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Abstract—Multicore  technology  enables  the  system to 
perform  more  tasks  with  higher  overall  system  performance. 
However, this performance can’t be exploited well due to the high 
miss rate in the second level shared cache among the cores which 
represents one of the multicore’s challenges. 

This  paper  addresses  the  dynamic  co-scheduling  of 
tasks in multicore real-time systems.  The focus is on the basic 
idea of the megatask technique for grouping the tasks that may 
affect the shared cache miss rate ,and the Pfair scheduling that is  
then used for reducing the concurrency within the grouped tasks  
while ensuring the real time constrains. Consequently the shared 
cache  miss  rate  is  reduced.The  dynamic  co-scheduling  is 
proposed  through  the  combination  of  the  symbiotic  technique 
with the megatask technique for co-scheduling the tasks based on 
the collected information using two schemes. The first scheme is  
measuring the temporal working set size of each running task at  
run time, while the second scheme is collecting the shared cache  
miss rate of each running task at run time.

Experiments  show  that  the  proposed  dynamic  co-
scheduling can decrease the shared cache miss rate compared to 
the  static  one  by  52%.This  indicates  that  the  dynamic  co-
scheduling is important to achieve high performance with shared 
cache  memory  for  running  high  workloads  like  multimedia 
applications  that  require  real-time  response  and  continuous-
media data types.

Keywords—Shared  Cache  Miss  Rate;  Dynamic  Scheduling;  
Multicore; Symbiosis;

I. INTRODUCTION

Processor  industry  has  moved  towards  the  multicore 
technology since the delivered performance of single cores can 
not  meet  the  needed  requirements  for  running  different 
applications  like  web  servers,  multimedia  programs  and 
databases.  Multicore technology is introduced to increase the 
required performance and power efficiency. However, there are 
challenges for this technology, one of which is that the cores 
share a second level L2 cache. Therefore, with increasing the 
workload managing the shared cache space becomes essential 
to  avoid  higher  miss  rate  which  degrades  the  system 
performance. The cost of memory access has reached roughly 
300 processor cycles in 2006 and has been increasing at the 
rate of 50% per year [1].  Decreasing the shared cache miss rate 
is the focus of the research in this paper. 

Chip  Multiprocessor  (can  also  be  named  a  Multicore 
processor) refers to a single chip that integrates two or more 
processors  in  an area  that  would have originally  been filled 
with  a  single  large  uniprocessor.  This  solves  the  power 
consumption  problem  when  adding  more  transistors  to  the 
uniprocessor and switching it at higher and higher frequencies.

Figure 1 : Conventional Microprocessor

Figure 2 : Simple Chip Multiprocessor
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Figure 3 : Shared Cache Chip Multiprocessor

Figures 1-3 show the difference between the uniprocessor 
and the multicore systems.  Figure 1 shows the conventional 
microprocessor architectures on which the other architectures 
are based. In figure 2 there are N cores that share only main 
memory and I/O, but in figure 3 there are N cores that have 
separate L1 cache memories and shared L2 cache. There are 
benefits for the shared cache architecture. For example, it can 
provide high bandwidth, low latency connection for the cores 
to communicate the shared data with each other[2]. Throughout 
this  paper  we  will  consider  the  shared  cache  chip 
multiprocessor architecture shown in figure 3.

This paper addresses the reduction of the L2 shared cache 
miss  rate  while  ensuring  the  appropriate  satisfaction  of  real 
time constraints of the tasks. For this purpose, we present two 
schemes  for  re-packing  tasks  in  groups.Each  task  has  a 
utilization  and  working  set  size  (WSS)[3].The  utilization 
indicates the core share that each task requires.The working set 
is defined as the collection of information referenced by the 
task during the task interval time ,while the working set size 
(WSS)  is  defined  as  the  number  of  pages  in  the  working-
set.The temporal working set size (TWSS) is defined as the 
WSS every certain number of clock cycles.The first scheme is 
based on re-calculating the TWSS of each running task at run 
time. Then, it re-packs the tasks in groups. Each group has a 
number of tasks such that their total temporal WSS is less than 
or  equal  certain  threshold.  The  second  scheme  is  based  on 
using the on-line counters for misses of each task at run time. 
Then it re-packs the tasks such that the miss rates are equally 
distributed  on  the  groups.  By  this  way,  we  can  avoid  the 
situation in which any group has a much higher miss rate than 
other groups. After that, each group in these two schemes is 
assigned  a  certain number  of  cores  such  that  the maximum 
combined TWSS of all executing tasks is bounded at a value 
less than the capacity of the second level L2 shared cache. This 
will reduce concurrency within each group, eliminate the L2 
shared cache thrashing, and reduce its  miss rate.  Finally the 
Pfair  scheduling  algorithm is  used  for  selecting  some  tasks 
within each group for running.

The  rest  of  the  paper  is  organized  as  follows.  In 
section II, we review the related work. In section III, we give 
details  of  the  grouping  and  scheduling  techniques  that  the 
proposed methods are based on. In section IV, we present the 
simulation methodology. In section V, we show the simulation 
results. Finally, we present the conclusions in section VI.

II. LITERATURE REVIEW

Different scheduling algorithms for multicore systems have 
been  introduced  in  previous  researches.  Fedorova  et  al.  
introduced  using  the  instruction  mix  as  a  heuristic  for  the 
scheduling decisions [4].  Then,  in  [5]  they  showed that  the 
miss rate for the second level (L2) shared cache can have the 
greatest  negative  impact  on  processor  performance, 
consequently  they  introduced  the  balance-set  principle  for 
grouping  all  the  runnable  threads,  such  that  the  combined 
working set of  each group fits  in the cache. After that they 
introduced in [1],[6] the non-work-conserving , the target-miss-
rate, and the cache fair algorithms for reducing miss rate of the 
L2  shared  cache.  These  algorithms  are  based  on  using 
analytical  performance  models  and  online  performance 
monitoring.  Although  they  showed  different  techniques  for 
resolving the L2 shared cache miss rate, they did not consider 
real time scheduling.

Real time scheduling was introduced by Anderson et al. [7] 
on which we build our proposed method. They introduced the 
concept of a megatask that simply represents a set of tasks to 
be  treated  as  a  single  scheduling  entity. They  proposed  a 
scheme  for  incorporating  the  megatask  concept  into  a  Pfair 
scheduled system. In  [8]  they proposed heuristics  and other 
methods like the spread-cognizant method [9] to support both 
encouragement  and  discouragement  of  the  co-scheduling  of 
groups of tasks simultaneously while ensuring the satisfaction 
of real-time constraints. On the other hand, Anderson’s work 
was  achieved  under  static  co-scheduling,  while  we consider 
dynamic co-scheduling. 

There  are  other  papers  that  introduced  scheduling 
algorithms that aim at increasing the system throughput of the 
multicore  platform without  considering  the  L2 shared  cache 
miss  rate  or  considering  the  real  time  scheduling.  For 
example,Zhang  et  al. [10]  proposed  a  hot-page  coloring 
approach for the L2 shared cache partitioning. Cong et al.[11] 
proposed algorithms for reconfigurable resource allocation and 
job scheduling for achieving high performance. Azimi  et al. 
[12] proposed a cache partition mechanism for partitioning the 
L2 shared cache among the applications based on guiding the 
allocation of  its  physical pages.  Yang et  al.  [13] proposed a 
cache-aware  scheduling  policy  which  improves  cache 
performance by considering data  reuse,  memory footprint of 
co-scheduled  tasks,  and  coherency  misses.  Wang et  al.  [14] 
presented a hybrid approach for partitioning the multicores into 
clusters that share the L2 cache, then the tasks which access a 
common region of memory are statically assigned to the same 
cluster.

III. GROUPING & SCHEDULING TASKS AMONG MULTICORE

PLATFORM

The main two steps of our proposed approach is grouping 
and scheduling. For grouping, we are interested in combining 
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between  the  two  task-grouping  techniques  which  are  the 
symbiotic techniques and the megatasking. For scheduling, we 
consider applying the Pfair scheduling algorithm for ensuring 
the satisfaction of real time constraints for tasks.

Figure 4 : The Proposed Dynamic Co-scheduling Technique

Figure 4 shows the main sequence for the proposed dynamic 
co-scheduling  technique.  It  is  an  iterative  method  based  on 
packing  the  tasks  in  groups,  then  running  the  scheduler  for 
certain number of clock cycles. Then, getting some statistical 
information about the running tasks, re-grouping of tasks based 
on the obtained statistical information is made .These steps will 
be explained more in the following subsections.

A) Grouping
Megatasks
At the initialization phase,the tasks are chosen randomly

and  grouped  into  megatasks[7].  Each  megatask  has  a 
utilization that is equal to the total utilizations of its tasks. This 
utilization can be also termed the cumulative weight that is 
used  to  allocate  one  or  more  processors  time  in  discrete 
quanta. Let Ɣ be a megatask. Its cumulative weight can then 
be expressed as:

W sum=∑T∈ wt T  (1)

where T is the component task within the Ɣ, and wt(T) is the 
utilization(i.e. weight) of each task.

Packing Strategy
As mentioned before, the tasks are grouped into megatasks 

such that one megatask is created at a time. The megatask is 
closed when the ratio of the total TWSS of the packed tasks to 
the  size  of  the  L2 shared  cache  is  equal  to  or  greater  than 

certain integer, then another new megatask is created and so on 
until all the tasks are grouped. 

Re-weighting Rules 
After  creating  the  megatasks,each  megatask  cumulative 

weight W Sum should be inflated.This inflation is referred as
the  megatask  scheduling  weight W Sch .It  is  computed for
each megatask  Ɣ using the re-weighting rules[7] in order to 
guarantee  that  its  grouped-tasks  meet  their  deadlines.This  is 
done by assigning each megatask a number of cores indicated 
by the calculated W Sch as shown:

W Sch=W Sum f  (2)

Where  f is the inflation value and can be calculated  in 
[7].

Symbiosis Factor 
After  assigning each megatask with a  certain number  of 

cores  based  on  its W Sch ,then  the  Pfair  scheduler  starts
running  and  at  run  time  ,the  symbiosis  factor  is  calculated. 
Symbiosis  is  a  co-scheduling  technique  whose  concept  is 
derived from the meditation of the nature in which close and 
often  long-term  interaction  between  two  or  more  different 
biological species is established so that they can rely on and 
benefit from each other.  

      Similarly, symbiosis is applied on the scheduling of tasks, 
hence symbiosis is a factor that indicates the performance of 
tasks that are co-scheduled and compete in hardware resources 
every  cycle  [15].  This  factor  may  be  based  on  system 
performance, system utilization, energy delay product,  cores 
energy,  cores  power,  average  normalized  turnaround  time 
(time  between  submitting  a  job  to  the  system  and  its 
completion) ,cache sensitivity and cache intensity, or average 
shared cache miss rate[15-18]. Throughout this paper, we will 
consider the symbiosis factor as the miss rate for the second 
level L2 shared cache.

It is found that computing the symbiosis factor is based on two 
main  techniques  which  are  sampling  and  probabilistic 
modeling.

Sampling  This  technique  is  known  as  SOS  (Sample, 
Optimize, Symbiosis) [15, 17, 19]. It is based on producing a 
profile  for  all  the  possible  combinations  for  scheduling  the 
tasks, then taking the schedule decision based on the highest 
symbiosis factor.

Probabilistic  Modeling  The  main  drawback  from  the 
sampling  technique  is  the  large  overheads  resulted  from 
profiling  the  different  combinations  of  tasks  to  have  the 
information necessary for scheduling. Hence the probabilistic 
job  symbiosis  modeling  [18]  is  used  to  eliminate  this 
drawback through predicting the symbiosis factor for the co-
scheduled tasks without the need for the “Sampling Phase”. 
This technique is designed  based on the following main steps:

1. The  cycle  stack  [18,20]  is  calculated  for  each  task.It is
consists of three components:

Packing in Megatasks

Re-weighting Rules

Run Pfair Scheduler Symbiosis Factor

Re-packing in Megatasks

Classification Scheme

Initially

L2 Shared Cache
 Miss Rate

Task Miss Rate

Task Temporal 
Working Set Size
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Base cycle count: number of times the processor dispatches 
instructions for the task.

Miss  event  cycle  count:  number  of  times  the  processor 
consumes cycles handling miss events.

Waiting cycle count: number of times the processor dispatches 
instructions  for  another  task  and  therefore  can  not  make 
progress for the given task.

2. The  probabilities  for  base  cycle  count,miss  event  cycle
count and waiting cycle count for each task are calculated.This 
is  done  through  normalizing  each  cycle  count  (i.e.  Base 
,miss ,or waiting cycles count) to their overall sum (i.e. Base 
cycle count + Miss cycle count +Waiting cycle count ). 

As  a  consequence  of  the  advantages  of  using  probabilistic 
symbiotic  modeling  rather  than  using  sampling,  we  use  its 
concept to calculate the miss cycle count for each task without 
including the base and waiting cycles counts. Then we use this 
miss cycle count in calculating the task miss rate as shown:

Task Miss Rate= Task Miss Counter
L2 MissCounterL2 Hit Counter (3)

where “Task Miss Counter” is the total misses in the L2 shared 
cache  for a task,”L2 Miss Counter” is the total misses for all 
the running tasks ,and ”L2 Hit Counter” is the total hit for all 
the running tasks.

Classification Scheme 
The scheduler takes decision to re-pack the system tasks into 
new megatasks every T clock cycles. This decision should be 
taken  based  on  the  classification  scheme  and  the  obtained 
information about the tasks. The classification scheme reflects 
how the threads affect each other when they are competing for 
shared  resources.  Consequently,  it  enables  the  scheduler  to 
predict the performance effects of co-scheduling any group of 
threads in a shared cache system. 

There  are  many  different  classification  schemes  like 
animalistic  taxonomy,  SDC,  and  pain.  The  most  suitable 
classification schemes in our case of decreasing the miss rates 
among the L2 shared cache were proposed in [21,22]. These 
papers  propose  the  classification  schemes  based  on  the 
collected information at  run time.  We use one classification 
scheme based on miss rate and propose another one based on 
temporal working set size.

Tasks can be classified based on the miss rate which plays a 
key role in the performance. The performance degradation is 
exacerbated  by  the  tasks  that  have  high  miss  rate  due  to 
memory  controller  contention,  memory  bus  contention,  and 
prefetching hardware contention. Hence the miss rate of each 
task can be obtained online using hardware counters, then the 
scheduler  identifies  the  high  miss  rate  applications  and 
separates them into different groups, such that no one group 
will have a much higher total miss rate than any other group. 
Other metrics rather than miss rate can be also used, such as 
cache access rate and IPC, but the miss rate has been proved to 
give  the  best  results.  Hence,  the  miss  rate  classification 
scheme is a suitable scheme for our work. Besides that ,we 
propose another new classification scheme which is based on 

the TWSS of each task that is calculated every T clock cycles 
at run time.

Dynamic Grouping 
Finally,the re-packing of the tasks in new megatasks should be 
done based on the classification scheme:

• In  case  of  classification  based  on  TWSS:  the  criteria  of
packing is exactly the same at the initialization phase.

• In  case  of  classification  based  on  miss  rate  (MR),  the
criteria  of packing is based on that proposed in [21],  in
which  the scheduling  algorithm  Distributed  Intensity
Online (DIO) takes the decision based on the miss rate
classification. DIO uses performance counters at run time
to get the miss rates of tasks (according to equation (3)).
Hence, DIO observes the miss rates periodically not more
frequently than once every one billion cycles in order to
account  for  phase  changes  of  tasks  with  low overhead
resulted from the migrations. Then the scheduler assigns
the tasks across the initially created megatasks such that
the  miss  rates  are  distributed  as  evenly  as  possible
according to the miss rate (MR) classification scheme.

Then , the W Sch for each megatask is computed using the re-
weighting rules.

Condition of Qualified Megatask
The total number of cores ,that are assigned to the megatasks, 
should not exceed the number of the system cores.

B) Scheduling
Pfair Scheduler

The second main phase is that at run time, the Pfair scheduling 
algorithm is  used  to  serve  the  tasks  within  each  megatask 
under assumption that every core is single-threaded (i.e. can 
only  serve  one  data  address  request  and  one  instruction 
address request). The most efficient Pfair scheduling algorithm 

is an algorithm called PD2
.

Pfair  scheduling  can  be  used  to  schedule  a  periodic  task 
system τ in which the tasks are assigned with the processor 
time in discrete time units that is  represented with the time 
interval [t, t + 1), where t is a nonnegative integer, as slot t. 
The sequence of these scheduling decisions over time defines a 
schedule[23].

Each task T of the task system τ is assigned a rational weight 
wt(T)  (0, 1] that denotes the processor share it requires. For∈  
a periodic task T ,

wt T =
T e

T p
(4)where T e  and T p  are the (integral)

execution cost and period of T .

Tasks' Division Each task T in τ is  divided into an infinite 
sequence of quantum-length subtasks, T 1 , T 2 , · · · , T i where 
each  subtask T i has  an  associated  release r T i  and 
deadline d T i  , defined as follows (for proof see [24]):
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r Ti =⌊ i−1
wt T  ⌋  (5)

d Ti =⌈ i
wt T  ⌉ (6)

Tie-breaking Rules The Pfair scheduler PD2  has two tie-
breaking rules which are used for breaking between the sub-
tasks that have the same deadlines.

First tie-break:The successor bit b(T)

Figure 5 : Windows of the first 16 subtasks of Task T

As shown in the above figure 5,successive windows of a sub-
task are either disjoint or overlap by one slot. 

For example :

• The deadline of T 1 is 2 while the release time of T 2 is
1.

• The deadline of T 2 is 3 while the release time of T 3  is
2.

• The deadline of T 3 is 5 while the release time of T 4 is
4, and so on.

In  other  words,Formally  let  a  sub-task  T i1  and  its 
predecessor  T i ,so  the  release  time   of  T i1  will  be 
equal  to either :

• deadline of T i ,or

• deadline of T i−1

From  this  point,  they  have  defined  a  bit  b T i  that 
distinguishes between these two possibilities:

• b T i =1  if  release  time   of  T i1 =  deadline  of
T i  -1

• b T i =0 if  release  time   of  T i1 =  deadline  of
T i

Second tie break:The group deadline D(T)

Consider  a  sequence  T i ,... ,T j of  subtasks  such  that 
b T k=1 and  ∣windowLength T K1∣=2 for all i ≤ k < 

j. 

For  introducing  the  group  deadline,as  shown  in  figure 
5,scheduling T i in its last slot forces the other subtasks in 
this sequence to be scheduled in their last slots. 

For example,  scheduling  T 3  in slot 4 forces  T 4  and 
T 5 to be scheduled in slots 5 and 6, respectively.  So the 

group deadline of a subtask T i , denoted  D T i , is the 
earliest time by which such a “cascade” must end. 

Formally, it is the earliest time t, where  t ≥ deadline T i , 
such that either:

• t=deadline T k   and b T k =0   ,or

• t1=deadline T k  and  ∣windowLength T k ∣=3  for
some subtask T K .

For  example,  in  the  above Figure,  D T 3=d T 6−1=8
and D T 7=d T 8=11 . 

Now  after  defining  the  successor  bit  b(T)  and  the  group 
deadline D,the next step is showing the PD2 priority rules.

The  PD2 Priority  Definition  The  PD2  Priority  is
based on the successor bit b(T),the group deadline D ,and the 
deadline of each subtask d(T) as will be shown.

Under PD2 ,  subtask  T i  priority  is  at  least  that  of
subtask U j , denoted T i ≼U j  , if one of the following 
rules is satisfied:

I. d T i d U j . 

II. d T i =d U j  and b T i bU j .

III. d T i =d U j , b T i=b U j=1 ,and
D T i≥ D U j  .

IV. SIMULATION METHODOLOGY

In this section we are going to show the stages of building the 
simulation  environment.  The  cache  simulator  is  based  on 
trace-driven model and is written in C++. It models the private 
cache among each core, the shared cache, the main memory 
and  the  memory  requests.  Also  It  models  the  Modified 
Exclusive Shared Invalid (MESI) cache coherence protocol.

Design Phases

First phase: Memory Trace Collection: It's a memory-access 
trace  file  based  on  using  the  “Pin”  dynamic  binary 
instrumentation  framework  for  the  IA-32  and  x86-64 
instruction-set  architectures  [25].  The  “Pin”  contains  a  tool 
that  can  be  modified  for  printing  the  address  of  every 
instruction  and  data  that  are  executed  within  the  running 
application.  The  running  application  is  represented  by 
SPECjvm2008 benchmarks  [26]  that  contains  38  workloads 
intended  to  represent  a  diverse  set  of  common  types  of 
computation  for  real-world  applications  including 
text/character processing, numerical computations, and bitwise 
computation. Consequently we run each workload alone with 
the  pin  tool  to  capture  all  its  memory  accesses,  then  these 
accesses  are  dumped  into  two  trace  files,  one  for  the 

107 | P a g e

www.ijacsa.thesai.org 107 | P a g e

www.ijacsa.thesai.org

139 | P a g e
www.ijacsa.thesai.org 



instructions  addresses  and  the  other  for  the  data  addresses. 
These trace files contain entries, where each entry has a cache 
type (data or instruction), an address and an access type (read 
or write).

Second  phase:  Build  The  Proposed  Scheduler:This  is the 
implementation of the Pfair for scheduling the workloads at 
run time and megatask grouping of the tasks. It includes four 
configurations that will be run for every test case in section V.

First Configuration: Pfair without grouping:

 There is no grouping for tasks.

 Each task is stored in its own queue.

 Each task is assigned one core at the initialization phase.

Second Configuration: Static Megatask based on Working Set  
Size (WSS):

• There is only static grouping for tasks such that each task is
packed in a megatask at the initialization phase.

• The criteria for closing the megatask and creating a new one
is that the ratio of the total TWSS of the packed tasks to the 
size of the L2 shared cache is equal to or greater than certain 
threshold.

• Each megatask is represented by a queue.

• Each megatask has its assigned number of cores based on
its  re-weighting rules.

Third  Configuration:  Dynamic  Megatask based  on  Working  
Set Size (WSS):

• The initial steps are exactly like the second configuration.

• Every certain number of clock cycles or certain number of
instructions  (e.g.  once  every  ten  million  cycles  to  avoid 
overheads  due  to  re-scheduling),  all  the  megatasks  are  re-
created based on the TWSS of each task.

Fourth  Configuration:  Dynamic  Megatask  based  on  Miss  
Rate:

 The same as the third configuration but the only difference 
is in the last step as every certain number of clock cycles or 
certain  number  of  instructions  (e.g.  once  every  ten  million 
cycles),all  the megatasks are re-created based on the shared 
cache miss rate (MR) of each task where tasks are distributed 
on the megatasks such that the total miss rate (MR) of all the 
tasks is equalized across all the megatasks.

Third Phase: Cache Simulator: writing a cache simulator that 
models the architecture in figure 3 in which each core has a 
private  cache and there is a  shared cache among the cores. 
Besides  that  it  is  responsible  for  implementing  the  cache 
coherence  protocol  known  as  “Modified  Exclusive  Shared 
Invalid” (MESI).

Operational Scenario

In the proposed simulator, we assume single threaded core, so 
each  core  has  a  separate  application.  The  scheduler  serves 
these cores in a round robin manner. When there is a memory 
request,  the  cache  simulator  checks  the  cache  type  and 
operation type, then it sends it to the private cache L1 Data or 
L1 Instruction. If there is a hit, then it replies with data after 
the private cache latency cycles, otherwise it sends the request 
to the L2 shared cache, then if there is a hit, then it replies with 
data after the L2 latency cycles, otherwise it sends the request 
to the main memory, so it returns data after the main memory 
latency cycles.

Fourth Phase: Test Cases:  These are the test cases that are 
represented  by  the  mixes  of  different  scenarios  of  real 
execution. For example we can consider the following types of 
mixes:

 Total  WSS for  the workloads that  is  lower than  the  L2 
shared cache size.

 Total WSS for the workloads that is greater than the L2 
shared cache size.

 Total WSS for the workloads that is equal to the L2 shared 
cache size.

V. SIMULATION RESULTS

We compared the four configurations mentioned before: Pfair 
without  grouping,  Static  megatask  based  on  WSS  at 
initialization  phase,  the  newly proposed  Dynamic  Megatask 
based on WSS, and the newly proposed Dynamic megatask 
based on MR.

Table  I  shows  the  used  configuration  values  for  the  main 
memory and the first level L1 private cache.Each workload in 
the SPECjvm2008 has a WSS of 2MB.These parameters are 
used in all the scenarios.

TABLE I. L1 CACHE AND MAIN MEMORY PARAMETERS

Parameters Values

Simulated Hardware Parameters

Main Memory Latency 200

L1 Data Cache Size 32KB

L1 Data Line Size 64 bytes

L1 Data Associativity 4

L1 Data Latency 2

L1 Instruction Cache Size 32KB

L1 Instruction Line Size 64 bytes

L1 Instruction Associativity 2

L1 Instruction Latency 1

Task Parameters

Working Set Size (WSS) 2 MB

The  simulation  results  show the  resulted  Shared  Cache  L2 
Miss Rate for each configuration in which total miss rate for 
the shared cache that is calculated as
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shared cache L2 Total Misses
shared cache L2 Total Missesshared cache L2 Total Hits

(15)

A) Scenario 1
Table II shows that there are 8 workloads of total WSS 16 MB 
and the number of cores is 16 with L2 shared cache of size 
1MB.

TABLE II. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 8 workloads of total WSS 16 MB

L2 Cache Size 1MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 16

The  graph  in  Figure  6  shows  that  the  dynamic  megatask 
outperforms  the  static  one  and  the  Pfair  with  no  grouping. 
Also the total miss rates in both the dynamic megatask based 
on  running  tasks MR and based  on  WSS are  near  to  each 
other.As this scenario represents the workloads of total WSS 
during  a  certain  number  of  clock  cycles  that  is  equal  or 
slightly greater than the shared cache L2 size.This leads to that 
the shared cache L2 miss rates of the four configurations are 
near to each other.The total miss rate tends to decrease with 
time as the workloads tend to finish and reach its end.

Figure 6 : 8 SPECjvm2008 benchmarks of total size 16 MB that 
share  L2  cache  of  size  1  MB,  X-axis  represents  the  fetched  
instructions and Y-axis represents the shared cache L2 Miss Rate.

B) Scenario 2
Table III shows that there are 4 workloads of total WSS 8 MB 
and the number of cores is 4 with L2 shared cache of  size 
8MB.

TABLE III.  PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 4 workloads of total WSS 8 MB

L2 Cache Size 8MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 7

Cores 4

Figure  7  shows  that  when  the  total  WSS  for  the  running 
workloads  during  a  certain  number  of  clock  cycles  fits  the 
shared  cache  L2,  the  miss  rate  for  the  shared  cache  L2 
becomes approximately the same for the static megatask and 
pfair without grouping while the dynamic megatask based on 
tasks WSS and based on tasks MR is slightly better than static 
megatask and pfair without grouping and tends to be the same 
when the system tasks tend to finish.

Figure 7 :  4 SPECjvm2008 benchmarks of total size 8 MB that 
share  L2  cache  of  size  8  MB,  X-axis  represents  the  fetched  
instructions and Y-axis represents the shared cache L2 Miss Rate.

C) Scenario 3
Table IV shows that there are 5 workloads of total WSS 10 
MB and the number of cores is 4 with L2 shared cache of size 
20MB.

TABLE IV. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 5 workloads of total WSS 10 MB

L2 Cache Size 20MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 20

Cores 4

Figure 8 shows that when the shared cache L2 is large enough, 
the  shared cache  L2  miss  rate  coincides  in  all  the 
configurations.This case is the ideal case that rarely occurs.
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Figure 8 : 5 SPECjvm2008 benchmarks of total size 10 MB that 
share  L2  cache  of  size  20  MB,  X-axis  represents  the  fetched  
instructions and Y-axis represents the shared cache L2 Miss Rate.

D) Scenario 4
Table V shows that there are 5 workloads of total WSS 10 MB 
and the number of cores is 4 with L2 shared cache of  size 
1MB.

TABLE V. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 5 workloads of total WSS 10 MB

L2 Cache Size 1MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 4

The graph in figure 9 shows a  slight difference in the total 
miss rates as the shared cache L2 still fits the total TWSS for 
the running workloads.But the dynamic megatask based on the 
WSS and MR is still the winner.

Figure 9 : 5 SPECjvm2008 benchmarks of total size 10 MB that 
share  L2  cache  of  size  1  MB,  X-axis  represents  the  fetched  
instructions and Y-axis represents the shared cache L2 Miss Rate.

E) Scenario 5
Table VI shows that there are 16 workloads of total WSS 32 
MB and the number of cores is 4 with L2 shared cache of size 
1MB.

TABLE VI. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 16 workloads of total WSS 32 MB

L2 Cache Size 1MB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 4

In this scenario ,the workloads are increased while the shared 
cache  L2 size  is  kept  the  same.This  represents  the  case  in 
which  the  total  TWSS of  the  running  workloads  is  always 
greater than shared cache L2,thus the graph in figure 10 shows 
that the dynamic megatask in general has a dramatic change in 
the shared cache  L2 miss  rate  rather  than that in  the static 
megatask and Pfair with no grouping.The dynamic megatask 
based  on  MR  slightly  outperforms  that  is  based  on 
WSS.Hence the proposed technique is appropriate for the high 
processing workloads like graphics and audio applications.

Figure 10 : 16 SPECjvm2008 benchmarks of total size 32 MB that share L2 
cache of size 1 MB, X-axis  represents  the fetched instructions and Y-axis  
represents the shared cache L2 Miss Rate.

F) Scenario 6
Table VII shows that there are 12 workloads of total WSS 24 
MB and the number of cores is 48 with L2 shared cache of 
size 512MB.

TABLE VII. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 12 workloads of total WSS 24 MB

L2 Cache Size 512KB
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L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 48

In  this  scenario  the  shared  cache  L2  size  is  very  small 
compared to the total WSS of the running workloads, thus the 
graph in figure 11 shows that the static megatask outperforms 
the pfair with no grouping in decreasing the shared cache L2 
miss rate ,but the dynamic megatask is still the better than that 
the static one.This indicates that the static megatask succeeds 
in reducing the concurrency within the running workloads as 
in  the  static  megatask  ,while  the  dynamic  one  succeeds  in 
monitoring the symbiosis factor every certain number of clock 
cycles ,then re-scheduling based on the two classifier schemes 
MR and WSS.

Figure 11 : 12 SPECjvm2008 benchmarks of total size 24 MB that share L2 
cache of size 512 KB, X-axis represents the fetched instructions and Y-axis  
represents the shared cache L2 Miss Rate.

G) Scenario 7
Table VIII shows that there are 10 workloads of total WSS 20 
MB and the number of cores is 40 with L2 shared cache of 
size 512MB.

TABLE VIII. PARAMETERS

Parameters Values

Simulated Hardware Parameters

SPECjvm2008 benchmarks 10 workloads of total WSS 20 MB

L2 Cache Size 512KB

L2 Cache Line Size 64 bytes

L2 Associativity 16

L2 Cache Latency 11

Cores 40

This scenario is the same like the previous one except that the 
total  WSS of  the  workloads  is  slightly  decreased,  thus  the 
graph in figure 12 shows that the dynamic megatask is still the 
better  in  decreasing  the  shared  cache  L2  miss  rate.  In  all 
graphs the two dynamic megatask configurations are always 
close to each other in decreasing the L2 shared cache.Hence it 

is interesting to try other classifier schemes that depends on 
the  workloads  requirements  and  the  shared  cache  L2 
characteristics.This can be considered in the future work.

Figure 12: 10 SPECjvm2008 benchmarks of total size 20 MB that share L2 
cache of size 512 KB, X-axis represents the fetched instructions and Y-axis  
represents the shared cache L2 Miss Rate.

Table IX shows the percentage decrease of  the miss rates for 
the shared cache L2 in the above scenarios for the static and 
dynamic megatask configurations with respect to Pfair without 
grouping based on the following equation  

100∗Average Miss Rate Y −Average Miss Rate X 
Average Miss Rate Y  (16)

where Y represents the Pfair without grouping and X represents 
one of the other three configurations: static megatask , dynamic 
megatask based on TWSS, or dynamic megatask based on MR.

TABLE IX. IMPROVED SHARED CACHE L2 MISS RATE

Scenario 
No.

Static 
Megatask

Dynamic 
Megatask based 

on WSS

Dynamic 
Megatask based on 

MR

1 5.47% 16.88% 16.19%

2 19.46% 23.79% 12.49%

3 0.15% 0.15% 0.73%

4 9.05% 13.27% 13.54%

5 10.64% 34.53% 41.98%

6 15.40% 52.70% 51.10%

7 15.17% 47.82% 48.30%

VI. CONCLUSIONS

This paper has aimed at increasing the system throughput while 
ensuring  the  real-time  constraints.It  tackles  the  dynamic 
grouping technique that is based on mixing between the idea of 
megatask and symbiosis techniques. The symbiosis techniques 
is  used to  predict  a  factor  for  each task which is  either  the 
temporal working set size or the miss rate. The megatask is 
used  in  grouping  tasks  based  on  the  classification  scheme 
according  to  the  symbiosis  factor  and  calculating  the  re-
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weighting  rules  to  ensure  that  the  tasks  meet  their 
deadlines.The Pfair scheduling is used at run time for serving 
bounded  number of tasks within each megatask group, hence 
reducing  the  concurrency  of  tasks  execution  within  each 
megatask which leads to reducing the second level L2 shared 
cache  misses.The  simulation  results  show  that  the  dynamic 
grouping technique outperforms the Pfair without grouping and 
the  static  megatask.  This  is  especially  true  when the  shared 
cache  size  is  relatively  small  compared  to  the  tasks 
requirements  such  as  video  coding  and  multimedia 
applications.

These  results  suggest  some  points  for  future  work.  For 
example, as we assume that each core has single thread, this 
work can be extended to multi-threaded cores.The challenge 
key is how to distribute threads across the cores[27].Besides 
that, timing analysis on multicore platform can be studied. Also 
our  work  can  be extended to check the  overheads  for  tasks 
migration and  the  impact  of  re-scheduling.This  may suggest 
using another techniques for determining the tasks migration 
threshold as in [28].

Future work is also required to evaluate these techniques to 
handle  multi-threaded  applications.In  addition  to  that,  it  is 
interesting to use other classification  schemes that is based on 
cache  properties  like  cache  intensity  and  cache 
sensitivity.Research  is required for proposing heuristics-based 
co-scheduling by machine learning.
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