Services rating and comments posting

Our system allows users to rate and post comments to
enriche the service descriptions.

F. Dynamic service invocation

Our system allows users to invoke the selected service us-
ing the html form generated automatically from the associated
WSDL document for each service operations.

www.ijacsa.thesai.org 189 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

����

�����

����

�����

����

�� �� �� �� �� �� �� �� ���

�
�

�
�

�
�

��������������

��
��

Fig. 9. Comparaison of average NDCG@n values for CorrLDA and
LocLDA over the third dataset test (Original Tags and Extracted Tags).

G. User Interface

Our web services search engine is available online4 and
consumers can use it to discover, register or annotate web
services. Figure 10 shows the site home page of our Web
Services Search Engine. When users submit the search form,
our system gives a list of services that match with user’s query
and each search result entity show a breif service description:

1) Web service name,
2) Service description,
3) Tags given by users,
4) Service category,
5) Service provider,
6) Average rating score given by users,
7) Service availability.

In addition our system select automatically a top five related
topics to the user’s query. When users select a disered ser-
vice, WS-Portal gives more details for selected service such
as service name, wsdl url, service documentation, provider,
categories, country, availability, rating score, user’s tags, rec-
ommended tags and WSDL cache. Our system gives also
more details for service monitoring (availabilty and response
time values for each service endpoints). In addition, users
can rate, annotate the selected service and post comments.
Finally, users can invoke the selected service using the html
form generated automatically from WSDL document for each
service operations. Our system gives also two others important
informations such as similar services and the related topics
to the selected service. Indeed, we use the extracted topics
from services descriptions to calculate the similarity between
the selected service and others web services in our repository.
For this, we compute the similarity score, using some prob-
ability metrics such as Cosine Similarity and Symmetric KL
Divergence [5], between the vectors containing the service’s
distribution over topics. Finally, similar services are ranked in
order of their similarity score to the selected service. Thus,
we obtain automatically an efficient ranking of the services
retrieved.

VI. CONCLUSION

In this paper, we propose a novel approach based on
probabilistic topic model to tag web services automatically.

Fig. 10. Site Home Page of Our Web Services Search Engine.

Three tags recommendation strategies are also developed to
improve the system performance. Our system performs better
when we mix the original tags and extracted tags from WSDL
documents. A series experiments prove that our method is very
effective. The comparisons of Precision@n, Normalised Dis-
counted Cumulative Gain (NDCGn) values for our approach
indicate that the method presented in this paper outperforms
the method based on the CorrLDA in terms of ranking and
quality of generated tags. We have presented also in this paper
the Web Services Search engine developed to facilitate the
service discovery process. In the future, we will focus our
research on how to automatically tag RESTful services.

REFERENCES

[1] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts,
Architectures and Applications. Springer Verlag, Berlin Heidelberg,
2004.

[2] Azmeh, Z.; Falleri, J.-R.; Huchard, M. and Tibermacine, C.: Automatic
Web Service Tagging Using Machine Learning and WordNet Synsets, in
International Conference on Web Information Systems and Technologies
(WEBIST 2010).

[3] Aznag, M., Quafafou, M. and Jarir, Z.: Correlated Topic Model for
Web Services Ranking. In International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 4, no. 6, pp. 283–291, July
2013.

[4] Aznag, M., Quafafou, M., Rochd, El M., and Jarir, Z.: Probabilistic Topic
Models for Web Services Clustering and Discovery. In the European
Conference on Service-Oriented and Cloud Computing (ESOCC’2013),
Springer LNCS 8135, pages 19-33, 11 September 2013.

[5] Aznag, M., Quafafou, M. and Jarir, Z.: Leveraging Formal Concept
Analysis with Topic Correlation for Service Clustering and Discovery.
In 21th IEEE International Conference on Web Services (ICWS 2014).
Alaska, USA.

[6] Aznag, M., Quafafou, M. and Jarir, Z.: WS-Portal: An Enriched Web
Services Search Engine. In 12th International Conference on Service
Oriented Computing (ICSOC 2014), Paris, France.

[7] Blei, D., Ng, A. Y. and Jordan, M. I.: Latent dirichlet allocation. Journal
of Machine Learning Research, vol. 3:993-1022, 2003.

[8] Blei, D., and Jordan, M.: Modeling annotated data. Proceedings of
the 26th annual international ACM SIGIR conference on Research and
development in information retrieval, page 127-134. ACM Press, (August
2003)

[9] Chen, L.; Wang, Y.; Yu, Q.; Zheng, Z. and Wu, J.: WT-LDA: User Tag-
ging Augmented LDA for Web Service Clustering., in 12th International
Conference on Service Oriented Computing (ICSOC’2013), Springer
LNCS 8274, pages 162-176.

www.ijacsa.thesai.org 190 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 8, 2014

[10] Chen, L., Wu, J., Zheng, Z., Lyu, M. R., Wu, Z.: Modeling and
Exploiting Tag Relevance for Web Service Mining. in Knowledge and
Information Systems Vol. 39, No. 1, pp 153-173. April 2014.

[11] Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity
Search for Web Services. In VLDB Conference, Toronto, Canada, pp.
372-383, 2004.

[12] Elgazzar, K., Hassan A., Martin, P.: Clustering WSDL Documents
to Bootstrap the Discovery of Web Services. In IEEE International
Conference on Web Services (ICWS’2010), pp. 147-154.

[13] Fang, L.; Wang, L.; Li, M.; Zhao, J.; Zou, Y. and Shao, L.: Towards
Automatic Tagging for Web Services., in IEEE International Conference
on Web Services (ICWS 2012).

[14] Gawinecki, M.; Cabri, G.; Paprzycki, M. and Ganzha, M., WSColab:
Structured Collaborative Tagging for Web Service Matchmaking., in
International Conference on Web Information Systems and Technologies
(WEBIST 2010), pages 70-77.

[15] Hofmann, T.: Collaborative filtering via Gaussian probabilistic latent
semantic analysis. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 259-266. ACM Press, 2003.

[16] Iwata, T., Yamada, T., and Ueda, N.: Probabilistic latent semantic
visualization: topic model for visualizing documents. In KDD’2008:
Proceeding of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 363-371. ACM, 2008.

[17] Jordan, M.I., Ghahramani, Z., Jaakkola, T.S. and Saul, L.K: An in-
troduction to variational methods for graphical models. In Machine
Learning, 37:183–233, 1999.

[18] Kokash, N.: A Comparison of Web Service Interface Similarity Mea-
sures. Frontiers in Artificial Intelligence and Applications, Vol. 142,
pp.220-231, 2006.

[19] Liu, Wei., Wong, W.: Web service clustering using text mining tech-
niques. In International Journal of Agent-Oriented Software Engineering
(IJAOSE’2009), Vol. 3, No. 1, pp. 6-26.

[20] Meyer, H. and Weske, M.: Light-Weight Semantic Service Annotations
Through Tagging., in International Conference on Service Oriented
Computing (ICSOC’2006), Springer LNCS 4294, pages. 465-470.

[21] Neal, R.M. and Hinton, G.E. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M.I. Jordan, editor, Learning
in Graphical Models, pages 355368. Kluwer, 1998.

[22] Porter, M. F.: An Algorithm for Suffix Stripping, In: Program 1980,
Vol. 14, No. 3, pp. 130-137.

[23] Rochd, E. M., Quafafou, M.; Aznag, M.: Encoding Local Correspon-
dence in Topic Models. In IEEE 25th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), pp.602,609, Washington, 4-6
Nov 2013.

[24] Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic
model for authors and documents. In 20th Conference on Uncertainty in
Artificial Intelligence. pp. 487494 (2004)

[25] Salton, G.: Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA (1989).

[26] Steyvers, M. and Griffiths, T.: Probabilistic topic models. In Latent
Semantic Analysis: A Road to Meaning, T. Landauer, D. Mcnamara, S.
Dennis, and W. Kintsch, Eds. Laurence Erlbaum, 2007.

[27] W3C (2004). Web services architecture. Technical report, W3C Working
Group Note 11 February 2004.

[28] Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware Web service
recommendation by collaborative filtering. IEEE Transactions on Service
Computing 4(2), 140-152 (2011)

www.ijacsa.thesai.org 191 | P a g e

