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Abstract—Modular structure is a typical structure that is 

observed in most of real networks. Diffusion dynamics in 

network is getting much attention because of dramatic increasing 

of the data flows via the www. The diffusion dynamics in network 

have been well analysed as probabilistic process, but the 

proposed frameworks still shows the difference from the real 

observations. In this paper, we analysed spectral properties of 

the networks and diffusion dynamics. Especially, we focus on 

studying the relationship between modularity and diffusion 

dynamics. Our analysis as well as simulation results show that 

the relative influences from the non-largest eigenvalues and the 

corresponding eigenvectors increase when modularity of network 

increases. These results have the implication that, although 

network dynamics have been often analysed with the 

approximation manner utilizing only the largest eigenvalue, the 

consideration of the other eigenvalues is necessary for the 

analysis of the network dynamics on real networks. We also 

investigated Node-level Eigenvalue Influence Index (NEII) which 

can quantify the relative influence from each eigenvalues on each 

node.  This investigation indicates that the influence from each 

eigenvalue is confined within the modular structures in the 

network. These findings should be made consideration by 

researchers interested in diffusion dynamics analysis on real 

networks for deeper analysis. 

Keywords—complex network; modularity; diffusion; SIS 

model; graph spectra; eigenvalue and eigenvector 

I. INTRODUCTION 

Diffusion phenomena ongoing on today’s well-networked 
society can be often analyzed as probabilistic diffusion 
processes in complex networks. And, because the social 
systems have been keeping glowing up more dynamically and 
complexly, studying the probabilistic diffusion process in 
complex networks has been gathering a lot of attentions. Also, 
the probabilistic diffusion process has been well-applied to 
various fields, such as information spreads, dissemination of 
new products, computer virus spread, and epidemics. 

Modular structure is a ubiquitous characteristic found in 
many real networks [e.g. 1]. Identifying hidden modular 
structure in real networks has been studied by many 
researchers in the scope of social network analysis [e.g., 2–8]. 
For instance, Newman’s community detecting algorithm using 
betweenness centrality [4] is the pioneer work that triggered 
the development of community detecting algorithms. But, 

their algorithm have two problems; 1) the number of 
communities is needed to be estimated in advance, even if the 
user might want to know the most optimized number of 
partitioned communities as the result of optimization. 2) 
computation time is too long. The first problem was solved by 
the introduction of modularity Q that is an index that can 
quantify the accuracy of the partitioning [5]. Then the users 
can identify the most proper partitioning instead of deciding 
the number of communities in the network in advance. The 
second problem was solved using the greedy algorithm that 
the completely separated graphs connect to be higher 
modularity Q [6]. After that, many researches have proposed 
various methods and especially apply them to the social 
network analysis. In addition to that, diffusion properties on 
modular networks have been studies by many researchers. For 
instance, Gao et al. [9] investigated the relationship between 
the number of modules and the properties of percolation on 
the randomly modularized network, which results that 
modularized networks are more destructible than a single 
independent network. In terms of the probabilistic diffusion 
dynamics on modular networks, it is reported that resonance-
like phenomena can be seen in the probabilistic diffusion 
processes on modular networks [10]. Also, Saumuell-
Mendiola [11] studied the SIS diffusion model on a coupled 
network which consists of two independent networks 
combined each other, and they reported that epidemics are 
prone to arise on the interconnected networks comparing to 
the single independent networks. Furthermore, Sahneh et al. 
[12] and Wang et al. [13] proposed the theories that the 
epidemic threshold for a coupled network can be calculated by 
the adjacency matrix of the coupled network. Also, for the 
Susceptible-Infected-Recovered (SIR) diffusion model, 
analyzing the interconnection between communities is also 
important [14, 15]. 

Analyzing the diffusion process in networks as 
Susceptible-Infected-Susceptible (SIS) model has been one of 
the conventional approaches that can be well-applied to the 
study of information diffusion as well as epidemics [16-21]. In 
the SIS model, each node in the network is probable to be 
assigned to two states, susceptible state and infected state. In 
the epidemics context, the susceptible state nodes represent 
the healthy individuals that are probable to be infected. On the 
other hand, the infected state nodes represent patients that are 
probable to influence its neighbors at a certain infection rate in 
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the epidemics context. Then, the infected state nodes are 
possible to automatically return to the susceptible state at a 
certain recovery rate. One of the important insights from the 
studies on the SIS model in complex network is that critical 
phenomenon, which the steady-state fraction of infected nodes 
suddenly jumping up at the certain condition, can be observed.  
Then, finding the critical point (i.e. threshold or tipping point) 
has been attracting many researchers’ interests, and many 
analytical approaches as well as simulative approaches have 
been proposed so far [19,22-24]. For instance, Kephart and 
White [22] firstly analyzed SIS model and formulated time-
evolution of the steady-state fraction of infected nodes in 
homogeneous network. Wang et al. [23] proposed a more 
advanced analytical framework for general networks from the 
spectral point of view. They reported that the critical point can 
be approximately calculated by the inverse of the largest 
eigenvalue of the adjacency matrix of the underlying network. 
Mieghem et al. [24] developed “the N-intertwined mean field 
approximation model”. And our work is based on their 
analytical frameworks. In addition, Mieghem et al. [25] also 
proposed another approach from spectral analysis perspective.  

Although many theories have been proposed, as mentioned 
above, Pastor-Satorras and Vespignani [26] reported that, in 
scale-free network, the critical phenomena cannot be observed 
from their analysis of the empirical survey results of computer 
virus spread. They also found that the infections are localized 
within very small areas before the critical point. Furthermore, 
they reported that the steady-state fraction of infection 
saturates to very lower than analytically expected. These 
empirical facts differ from the analytical results introduced 
above. Recently, this contradiction is elucidated by the 
localization-delocalization phenomenon reported by Goltsev 
et al. [27]. The In their paper, the inverse participation ratio 
(IPR) is applied to the network diffusion analysis from the 
spectral point of view, and concludes that hubs, edges with 
large weight and dense sub-graphs in networks are probable to 
be the centers of localization. 

Because of the limitation of computational performance 
and data availability, previous analysis on the diffusion model 
had tried to find out better approximation approaches to figure 
out the dynamics. These analytical results based on the 
conventional linear algebra based analysis indicate that the 
largest eigenvalue and the principal eigenvector of the 
adjacency matrix can approximate the diffusion dynamics on 
general networks [23, 24]. However, according to the results 
of our analysis from spectral point of view and numerical 
simulations, the accuracy of this approximation method varies 
depending on the modularity of the network. In our previous 
works [28], we quantified the accuracy of the approximation 
method utilizing only the largest eigenvalue of the adjacency 
matrix and found that the accuracy is low in some real 
networks. In this paper, we insist that the accuracy of the 
approximation method depends on the modularity of networks, 
which verifies numerical simulations.  

Also, our proposed measure, Node-level Eigenvector 
Influence Index (NEII) [28] which can quantify and visualize 
the influences from an arbitrary eigenvalue to each node, 
captures the insight that only considering the largest 

eigenvalue cannot appropriately approximate the dynamics on 
the highly modularized networks. 

In the second section, we review some existing analytical 
frameworks and provide our proposed analytical frameworks 
that will be fundamentals for the later discussions. In the third 
section, we examine the spectral properties of some artificial 
complex networks and real networks, which indicates that the 
importance of non-largest eigenvalue for the diffusion 
properties on the modular networks and verify the hypothesis 
in the previous section by numerical simulations. In the fourh 
section, we develop the parameterized modular network 
formation algorithm to verify the hypothesis. In the fifth 
section, we introduce the Node-level Eigenvector Influence 
Index (NEII). Then the investigation of real modular networks 
conducted in the sixth section. Finally, we conclude this paper 
in the seventh section.  

II. ANALYSIS OF PROBABILISTIC DIFFUSION ON 

NETWORKS 

A. N-Intertwined mean field approximation model 

Mieghem et al. [24] developed the N-intertwined mean 
field approximation model, then an important results of their 
analysis is the following Markov differential equation, 

  ( )

  
    ( )      (  ( ))(   ( )    ) 

    (     ) ( )       (  ( ))  ( ), 
(1) 

where   ( )  denotes the probability that the node i is 
infected at time t,   is infection rate,   is recovery rate, 

 ( )  (  ( ),   ( ),   ( ), ,   ( ))
 

, e is the all-one 

vector, and     (  ( ))  is the diagonal matrix where the 

diagonal elements consists of    ( ),   ( ),   ( ), ,   ( ) . 
According to the comparison results with the numerical 
simulation results in small networks, the accuracy of this 
model is good enough except the region around threshold. In 
the studies of  Susceptible-Infected-Susceptible (SIS) model 
[16-21], researchers have been making efforts to identify the 

threshold    of the effective infection ratio   
 

 
. Then, 

several approaches have been taken to analytically calculate 
the threshold [22-26]. One of the most prominent 
achievements is that the threshold can be derived by the 
inverse of the largest eigenvalue of the adjacency matrix as 
follows,  

where   ( )  denotes the largest eigenvalue of the 
adjacency matrix  .  

B. Spectral analysis 

To solve the differential equation (1), we assumes that the 
fraction of infection on each node   ( ) is sufficiently small 
and ignoring the term, the equation (1) can be solved as the 
expression (3) using the eigenvalue decomposition, 

  𝑐  
1

  ( )
, 

(2) 
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where   ( ) is kth eigenvalue of the adjacency matrix   
and U denotes the orthonormal matrix which the kth column 
consists of the eigenvector of the kth eigenvalue. Then, the  

equation (3) can be rewritten as, 

 

where    is eigenvector of the kth eigenvalue of the 
adjacency matrix  . 

Assuming that the initial infection is randomly assigned to 
each node i at the probability   ( )  1  ⁄ , the probability of 
infection on the node i at time t can be obtained as below, 

 where the norm ‖  ‖ stands for the sum of all elements of 
the eigenvector corresponding kth eigenvalue, that is ‖  ‖  
                 . Then, each term in the formula 
(5) implies that the influence from the kth eigenvalue    
toward a given node i is governed by the product of the ith 
component     and the norm ‖  ‖. Furthermore, the fraction 
of infected nodes over the whole network  ( )  can be 
calculated by taking the average of   ( ) as follows, 

 

 

 

 

 

 

III. SPECTRAL PROPERTY AND DIFFUSION 

A. Influence from the Non-Largest Eigenvalues 

In the previous literatures, accuracy of the approximation 
method only utilizing the largest eigenvalue have not been 
discussed extensively and believed that is applicable to any 
types of networks. However, our analytical framework from 
the spectral point of view shows that influences from not only 
the largest eigenvalue of the adjacency matrix but also the 
other non-largest eigenvalues are important to express 
diffusion processes more accurately, which is validated by 
numerical simulation.  

Then our investigation of the real networks shows that the 
modular networks with high modularity tend to show the 
property that the influences from the non-largest eigenvalues 
and the corresponding eigenvectors are significant.  

In our previous work [28], we investigated the values of 
‖  ‖

  in equation (6) in several artificial complex networks 
and real networks. The equation (6) can be expanded,  

 ( )  
   ((     ) )‖  ‖
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    (     )
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As the equation (7) indicates, when the absolute value of 

|     ,*   +| is large and the dominance index  , which we 

defined as ‖  ‖
 ‖  ‖

 ⁄ , is small,  ( ) can be significantly 
governed by the largest eigenvalue and its corresponding 

eigenvector. In contrast, when |     ,*   +| is small and the 

  is large, the term including the kth non-largest eigenvalue 
should be considered, that is, the approximation method only 
using the largest eigenvalue and corresponding eigenvectors, 
such as equation (2), is not applicable in this case.  

Billen et al. [29] show that, as the number of triangles (i.e. 
clusters or three cycles) in a network increases, the spectrum 
of the network is positively skewed. This insight indicates that 

the value of |     ,*   +|  increases when the clustering 

coefficient of the network increases, which implies  ( ) tends 
to be governed by the largest eigenvalue when the clustering 
coefficient of the network is large. However, several studies 
on real data analysis and numerical simulation results [20] that 
scale-free network which has comparably larger clustering 
coefficient shows small steady-state fraction of infections, 
 ( ), which indicates that consideration of the absolute value 

of  |     ,*   +| is not important, and consideration of the 

value of   is more inevitable to measure the importance from 
the eigenvalues in each term of the equation (7).  

Then, we investigated distribution of   in some artificial 
complex networks and real networks. Figure 1 shows the 
comparison of the distribution of   among the several 
networks, such as Barabasi-Albert scale-free network (BA), 
Erdos-Renyi random network (RND), random regular network 
(RR), Co-authorship Network of Network Scientists (CNNS) 
[30, 31] and UK members of parliament on Twitter network 
(UKMPTN) [32, 33]. European road network (EuroRoad) [22, 
25], dolphin (Dolphin) network [31, 34], Email network 
(Email) [31, 35], and Jazz musicians’ collaborating network 
(JazzNet) [36, 37]. Table 1 provides with the detailed network 
information including the optimal modularity Q that is an 
index to quantify the goodness of the partitioning and 
explained in the next section.  
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As can be seen in the figure, in RND and RR, the relative 
influence from the largest eigenvalue is apparently dominant 
and the relative influences from the non-largest eigenvalues 
are almost negligible. However, in the real networks, the 
relative importance from the non-largest eigenvalues increases. 
Especially CNNS and EuroRoad which show apparently high 
modularity and are apparently influenced from the non-largest 
eigenvalue.  Especially, the 4th eigenvalue for CNNS and the 
2nd eigenvalue for EuroRoad, is more dominant than those of 
their largest eigenvalues. This fact implies that the non-largest 
eigenvalues are more influential in the networks with the 
higher optimal modularity Q and the approximation only 
utilizing the largest eigenvalue and primary eigenvector is not 
appropriate to analyse these networks. 

TABLE I.  BASIC INFORMATION FOR THE INVESTIGATED NETWORKS

 

 

Fig. 1. Comparison of distribution of  , which we define at the dominance 

index of the principal vector, of Barabasi-Albert scale-free network (BA), 

Erdos-Renyi random network (RND), random regular network (RR), Co-

authorship Network of Network Scientists (CNNS), UK member of 

parliament on Twitter network (UKMPTN), Euro road network (EuroRoad), 

dolphin (Dolphin) network, Email network (Email), and Jazz musicians’ 

collaboration network (JazzNet). 

B. Verification Simulation 

Based on the results in the previous section, we 
hypothesize that, when we analyze the diffusion dynamics in 

real networks, we must consider not only the largest 
eigenvalue and the principal eigenvector of the adjacency 
matrix, but also the other eigenvalues and their corresponding 
eigenvectors. 

As indicated in formula (2), the critical point is 
approximately calculated as the inverse of the largest 
eigenvalue of the underlying network’s adjacency matrix. To 
verify if this approximation method, utilizing only the largest 
eigenvalue, is appropriate for every network, we simply 
compare analytically derived approximated thresholds   ,   

with numerically calculated thresholds   ,    in the networks 

introduced in the previous section. In this series of numerical 
simulations, we change the effective infection ratio by 0.001 
(recovery rate   is a constant = 1), and the fraction of infected 
nodes at 100 time-steps is assumed to equal the steady-state 
fraction of infected nodes,   . At the constant effective 
infection rate, the simulations repeated 100 trials and the 
obtained results were averaged. 2% of the nodes were 
randomly selected as initial infected nodes in each trial. In 
Figure 2, blue plots display the evolution of    as the function 
of   normalized by   ,   of each network. If the difference 

between   ,   and   ,    is minimal, the blue plots begin to 

increase around 1 on the horizontal axis. Conversely, if the 
difference between   ,   and   ,    is significant, the blue 

plots begin to increase much farther along the horizontal axis. 
As displayed in this figure, the difference between   ,   and 

  ,    in RND and RR, in which the largest eigenvalue is 

prominently dominant, are almost negligible. In contrast, the 
differences  are significant in CNNS and EuroRoad, which 
possess a comparatively large   for the non-largest 
eigenvalues as displayed in Figure 1 and large modularity Q as 
displayed in Table 1. These results demonstrate that an 
approximation method only considering the largest eigenvalue 
and the principal eigenvector is not appropriate for a network 
having comparatively large    values for its non-largest 
eigenvalues and large modularity Q. 

 

Fig. 2. Simulation results around the threshold. The steady-state fractions of 

infected nodes,   , for (a) the Erdos-Renyi random network, (b) the random 

regular network (RR), (c) the Co-author Networks of Network Scientists 
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(CNNS) and (d) Euro road network (EuroRoad) are plotted as the function of 

effective infection ratio normalized by the analytically derived threshold of 

each network. The simulated threshold   ,    for each network corresponds to 

the tipping point of blue plots in each figure. 

IV. RELATIONSHIP BETWEEN MODULARITY AND 

IMPORTANCE OF THE NON-LARGEST EIGENVALUE 

According to the results in the previous section, it can be 
hypothesized that not only the largest eigenvalue but also the 
other non-largest eigenvalues are also important in networks 
with the large optimal modularity Q. The comparison results 
in the previous section show that the difference between   ,   

and   ,    in RND and RR, in which the largest eigenvalue is 

prominently dominant, are almost negligible. In contrast, the 
differences are significant in the real networks that show high 
optimal modularity Q, such as CNNS (Q = 0.84) and 
EuroRoad (Q = 0.86). Also, in our previous work [28], we 
proposed an index “the diffusion power” that can quantify the 
ease of diffusion on an arbitrarily network. An investigation of 
the diffusion power indicates that the networks with high 
optimal modularity Q shows that there are significant 
differences between the diffusion power when considering the 
all eigenvalues and eigenvectors and the diffusion power only 
considering the largest eigenvalue and principal eigenvector. 
Therefore, we hypothesized that the modularity of networks 
relates the importance of the non-largest eigenvalues and 
eigenvectors for the analysis of their diffusion dynamics. 
Therefore, we investigate the relationship between the optimal 
modularity Q and the importance of the non-largest 

eigenvalues and eigenvectors. 

To show the relationship between the optimal modularity 
Q and the importance of the non-largest eigenvalues, we 
firstly develop the network formation algorithm that can 
change optimal modularity Q of the network by changing the 
network modularity control parameter (NMCP), p. The NMCP 
determines the ratio of the number of total links connecting 
the nodes inside the modules to the number of total links 
interconnect between modules. The step-by-step procedures 
for this parameterized network is as follows, 

Step 1:  Determine the number of module, the size of the 

modules (i.e. the number of nodes in each module), 

and the number of total links, L, for entire network 

in advance. 

Step 2:   Determine the NMCP, then caluculate the number 

of links interconnecting between modules.  

Step 3:   Calculate the number of links connecting the nodes 

inside each module, which is calculated by 

multiplying the NMCP and the number of total 

links (i.e. pL). 

Step 4:  Randomly connect the links within each module by 

the links calculated in Step 3. 

Step 5:  Calculate the number of links inter-connecting each 

module, which is calculated by (1p)L. 

Step 6:  Randomly connect each module by the links 

calculated in Step 5. 
As shown in Figure 3, when the value of p increases, 

densities inside each module are increase while the 
connections between each module become sparse, then the 
optimal modularity Q also increases.  

 

Fig. 3. Examples of modular network created by the parameterized network 

formation algorithm. The parameterized modular network formation 

algorithm can change optimal modularity Q of the network by changing 

network modularity control parameter (NMCP), p. For these three modular 

networks, the number of modules is 10, the size of each node is 10 nodes and 

the total number of links is 400. (a) Modular network when p=0.50, 200 links 

for inner-module links and 200 links for the inter-module links. (b) Modular 

network when p=0.75, 300 links for inner-module links, and 100 links for the 

inter-module links. (c) Modular network when p=0.90, 360 links for inner-

module links and 40 links for the inter-module links. 

According from the equation (7), an index to quantify the 
importance from the non-largest eigenvalues is defined as 
follows, 

Then, using the proposed network formation method, we 
constructed modular networks as changing the value of p from 
0.5 to 0.9 by 0.05. 10,000 modular networks for a given p are 
constructed and calculated the optimal modularity Q and the 
proposed index. Then, the average values of these values are 
plotted in figure 4. 
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(b) 

Fig. 4. (a) Relationships between the parameter p in the proposed network 

formation algorithm and the average value of optimal modularity Q, (b) 

Relationships between averaged optimal modularity Q and the average value 

of Index 

The figure 4 shows results for the modular networks with 
400 nodes and 2,000 links created by the proposed network 
formation method. Figure 4-(a) shows the relationship 
between the parameter p and the averaged value of the optimal 
modularity Q. Also, figure 4-(b) shows the relationship 
between the averaged optimal modularity Q and the average 
value of the index. As can be seen these figure, optimal 
modularity Q linearly increase as the value of p in the 
proposed network formation method increase. Also, the 
average value of the Index exponentially increases as the 
average value of optimal modularity Q increase, which 
verifies the fact that the importance from the non-largest 
eigenvalues in diffusion dynamics increase as the optimal 
modularity Q of the network increase. 

V. NODE-LEVEL EIGENVALUE INFLUENCE INDEX 

In this section, we investigate how does modular structure 
affects the spectral properties in the networks. Our proposed 
an index the Node-level Eigenvalue Influence Index (NEII),  , 
that can quantify the influences from an arbitrary eigenvalue, 
  , to the dynamical process on each node.  

The equation (5) indicates that the significance of the 
contributions from an arbitrary kth eigenvalue to increase the 
infection probability on a node i is governed by the value of 
   ‖  ‖. Therefore, we defined the Node-level Eigenvalue 
Influence Index (NEII)        ‖  ‖ and investigate the     
on each node. In the previous literatures [28], the localized-
delocalized phenomenon of eigenvalues is measured by the 
inverse participation ratio (IPR). If IPR is large, the infections 
diffuse only within the small confined area, and vice versa. 
However, the IPR does not distinguish positive or negative, so 
that the IPR is only applicable for the largest eigenvalue. On 
the other hand, NEII can distinguish positive or negative 
influence from all eigenvalues and can be applied to the 
analysis of the impacts from the all eigenvalues. According to 
Perron-Frobenius theory, the only eigenvalue in which all 
elements in the corresponding eigenvector are non-negative is 

the largest eigenvalue   . In other words, the other 
eigenvectors corresponding to the other non-largest 
eigenvalues have negative elements, which means that the 
corresponding     contributes to decrease the probability of 
infection on the node i if     is negative.  

Fig. 5 shows the shows the distribution of     on each 
node in the benchmark toy network.  The benchmark toy 
network consists of four different size star networks 
connecting each other via the four-nodes complete graph at 
the center, as shown in Fig. 6 As can be seen in Fig. 5 and Fig. 
6,     for the largest eigenvalue is always positive because of 
the Perron-Frobenius theory. Also, the value of     for the 
largest eigenvalue and its corresponding eigenvector are 
positively maximized on node #61 that is the hub node in the 
largest star graph. The influences from the second largest 
eigenvalue and the corresponding eigenvector are the 
positively maximized on the node #31 the hub node in the 
second largest star graph, but, as can be seen in Fig. 5-(b) that 
is the enlarged view of Fig. 5-(a), the second largest 
eigenvalue negatively affect to the node #61 that is the hub 
node in the largest star graph. In addition to that the third 
largest eigenvalue positively influence on the node #11 that is 
the hub of third largest star graph, but negatively affect the 
hubs of the largest and the second largest star graphs.  

Fig.6 visualizes the significance of the value of     for the 
largest eigenvalue to the fourth eigenvalue (k = 1 to 4) by 
color gradient on each node on network. In these figures, the 
maximum positive value of     is coloured by the deepest red 
and gradually changes to green as the relative significance 
approaches to zero. The minimum negative value of     is 
coloured by the deepest blue and gradually changes to green 
as the relative significance approaches to zero. The size of 
each node is proportional to the absolute value of    . 
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         (b) 

Fig. 5. (a) Distribution of     on each node in the benchmark toy network. 

(b) Enlarged view 

 

Fig. 6. Visualization the significance of the value of the     by color 

gradient on each node on network 

 

Fig. 7. Distribution and significance of the value of     when p for the 

proposed parameterized modular network formation algorithm is changed (a) 

p = 0.5 and (b) p = 0.9. 

Appling this visualization technique to the artificial 
modular networks crated by the parameterized modular 
network formation algorithm proposed in the previous section, 
we observed how the distribution and significance of the value 
of     varies as modularity of networks increase. Fig. 7 shows 
the 100-nodes modular networks (the number of modules is 10 
and each module size is 10 nodes) created by the proposed 
network formation algorithm in which each node is colored by 
the significance of the value of     for k = 1 to 4. Figure 7-(a) 
and (b) correspond with the modular network for P = 0.5 and 
0.9 respectively. As can be seen in the figures for k=1, the 
color of all nodes is always red because of the positive values 
of the elements of principal eigenvector due to the Perron-
Frobenius theorem. Also, it can be observed that, when the 
modularity of the network increases, the influences from the 
non-largest eigenvalues are localized within some modules 
whether the influences are positive or negative.  

VI. REAL MODULAR NETWORKS 

In this section, we investigate the NEII,    , in real 
modular networks that show comparatively high optimal 
modality Q, such as CNNS and EuroRoad. The results 
highlights that the needs of consideration of non-largest 
eigenvalues and corresponds eigenvectors when analyze the 
diffusion process on the real modular networks. Fig. 8 
indicates the colored network by the significance of     for 
CNNS of which the optimal modularity Q is about 0.84.  As 
shown, the maximum impact is provided by the fourth largest 
eigenvalue, which fit with the insight in the Fig. 1. Also, in 
Fig. 9 for EuroRoad of which the optimal modularity Q is 
about 0.86, the impacts from the second and fourth 
eigenvalues are significant, which fit with the insight in the 
figure 1, too.  
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These results indicate that we need to consider the non-
largest eigenvalues and eigenvectors to capture the diffusion 
dynamics and the well-used approximation method only 
utilizing the largest eigenvalue is not applicable for the real 
networks with high optimal modularity.  

 

Fig. 8. Visualization of     on CNNS The color gradient and the size of 

each node indicate the relative significance of the value of     for (a) the 

largest eigenvalue   , (b) the second largest eigenvalue   , (c) the third 

eigenvalue   , and (d) the fourth largest eigenvalue   . 

 

Fig. 9. Visualization of     on EuroRoad The color gradient and the size of 

each node indicate the relative significance of the value of     for (a) the 

largest eigenvalue   , (b) the second largest eigenvalue   , (c) the third 

eigenvalue   , and (d) the fourth largest eigenvalue   . 

VII. CONCLUSION 

Several studies reported that there exist modular structures 
in real networks. In this paper, we investigate spectral 
property of several networks. Also, diffusion phenomena in 
society have been studied as probabilistic diffusion dynamics 
on networks. So far probabilistic diffusion dynamics have 
been analysed in approximated manner only using the largest 
eigenvalue of the adjacency matrix. But, our investigation of 
spectral property of modular networks shows that that not only 
the largest eigenvalue but also the other eigenvalues are 
critical when analyse the network with high modularity, which 
verifies by the parameterized modular network formation 
method and numerical simulations. Furthermore, we 
investigated the node-level eigenvalue influence index that 
measures the relative dominance from each eigenvalues and 
their corresponding eigenvectors on each node, which 
indicates that the influences from each eigenvalue and 
corresponding eigenvectors to diffusion dynamics are 
localized within the modular structures. For our future works, 
we will extend our spectral analysis to the investigation of the 
relationship between Laplacian matrix of the networks and 
probabilistic diffusion dynamics. 
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