
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

Reducing Shared Cache Misses via dynamic
Grouping and Scheduling on Multicores

Wael Amr Hossam El Din
Computer Department ,Faculty

of Engineering,
Cairo University,

Giza,Egypt
wael.amrhossam@gmail.com

Hany Mohamed ElSayed
Communication Department

,Faculty of Engineering,
Cairo University,

Giza,Egypt
helsayed@ieee.org

Ihab ElSayed Talkhan
Computer Department,
Faculty of Engineering,

Cairo University,
Giza,Egypt

italkhan@aucegypt.edu

Abstract—Multicore technology enables the system to
perform more tasks with higher overall system performance.
However, this performance can’t be exploited well due to the high
miss rate in the second level shared cache among the cores which
represents one of the multicore’s challenges.

This paper addresses the dynamic co-scheduling of
tasks in multicore real-time systems. The focus is on the basic
idea of the megatask technique for grouping the tasks that may
affect the shared cache miss rate ,and the Pfair scheduling that is
then used for reducing the concurrency within the grouped tasks
while ensuring the real time constrains. Consequently the shared
cache miss rate is reduced.The dynamic co-scheduling is
proposed through the combination of the symbiotic technique
with the megatask technique for co-scheduling the tasks based on
the collected information using two schemes. The first scheme is
measuring the temporal working set size of each running task at
run time, while the second scheme is collecting the shared cache
miss rate of each running task at run time.

Experiments show that the proposed dynamic co-
scheduling can decrease the shared cache miss rate compared to
the static one by 52%.This indicates that the dynamic co-
scheduling is important to achieve high performance with shared
cache memory for running high workloads like multimedia
applications that require real-time response and continuous-
media data types.

Keywords—Shared Cache Miss Rate; Dynamic Scheduling;
Multicore; Symbiosis;

I. INTRODUCTION

Processor industry has moved towards the multicore
technology since the delivered performance of single cores can
not meet the needed requirements for running different
applications like web servers, multimedia programs and
databases. Multicore technology is introduced to increase the
required performance and power efficiency. However, there are
challenges for this technology, one of which is that the cores
share a second level L2 cache. Therefore, with increasing the
workload managing the shared cache space becomes essential
to avoid higher miss rate which degrades the system
performance. The cost of memory access has reached roughly
300 processor cycles in 2006 and has been increasing at the
rate of 50% per year [1]. Decreasing the shared cache miss rate
is the focus of the research in this paper.

Chip Multiprocessor (can also be named a Multicore
processor) refers to a single chip that integrates two or more
processors in an area that would have originally been filled
with a single large uniprocessor. This solves the power
consumption problem when adding more transistors to the
uniprocessor and switching it at higher and higher frequencies.

Figure 1 : Conventional Microprocessor

Figure 2 : Simple Chip Multiprocessor

CPU
Registers

L1I L1D

L2 Shared Cache

Main Memory I/O

CPU
Registers

L1I L1D

L2 Shared Cache

CPU
Registers

L1I L1D

L2 Shared Cache

Main Memory I/O

135 | P a g e
www.ijacsa.thesai.org

Figure 3 : Shared Cache Chip Multiprocessor

Figures 1-3 show the difference between the uniprocessor
and the multicore systems. Figure 1 shows the conventional
microprocessor architectures on which the other architectures
are based. In figure 2 there are N cores that share only main
memory and I/O, but in figure 3 there are N cores that have
separate L1 cache memories and shared L2 cache. There are
benefits for the shared cache architecture. For example, it can
provide high bandwidth, low latency connection for the cores
to communicate the shared data with each other[2]. Throughout
this paper we will consider the shared cache chip
multiprocessor architecture shown in figure 3.

This paper addresses the reduction of the L2 shared cache
miss rate while ensuring the appropriate satisfaction of real
time constraints of the tasks. For this purpose, we present two
schemes for re-packing tasks in groups.Each task has a
utilization and working set size (WSS)[3].The utilization
indicates the core share that each task requires.The working set
is defined as the collection of information referenced by the
task during the task interval time ,while the working set size
(WSS) is defined as the number of pages in the working-
set.The temporal working set size (TWSS) is defined as the
WSS every certain number of clock cycles.The first scheme is
based on re-calculating the TWSS of each running task at run
time. Then, it re-packs the tasks in groups. Each group has a
number of tasks such that their total temporal WSS is less than
or equal certain threshold. The second scheme is based on
using the on-line counters for misses of each task at run time.
Then it re-packs the tasks such that the miss rates are equally
distributed on the groups. By this way, we can avoid the
situation in which any group has a much higher miss rate than
other groups. After that, each group in these two schemes is
assigned a certain number of cores such that the maximum
combined TWSS of all executing tasks is bounded at a value
less than the capacity of the second level L2 shared cache. This
will reduce concurrency within each group, eliminate the L2
shared cache thrashing, and reduce its miss rate. Finally the
Pfair scheduling algorithm is used for selecting some tasks
within each group for running.

The rest of the paper is organized as follows. In
section II, we review the related work. In section III, we give
details of the grouping and scheduling techniques that the
proposed methods are based on. In section IV, we present the
simulation methodology. In section V, we show the simulation
results. Finally, we present the conclusions in section VI.

II. LITERATURE REVIEW

Different scheduling algorithms for multicore systems have
been introduced in previous researches. Fedorova et al.
introduced using the instruction mix as a heuristic for the
scheduling decisions [4]. Then, in [5] they showed that the
miss rate for the second level (L2) shared cache can have the
greatest negative impact on processor performance,
consequently they introduced the balance-set principle for
grouping all the runnable threads, such that the combined
working set of each group fits in the cache. After that they
introduced in [1],[6] the non-work-conserving , the target-miss-
rate, and the cache fair algorithms for reducing miss rate of the
L2 shared cache. These algorithms are based on using
analytical performance models and online performance
monitoring. Although they showed different techniques for
resolving the L2 shared cache miss rate, they did not consider
real time scheduling.

Real time scheduling was introduced by Anderson et al. [7]
on which we build our proposed method. They introduced the
concept of a megatask that simply represents a set of tasks to
be treated as a single scheduling entity. They proposed a
scheme for incorporating the megatask concept into a Pfair
scheduled system. In [8] they proposed heuristics and other
methods like the spread-cognizant method [9] to support both
encouragement and discouragement of the co-scheduling of
groups of tasks simultaneously while ensuring the satisfaction
of real-time constraints. On the other hand, Anderson’s work
was achieved under static co-scheduling, while we consider
dynamic co-scheduling.

There are other papers that introduced scheduling
algorithms that aim at increasing the system throughput of the
multicore platform without considering the L2 shared cache
miss rate or considering the real time scheduling. For
example,Zhang et al. [10] proposed a hot-page coloring
approach for the L2 shared cache partitioning. Cong et al.[11]
proposed algorithms for reconfigurable resource allocation and
job scheduling for achieving high performance. Azimi et al.
[12] proposed a cache partition mechanism for partitioning the
L2 shared cache among the applications based on guiding the
allocation of its physical pages. Yang et al. [13] proposed a
cache-aware scheduling policy which improves cache
performance by considering data reuse, memory footprint of
co-scheduled tasks, and coherency misses. Wang et al. [14]
presented a hybrid approach for partitioning the multicores into
clusters that share the L2 cache, then the tasks which access a
common region of memory are statically assigned to the same
cluster.

III. GROUPING & SCHEDULING TASKS AMONG MULTICORE

PLATFORM

The main two steps of our proposed approach is grouping
and scheduling. For grouping, we are interested in combining

CPU

Registers

L1I L1D

CPU

Registers

L1I L1D

L2 Shared Cache

Main Memory I/O

136 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

between the two task-grouping techniques which are the
symbiotic techniques and the megatasking. For scheduling, we
consider applying the Pfair scheduling algorithm for ensuring
the satisfaction of real time constraints for tasks.

Figure 4 : The Proposed Dynamic Co-scheduling Technique

Figure 4 shows the main sequence for the proposed dynamic
co-scheduling technique. It is an iterative method based on
packing the tasks in groups, then running the scheduler for
certain number of clock cycles. Then, getting some statistical
information about the running tasks, re-grouping of tasks based
on the obtained statistical information is made .These steps will
be explained more in the following subsections.

A) Grouping
Megatasks
At the initialization phase,the tasks are chosen randomly

and grouped into megatasks[7]. Each megatask has a
utilization that is equal to the total utilizations of its tasks. This
utilization can be also termed the cumulative weight that is
used to allocate one or more processors time in discrete
quanta. Let Ɣ be a megatask. Its cumulative weight can then
be expressed as:

W sum=∑T∈ wt T  (1)

where T is the component task within the Ɣ, and wt(T) is the
utilization(i.e. weight) of each task.

Packing Strategy
As mentioned before, the tasks are grouped into megatasks

such that one megatask is created at a time. The megatask is
closed when the ratio of the total TWSS of the packed tasks to
the size of the L2 shared cache is equal to or greater than

certain integer, then another new megatask is created and so on
until all the tasks are grouped.

Re-weighting Rules
After creating the megatasks,each megatask cumulative

weight W Sum should be inflated.This inflation is referred as
the megatask scheduling weight W Sch .It is computed for
each megatask Ɣ using the re-weighting rules[7] in order to
guarantee that its grouped-tasks meet their deadlines.This is
done by assigning each megatask a number of cores indicated
by the calculated W Sch as shown:

W Sch=W Sum f (2)

Where  f is the inflation value and can be calculated in
[7].

Symbiosis Factor
After assigning each megatask with a certain number of

cores based on its W Sch ,then the Pfair scheduler starts
running and at run time ,the symbiosis factor is calculated.
Symbiosis is a co-scheduling technique whose concept is
derived from the meditation of the nature in which close and
often long-term interaction between two or more different
biological species is established so that they can rely on and
benefit from each other.

 Similarly, symbiosis is applied on the scheduling of tasks,
hence symbiosis is a factor that indicates the performance of
tasks that are co-scheduled and compete in hardware resources
every cycle [15]. This factor may be based on system
performance, system utilization, energy delay product, cores
energy, cores power, average normalized turnaround time
(time between submitting a job to the system and its
completion) ,cache sensitivity and cache intensity, or average
shared cache miss rate[15-18]. Throughout this paper, we will
consider the symbiosis factor as the miss rate for the second
level L2 shared cache.

It is found that computing the symbiosis factor is based on two
main techniques which are sampling and probabilistic
modeling.

Sampling This technique is known as SOS (Sample,
Optimize, Symbiosis) [15, 17, 19]. It is based on producing a
profile for all the possible combinations for scheduling the
tasks, then taking the schedule decision based on the highest
symbiosis factor.

Probabilistic Modeling The main drawback from the
sampling technique is the large overheads resulted from
profiling the different combinations of tasks to have the
information necessary for scheduling. Hence the probabilistic
job symbiosis modeling [18] is used to eliminate this
drawback through predicting the symbiosis factor for the co-
scheduled tasks without the need for the “Sampling Phase”.
This technique is designed based on the following main steps:

1. The cycle stack [18,20] is calculated for each task.It is
consists of three components:

Packing in Megatasks

Re-weighting Rules

Run Pfair Scheduler Symbiosis Factor

Re-packing in Megatasks

Classification Scheme

Initially

L2 Shared Cache
 Miss Rate

Task Miss Rate

Task Temporal
Working Set Size

137 | P a g e
www.ijacsa.thesai.org

Base cycle count: number of times the processor dispatches
instructions for the task.

Miss event cycle count: number of times the processor
consumes cycles handling miss events.

Waiting cycle count: number of times the processor dispatches
instructions for another task and therefore can not make
progress for the given task.

2. The probabilities for base cycle count,miss event cycle
count and waiting cycle count for each task are calculated.This
is done through normalizing each cycle count (i.e. Base
,miss ,or waiting cycles count) to their overall sum (i.e. Base
cycle count + Miss cycle count +Waiting cycle count).

As a consequence of the advantages of using probabilistic
symbiotic modeling rather than using sampling, we use its
concept to calculate the miss cycle count for each task without
including the base and waiting cycles counts. Then we use this
miss cycle count in calculating the task miss rate as shown:

Task Miss Rate= Task Miss Counter
L2 MissCounterL2 Hit Counter (3)

where “Task Miss Counter” is the total misses in the L2 shared
cache for a task,”L2 Miss Counter” is the total misses for all
the running tasks ,and ”L2 Hit Counter” is the total hit for all
the running tasks.

Classification Scheme
The scheduler takes decision to re-pack the system tasks into
new megatasks every T clock cycles. This decision should be
taken based on the classification scheme and the obtained
information about the tasks. The classification scheme reflects
how the threads affect each other when they are competing for
shared resources. Consequently, it enables the scheduler to
predict the performance effects of co-scheduling any group of
threads in a shared cache system.

There are many different classification schemes like
animalistic taxonomy, SDC, and pain. The most suitable
classification schemes in our case of decreasing the miss rates
among the L2 shared cache were proposed in [21,22]. These
papers propose the classification schemes based on the
collected information at run time. We use one classification
scheme based on miss rate and propose another one based on
temporal working set size.

Tasks can be classified based on the miss rate which plays a
key role in the performance. The performance degradation is
exacerbated by the tasks that have high miss rate due to
memory controller contention, memory bus contention, and
prefetching hardware contention. Hence the miss rate of each
task can be obtained online using hardware counters, then the
scheduler identifies the high miss rate applications and
separates them into different groups, such that no one group
will have a much higher total miss rate than any other group.
Other metrics rather than miss rate can be also used, such as
cache access rate and IPC, but the miss rate has been proved to
give the best results. Hence, the miss rate classification
scheme is a suitable scheme for our work. Besides that ,we
propose another new classification scheme which is based on

the TWSS of each task that is calculated every T clock cycles
at run time.

Dynamic Grouping
Finally,the re-packing of the tasks in new megatasks should be
done based on the classification scheme:

• In case of classification based on TWSS: the criteria of
packing is exactly the same at the initialization phase.

• In case of classification based on miss rate (MR), the
criteria of packing is based on that proposed in [21], in
which the scheduling algorithm Distributed Intensity
Online (DIO) takes the decision based on the miss rate
classification. DIO uses performance counters at run time
to get the miss rates of tasks (according to equation (3)).
Hence, DIO observes the miss rates periodically not more
frequently than once every one billion cycles in order to
account for phase changes of tasks with low overhead
resulted from the migrations. Then the scheduler assigns
the tasks across the initially created megatasks such that
the miss rates are distributed as evenly as possible
according to the miss rate (MR) classification scheme.

Then , the W Sch for each megatask is computed using the re-
weighting rules.

Condition of Qualified Megatask
The total number of cores ,that are assigned to the megatasks,
should not exceed the number of the system cores.

B) Scheduling
Pfair Scheduler

The second main phase is that at run time, the Pfair scheduling
algorithm is used to serve the tasks within each megatask
under assumption that every core is single-threaded (i.e. can
only serve one data address request and one instruction
address request). The most efficient Pfair scheduling algorithm

is an algorithm called PD2
.

Pfair scheduling can be used to schedule a periodic task
system τ in which the tasks are assigned with the processor
time in discrete time units that is represented with the time
interval [t, t + 1), where t is a nonnegative integer, as slot t.
The sequence of these scheduling decisions over time defines a
schedule[23].

Each task T of the task system τ is assigned a rational weight
wt(T) (0, 1] that denotes the processor share it requires. For∈
a periodic task T ,

wt T =
T e

T p
(4)where T e and T p are the (integral)

execution cost and period of T .

Tasks' Division Each task T in τ is divided into an infinite
sequence of quantum-length subtasks, T 1 , T 2 , · · · , T i where
each subtask T i has an associated release r T i  and
deadline d T i  , defined as follows (for proof see [24]):

138 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

r Ti =⌊ i−1
wt T  ⌋ (5)

d Ti =⌈ i
wt T  ⌉ (6)

Tie-breaking Rules The Pfair scheduler PD2 has two tie-
breaking rules which are used for breaking between the sub-
tasks that have the same deadlines.

First tie-break:The successor bit b(T)

Figure 5 : Windows of the first 16 subtasks of Task T

As shown in the above figure 5,successive windows of a sub-
task are either disjoint or overlap by one slot.

For example :

• The deadline of T 1 is 2 while the release time of T 2 is
1.

• The deadline of T 2 is 3 while the release time of T 3 is
2.

• The deadline of T 3 is 5 while the release time of T 4 is
4, and so on.

In other words,Formally let a sub-task T i1 and its
predecessor T i ,so the release time of T i1 will be
equal to either :

• deadline of T i ,or

• deadline of T i−1

From this point, they have defined a bit b T i  that
distinguishes between these two possibilities:

• b T i =1 if release time of T i1 = deadline of
T i -1

• b T i =0 if release time of T i1 = deadline of
T i

Second tie break:The group deadline D(T)

Consider a sequence T i ,... ,T j of subtasks such that
b T k=1 and ∣windowLength T K1∣=2 for all i ≤ k <

j.

For introducing the group deadline,as shown in figure
5,scheduling T i in its last slot forces the other subtasks in
this sequence to be scheduled in their last slots.

For example, scheduling T 3 in slot 4 forces T 4 and
T 5 to be scheduled in slots 5 and 6, respectively. So the

group deadline of a subtask T i , denoted D T i , is the
earliest time by which such a “cascade” must end.

Formally, it is the earliest time t, where t ≥ deadline T i ,
such that either:

• t=deadline T k  and b T k =0 ,or

• t1=deadline T k  and ∣windowLength T k ∣=3 for
some subtask T K .

For example, in the above Figure, D T 3=d T 6−1=8
and D T 7=d T 8=11 .

Now after defining the successor bit b(T) and the group
deadline D,the next step is showing the PD2 priority rules.

The PD2 Priority Definition The PD2 Priority is
based on the successor bit b(T),the group deadline D ,and the
deadline of each subtask d(T) as will be shown.

Under PD2 , subtask T i priority is at least that of
subtask U j , denoted T i ≼U j , if one of the following
rules is satisfied:

I. d T i d U j .

II. d T i =d U j and b T i bU j .

III. d T i =d U j , b T i=b U j=1 ,and
D T i≥ D U j  .

IV. SIMULATION METHODOLOGY

In this section we are going to show the stages of building the
simulation environment. The cache simulator is based on
trace-driven model and is written in C++. It models the private
cache among each core, the shared cache, the main memory
and the memory requests. Also It models the Modified
Exclusive Shared Invalid (MESI) cache coherence protocol.

Design Phases

First phase: Memory Trace Collection: It's a memory-access
trace file based on using the “Pin” dynamic binary
instrumentation framework for the IA-32 and x86-64
instruction-set architectures [25]. The “Pin” contains a tool
that can be modified for printing the address of every
instruction and data that are executed within the running
application. The running application is represented by
SPECjvm2008 benchmarks [26] that contains 38 workloads
intended to represent a diverse set of common types of
computation for real-world applications including
text/character processing, numerical computations, and bitwise
computation. Consequently we run each workload alone with
the pin tool to capture all its memory accesses, then these
accesses are dumped into two trace files, one for the

107 | P a g e

www.ijacsa.thesai.org 107 | P a g e

www.ijacsa.thesai.org

139 | P a g e
www.ijacsa.thesai.org

instructions addresses and the other for the data addresses.
These trace files contain entries, where each entry has a cache
type (data or instruction), an address and an access type (read
or write).

Second phase: Build The Proposed Scheduler:This is the
implementation of the Pfair for scheduling the workloads at
run time and megatask grouping of the tasks. It includes four
configurations that will be run for every test case in section V.

First Configuration: Pfair without grouping:

 There is no grouping for tasks.

 Each task is stored in its own queue.

 Each task is assigned one core at the initialization phase.

Second Configuration: Static Megatask based on Working Set
Size (WSS):

• There is only static grouping for tasks such that each task is
packed in a megatask at the initialization phase.

• The criteria for closing the megatask and creating a new one
is that the ratio of the total TWSS of the packed tasks to the
size of the L2 shared cache is equal to or greater than certain
threshold.

• Each megatask is represented by a queue.

• Each megatask has its assigned number of cores based on
its re-weighting rules.

Third Configuration: Dynamic Megatask based on Working
Set Size (WSS):

• The initial steps are exactly like the second configuration.

• Every certain number of clock cycles or certain number of
instructions (e.g. once every ten million cycles to avoid
overheads due to re-scheduling), all the megatasks are re-
created based on the TWSS of each task.

Fourth Configuration: Dynamic Megatask based on Miss
Rate:

 The same as the third configuration but the only difference
is in the last step as every certain number of clock cycles or
certain number of instructions (e.g. once every ten million
cycles),all the megatasks are re-created based on the shared
cache miss rate (MR) of each task where tasks are distributed
on the megatasks such that the total miss rate (MR) of all the
tasks is equalized across all the megatasks.

Third Phase: Cache Simulator: writing a cache simulator that
models the architecture in figure 3 in which each core has a
private cache and there is a shared cache among the cores.
Besides that it is responsible for implementing the cache
coherence protocol known as “Modified Exclusive Shared
Invalid” (MESI).

Operational Scenario

In the proposed simulator, we assume single threaded core, so
each core has a separate application. The scheduler serves
these cores in a round robin manner. When there is a memory
request, the cache simulator checks the cache type and
operation type, then it sends it to the private cache L1 Data or
L1 Instruction. If there is a hit, then it replies with data after
the private cache latency cycles, otherwise it sends the request
to the L2 shared cache, then if there is a hit, then it replies with
data after the L2 latency cycles, otherwise it sends the request
to the main memory, so it returns data after the main memory
latency cycles.

Fourth Phase: Test Cases: These are the test cases that are
represented by the mixes of different scenarios of real
execution. For example we can consider the following types of
mixes:

 Total WSS for the workloads that is lower than the L2
shared cache size.

 Total WSS for the workloads that is greater than the L2
shared cache size.

 Total WSS for the workloads that is equal to the L2 shared
cache size.

V. SIMULATION RESULTS

We compared the four configurations mentioned before: Pfair
without grouping, Static megatask based on WSS at
initialization phase, the newly proposed Dynamic Megatask
based on WSS, and the newly proposed Dynamic megatask
based on MR.

Table I shows the used configuration values for the main
memory and the first level L1 private cache.Each workload in
the SPECjvm2008 has a WSS of 2MB.These parameters are
used in all the scenarios.

TABLE I. L1 CACHE AND MAIN MEMORY PARAMETERS

Parameters Values

Simulated Hardware Parameters

Main Memory Latency 200

L1 Data Cache Size 32KB

L1 Data Line Size 64 bytes

L1 Data Associativity 4

L1 Data Latency 2

L1 Instruction Cache Size 32KB

L1 Instruction Line Size 64 bytes

L1 Instruction Associativity 2

L1 Instruction Latency 1

Task Parameters

Working Set Size (WSS) 2 MB

The simulation results show the resulted Shared Cache L2
Miss Rate for each configuration in which total miss rate for
the shared cache that is calculated as

107 | P a g e

www.ijacsa.thesai.org 107 | P a g e

www.ijacsa.thesai.org

140 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

shared cache L2 Total Misses
shared cache L2 Total Missesshared cache L2 Total Hits

(15)

A) Scenario 1
Table II shows that there are 8 workloads of total WSS 16 MB
and the number of cores is 16 with L2 shared cache of size
1MB.

TABLE II. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 8 workloads of total WSS 16 MB

L2 Cache Size 1MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 16

The graph in Figure 6 shows that the dynamic megatask
outperforms the static one and the Pfair with no grouping.
Also the total miss rates in both the dynamic megatask based
on running tasks MR and based on WSS are near to each
other.As this scenario represents the workloads of total WSS
during a certain number of clock cycles that is equal or
slightly greater than the shared cache L2 size.This leads to that
the shared cache L2 miss rates of the four configurations are
near to each other.The total miss rate tends to decrease with
time as the workloads tend to finish and reach its end.

Figure 6 : 8 SPECjvm2008 benchmarks of total size 16 MB that
share L2 cache of size 1 MB, X-axis represents the fetched
instructions and Y-axis represents the shared cache L2 Miss Rate.

B) Scenario 2
Table III shows that there are 4 workloads of total WSS 8 MB
and the number of cores is 4 with L2 shared cache of size
8MB.

TABLE III. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 4 workloads of total WSS 8 MB

L2 Cache Size 8MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 7

Cores 4

Figure 7 shows that when the total WSS for the running
workloads during a certain number of clock cycles fits the
shared cache L2, the miss rate for the shared cache L2
becomes approximately the same for the static megatask and
pfair without grouping while the dynamic megatask based on
tasks WSS and based on tasks MR is slightly better than static
megatask and pfair without grouping and tends to be the same
when the system tasks tend to finish.

Figure 7 : 4 SPECjvm2008 benchmarks of total size 8 MB that
share L2 cache of size 8 MB, X-axis represents the fetched
instructions and Y-axis represents the shared cache L2 Miss Rate.

C) Scenario 3
Table IV shows that there are 5 workloads of total WSS 10
MB and the number of cores is 4 with L2 shared cache of size
20MB.

TABLE IV. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 5 workloads of total WSS 10 MB

L2 Cache Size 20MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 20

Cores 4

Figure 8 shows that when the shared cache L2 is large enough,
the shared cache L2 miss rate coincides in all the
configurations.This case is the ideal case that rarely occurs.

141 | P a g e
www.ijacsa.thesai.org

Figure 8 : 5 SPECjvm2008 benchmarks of total size 10 MB that
share L2 cache of size 20 MB, X-axis represents the fetched
instructions and Y-axis represents the shared cache L2 Miss Rate.

D) Scenario 4
Table V shows that there are 5 workloads of total WSS 10 MB
and the number of cores is 4 with L2 shared cache of size
1MB.

TABLE V. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 5 workloads of total WSS 10 MB

L2 Cache Size 1MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 4

The graph in figure 9 shows a slight difference in the total
miss rates as the shared cache L2 still fits the total TWSS for
the running workloads.But the dynamic megatask based on the
WSS and MR is still the winner.

Figure 9 : 5 SPECjvm2008 benchmarks of total size 10 MB that
share L2 cache of size 1 MB, X-axis represents the fetched
instructions and Y-axis represents the shared cache L2 Miss Rate.

E) Scenario 5
Table VI shows that there are 16 workloads of total WSS 32
MB and the number of cores is 4 with L2 shared cache of size
1MB.

TABLE VI. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 16 workloads of total WSS 32 MB

L2 Cache Size 1MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 4

In this scenario ,the workloads are increased while the shared
cache L2 size is kept the same.This represents the case in
which the total TWSS of the running workloads is always
greater than shared cache L2,thus the graph in figure 10 shows
that the dynamic megatask in general has a dramatic change in
the shared cache L2 miss rate rather than that in the static
megatask and Pfair with no grouping.The dynamic megatask
based on MR slightly outperforms that is based on
WSS.Hence the proposed technique is appropriate for the high
processing workloads like graphics and audio applications.

Figure 10 : 16 SPECjvm2008 benchmarks of total size 32 MB that share L2
cache of size 1 MB, X-axis represents the fetched instructions and Y-axis
represents the shared cache L2 Miss Rate.

F) Scenario 6
Table VII shows that there are 12 workloads of total WSS 24
MB and the number of cores is 48 with L2 shared cache of
size 512MB.

TABLE VII. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 12 workloads of total WSS 24 MB

L2 Cache Size 512KB

107 | P a g e

www.ijacsa.thesai.org

142 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 48

In this scenario the shared cache L2 size is very small
compared to the total WSS of the running workloads, thus the
graph in figure 11 shows that the static megatask outperforms
the pfair with no grouping in decreasing the shared cache L2
miss rate ,but the dynamic megatask is still the better than that
the static one.This indicates that the static megatask succeeds
in reducing the concurrency within the running workloads as
in the static megatask ,while the dynamic one succeeds in
monitoring the symbiosis factor every certain number of clock
cycles ,then re-scheduling based on the two classifier schemes
MR and WSS.

Figure 11 : 12 SPECjvm2008 benchmarks of total size 24 MB that share L2
cache of size 512 KB, X-axis represents the fetched instructions and Y-axis
represents the shared cache L2 Miss Rate.

G) Scenario 7
Table VIII shows that there are 10 workloads of total WSS 20
MB and the number of cores is 40 with L2 shared cache of
size 512MB.

TABLE VIII. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 10 workloads of total WSS 20 MB

L2 Cache Size 512KB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 40

This scenario is the same like the previous one except that the
total WSS of the workloads is slightly decreased, thus the
graph in figure 12 shows that the dynamic megatask is still the
better in decreasing the shared cache L2 miss rate. In all
graphs the two dynamic megatask configurations are always
close to each other in decreasing the L2 shared cache.Hence it

is interesting to try other classifier schemes that depends on
the workloads requirements and the shared cache L2
characteristics.This can be considered in the future work.

Figure 12: 10 SPECjvm2008 benchmarks of total size 20 MB that share L2
cache of size 512 KB, X-axis represents the fetched instructions and Y-axis
represents the shared cache L2 Miss Rate.

Table IX shows the percentage decrease of the miss rates for
the shared cache L2 in the above scenarios for the static and
dynamic megatask configurations with respect to Pfair without
grouping based on the following equation

100∗Average Miss Rate Y −Average Miss Rate X 
Average Miss Rate Y  (16)

where Y represents the Pfair without grouping and X represents
one of the other three configurations: static megatask , dynamic
megatask based on TWSS, or dynamic megatask based on MR.

TABLE IX. IMPROVED SHARED CACHE L2 MISS RATE

Scenario
No.

Static
Megatask

Dynamic
Megatask based

on WSS

Dynamic
Megatask based on

MR

1 5.47% 16.88% 16.19%

2 19.46% 23.79% 12.49%

3 0.15% 0.15% 0.73%

4 9.05% 13.27% 13.54%

5 10.64% 34.53% 41.98%

6 15.40% 52.70% 51.10%

7 15.17% 47.82% 48.30%

VI. CONCLUSIONS

This paper has aimed at increasing the system throughput while
ensuring the real-time constraints.It tackles the dynamic
grouping technique that is based on mixing between the idea of
megatask and symbiosis techniques. The symbiosis techniques
is used to predict a factor for each task which is either the
temporal working set size or the miss rate. The megatask is
used in grouping tasks based on the classification scheme
according to the symbiosis factor and calculating the re-

143 | P a g e
www.ijacsa.thesai.org

weighting rules to ensure that the tasks meet their
deadlines.The Pfair scheduling is used at run time for serving
bounded number of tasks within each megatask group, hence
reducing the concurrency of tasks execution within each
megatask which leads to reducing the second level L2 shared
cache misses.The simulation results show that the dynamic
grouping technique outperforms the Pfair without grouping and
the static megatask. This is especially true when the shared
cache size is relatively small compared to the tasks
requirements such as video coding and multimedia
applications.

These results suggest some points for future work. For
example, as we assume that each core has single thread, this
work can be extended to multi-threaded cores.The challenge
key is how to distribute threads across the cores[27].Besides
that, timing analysis on multicore platform can be studied. Also
our work can be extended to check the overheads for tasks
migration and the impact of re-scheduling.This may suggest
using another techniques for determining the tasks migration
threshold as in [28].

Future work is also required to evaluate these techniques to
handle multi-threaded applications.In addition to that, it is
interesting to use other classification schemes that is based on
cache properties like cache intensity and cache
sensitivity.Research is required for proposing heuristics-based
co-scheduling by machine learning.

VII. ACKNOWLEDGMENT

The authors thank Islam M. Atta for his help in completing the
presented work.

REFERENCES

1. Alexandra Fedorova.“Operating system scheduling for chip multithreaded
processors”,A thesis to the Division Of Engineering And Applied Sciences in
partial fulfillment of the requirements for the degree of Doctor of Philosophy ,
Harvard University Cambridge, Massachusetts September, 2006.
2. Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang, “The case for a single chip multi-processor,” Proc. 7th Int’l
Conf. Architectural Support for Programming Languages and Operating
Systems, ACM Press, New York, 1996, pp. 2-11.
3. Peter J. Denning,”The working set model for program behavior ”,1 st ACM
Symposium on Operation Systems Principles,1968.
4. A. Fedorova, C. Small, D. Nussbaum and Margo Seltzer.”Chip
multithreading systems need a new operating system scheduler”.In
Proceedings of 11th ACM SIGOPS European Workshop, Leuven, Belgium,
September 2004.
5. A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.”Performance of
multithreaded chip multiprocessors and implications for operating system
design”. In Proceedings of the USENIX 2005 Annual Technical Conf., 2005.
6. A. Fedorova,M. Seltzer and M. D. Smith.”A non-work-conserving
operating system scheduler for SMT processors”. In Proceedings of the
Workshop on the Interaction between Operating Systems and Computer
Architecture (WIOSCA), in conjunction with ISCA-33, June 2006.
7. James H.Anderson,John M.Calandrino, and UmaMaheswari C.Devi. “Real-
Time scheduling on multicore platforms”.In Proceedings of the 12th IEEE
Real-Time and Embedded Technology and Applications Symposium,pp. 179-
190,April 2006.
8. James H. Anderson, John M. Calandrino, and UmaMaheswari C.Devi.
“Parallel task scheduling on multicore platforms”. In Real-Time Systems

Symposium, 2006, RTSS '06, 27th IEEE International, pp. 89-100, December
2006.
9. James H. Anderson, John M. Calandrino, and UmaMaheswari C.Devi.
“Cache-Aware real-time scheduling on multicore platforms:heuristics and a
case study”. In Proceedings of the 20th Euromicro Conference on Real-Time
Systems, 2008, ECRTS '08, pp. 299-308, 2-4 July 2008.
10. R. Azimi, D. Tam, L. Soares, and M. Stumm.”Managing shared L2 Caches
on multicore systems in software”.In Workshop on the Interaction between
Operating Systems and Computer Architecture, Held in junction with 2007
International Symposium on Computer Architecture (ISCA-34), San Diego,
CA, USA, June 2007.
11. J. Cong, K. Gururaj, and G. Han. “Synthesis of reconfigurable high-
performance multicore systems”.In proceeding of the ACM/SIGDA
international symposium on Field programmable gate arrays, February 2009.
12. R. Azimi, D. Tam, L. Soares, and M. Stumm. “Enhancing operating
system support for multicore processors by using hardware performance
monitoring”. In SIGOPS Operating Systems Review (OSR), Special Issue on
the Interaction Among the OS, Compilers, and Multicore Processors, April
2009.
13. Teng-Feng Yang,Chung-Hsiang Lin,Chia-Lin Yang.”Cache-aware task
scheduling on multi-core architecture”.In the proceedings of VLSI Design
Automation and Test (VLSI-DAT), 2010 International Symposium on April
2010.
14. Yan Wang,Lida Huang,Renfa Li,Rui Li. “A Shared cache-aware hybrid
real-time scheduling on multicore platform with hierarchical cache”.In the
proceeding Parallel Architectures, Algorithms and Programming (PAAP),
2011 Fourth International Symposium on December, 2011.
15. A. Snavely,D. Tullsen,and ,and G. Voelker.Symbiotic Jobscheduling with
Priorities for a Simultaneous Multithreading Processor. In the Proceedings of
the 2002 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems,University of California at San Diego.
16. Matthew DeVuyst, Rakesh Kumar, and Dean M. Tullsen. “Exploiting
unbalanced thread scheduling for energy and performance on a CMP of SMT
processors”.In the Proceedings of the international parallel and distributed
processing Symposium 2006,University of California, San Diego.
17. Rohit Jain. “Soft real-time scheduling on a simultaneous multithreaded
processor “.Thesis Submitted in partial fulfillment of the requirements for the
degree of Master of Science in Computer Science in the Graduate College of
the University of Illinois at Urbana-Champaign, 2002.
18. Stijn Eyerman,Lieven Eeckhout. “Probabilistic job symbiosis modeling for
SMT processor scheduling”.In the Proceedings of the fifteenth edition of
ASPLOS 2010,ELIS Department, Ghent University, Belgium.
19. A. Snavely,N. Mitchell,L. Carter,J. Ferrante. “Exploration in symbiosis on
two multithreaded architectures” , Research at IBM in the year 1999.
20. S.Eyerman,L.Eeckhout.“Per-Thread cycle accounting in SMT processors”.
In the Proceedings of ASPLOS 2009,ELIS Department,Ghent University.
21. S. Zhuravlev,S. Blagodurov,A. Fedorova.”Addressing shared resource
contention in multicore processors via scheduling”.In the Proceedings of
ASPLOS 2010,School of Computing Science, Simon Fraser University.
22. Yuejian Xie,Gabriel H. Loh. “Dynamic classification of program memory
behaviors in CMPs”.In the Proceedings of 2008 CMP-MSI.
23. J. Anderson and A. Srinivasan. “Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks”. Journal of Comp. and Sys. Sciences, 68, 2004.
24. J. Anderson and A. Srinivasan. “A new look at pair priorities”. Technical
Report TR00-023, University of North Carolina at Chapel Hill, Sept. 2000.
25. “Pin2.13UserGuide”.
26. “SPECjvm2008 User's Guide”.
27. Stijn Eyerman,Lieven Eeckhout.”The Benefit of SMT in the Multi-Core
Era:Flexibility towards Degrees of Thread-Level Parallelism”.In the
Proceedings of 19th international conference ASPLOS ,March 2014,NY,USA.
28. Bagher Salami,Mohammadreza Baharani,Hamid Noori ."Proactive Task
Migration with a Self-Adjusting Migration Threshold for Dynamic Thermal
Management of Multi-Core Processors",The Journal of Supercomputing, 2014
– Springer.

144 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 9, 2014

	I. Introduction
	II. Literature Review
	III. Grouping & Scheduling Tasks Among Multicore Platform
	A) Grouping
	Megatasks
	Packing Strategy
	Re-weighting Rules
	Symbiosis Factor
	Classification Scheme
	Dynamic Grouping
	Condition of Qualified Megatask

	B) Scheduling
	Pfair Scheduler

	IV. Simulation Methodology
	V. Simulation Results
	A) Scenario 1
	B) Scenario 2
	C) Scenario 3
	D) Scenario 4
	E) Scenario 5
	F) Scenario 6
	G) Scenario 7

	VI. Conclusions
	VII. Acknowledgment
	References

