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Abstract—Accelerometers and gyroscope are often referred
to as inertial sensors. They detect movement and are used for
motion tracking systems in many fields. In recent years they
have become much smaller, lighter and cheaper which makes
them attractive for use in consumer electronics. The goal of this
research is to use all these advantages to create a cheap, low
cost and accurate motion tracking system. The system that will
be developed is using two pairs of accelerometer + gyroscope
sensors which communicates with an iOS device using BLE. The
sensors are attached to a persons leg to capture the orientation of
the leg while walking or running. Studying the movements of a
persons leg can be useful regarding both performance and health
aspects. To create the system, usage of inertial sensors and how
to combine their data using the complementary filter have been
studied. Further, several experiments were made to optimize the
filter design for this kind of movement. The results shows how the
orientation estimation differs in accuracy depending on different
values of how the filter is designed. However, by using the right
values, a fairly accurate orientation of the leg can be estimated
which is proved by the simple visualization of the iOS application.

Keywords—Motion capture, Complementary Filter, Inertial sen-
sors, Bluetooth Low Energy, iOS.

I. INTRODUCTION

Motion tracking systems with inertial sensors have been
used for many years in fields that includes military, health
care, navigation and flight technologies [1]. But it is just in
the last decade that the market of inertial sensors in consumer
electronics has rapidly increased [2]. The main reason for
this is advances in Micro-Electro-Mechanical-System (MEMS)
technology which makes the sensors small, light, low cost and
with low power consumption [2,3]. Together with Bluetooth
Low Energy (BLE, Bluetooth Smart), which also have re-
duced power consumption compared to the classic Bluetooth,
it makes the sensors very convenient to wear on the body
for applications in sports, fitness and health. One product
that use the advantages of both these technologies is the
CC2541 SensorTag by TI. With the CC2541 SensorTag the
development process for smart phone applications that uses
inertial sensors gets a lot simpler since no hardware imple-
mentation is required. Inertial sensors includes accelerometers
and gyroscopes. For a successful motion tracking system, data
from both these sensors is combined and thereby creating an

inertial measurement unit (IMU) [4-6].

The improvements of inertial sensor technologies opens up
a lot of possibilities for developers to create cheap consumer
electronics in ways that was not possible before. It could be
anything from tracking the movement of a specific body part
to a completely different device or vehicle. One interesting
example is to capture the orientation of the legs while walking
or running. This can be done for many different reasons. One
might want to study the movement of the legs to improve
the running technique which can increase the performance
and avoid injuries [7]. This paper is considering orientation
capturing of the leg while walking or running by using sensors
in the CC2541 SensorTag. To make the orientation estimation
as accurate as possible, data is combined from both accelerom-
eter and gyroscope sensors by using a complementary filter.
Experiments are then made to optimize the accuracy of the
filter by having a test subject walking while wearing the
sensors.

The rest of the paper is organized in the following way:
Section II gives an overview of the application and details
about the setup of the experiments, Section III introduces
usage of inertial sensors while Section IV introduces the
complementary filter, the procedure of how to optimize the
filter for this application is described in Section V and finally,
the result and conclusion is presented in Sections VI and VII
respectively.

II. EXPERIMENTAL ENVIRONMENT

Two CC2541 SensorTags and an iOS device is used
for implementation of the orientation tracking system. Each
SensorTag represents one IMU and they are attached to the
lower leg and the upper leg respectively to get an orientation
estimation of the whole leg. Only one angle is being tracked as
it is the most interesting while walking or running, this is the
angle of the leg straight forward or backward of the walker. In
all tests the test subject that is wearing the sensors starts from
a standing position with the legs 90◦relative to the ground. The
subject then starts walking in a speed of 4km/h for around 1
minute and then ends the test by stop walking and goes back
to the starting position.
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Fig. 1: Placement of the sensors

A. TI CC2541 SensorTag

The CC2541 SensorTag is a device which includes several
commonly used sensors, including accelerometer and gyro-
scope, on one single board and uses Bluetooth Low Energy
for communication. It is specially targeted for smart phone
application development since a lot of configurations can be
done over the GATT1 server which is already included in the
SensorTag’s firmware.

B. iOS application

The responsibilities of the iOS device is to connect, con-
figure, read the sensor values from the SensorTags and, most
important, make all calculations of the orientation estimation.
Connecting, configuring and reading the SensorTag is done
using the following steps:

1) Scan and discover the SensorTag
2) Establish a connection
3) Discover the available services and characteristics
4) Write to characteristic value
5) Read from characteristic value

In iOS this is done by using the CBCentralManagerDelegate
and CBPeripheralDelegate protocols. These protocols makes
step 1-3 very straight forward. Step 4 activates and configures
the wanted sensors to suit with the application needs. When
that is done the SensorTag will advertise at the specified
intervals with data from the active sensors. Calculations of
the angle estimation is done after each time a new value is
updated from a characteristic.

III. INERTIAL SENSORS

A. Gyroscope

Gyroscope sensors measures the velocity of angular move-
ment around one axis. The angle of a rotating gyroscope can
be obtained by integrating this data. Of course, since there will
be a time interval between each reading from the sensor the
integration will not be 100% accurate and as time goes the
angle estimation will be less and less accurate. This problem
is referred to as drift which is a big problem with inertial
sensors [8]. To measure the angular movement in a 3D space it
is required to use three different gyroscopes placed orthogonal
to each other. In this experiment only one gyroscope is used
since it is only the angle in one direction that is of interest.

1Framework for transporting data between two Bluetooth Low Energy
devices

B. Accelerometer

An accelerometer measures the acceleration in G forces.
Similar to the gyroscope, three accelerometers placed orthog-
onal to each other is needed to measure acceleration in a
3D space. In a constant speed or in a resting state the only
output will be gravity, which is 1G straight down towards the
earth. The gravity can be used to calculate the angle of the
accelerometer using trigonometry. In Objective-C the function
atan2f can be used which is the arctangent function with two
arguments.

zAngle = atan2f(x, y) ∗ 180.0/M PI;

The above code calculates the angle around the accelerom-
eter z axis. X and y is the acceleration measured on the
respective axis. The resulted angle from the atan2f function is
in radians so it needs to be converted to degrees. Unlike the
gyroscopes drift problem when it comes to angle estimation,
the accelerometer angle calculation is very accurate as long as
it is not exposed to any kind of acceleration other than gravity.
In this experiment a 2D accelerometer is used to measure the
one angle that is interesting.

Table I shows the update frequency as well as the range
of which each sensor is operable. There are some limitations

TABLE I: Sensor details

Updates Range

Accelerometer 100ms ±8G

Gyroscope 100ms ±1000◦/s

in the range of the gyroscope. For the usage within this
paper (walking, slow running) the range is enough but faster
movements will need a gyroscope with higher range. Another
limitation is, of course, the updates. It is obvious that faster
updates will give better results. The SensorTag doesn’t allow
a lower update frequency to be set over the GATT server and
the reason for this is to keep the power consumption at an
acceptable level.

IV. COMPLEMENTARY FILTER

Basically, there are two different kinds of filters that have
become very popular to use when combining accelerometer
and gyroscope data for angle calculation. The more complex
one is the Kalman filter. It was first introduced in 1960 by R.E.
Kalman [9]. It uses a set of complex mathematical equations
to estimate the past, present and future state of a process in
a way that minimizes the errors [10]. The other one is the
complementary filter. It is much simpler to understand and
contains a lot less computations and is therefore much easier
to modify and optimize for a specific problem. In its most basic
form it takes integrated data from the gyroscope and combines
it with data from the accelerometer [11,12] in the following
way:

angle = (1−ii)∗(angle+gyroData∗dt)+ii∗accData (1)

Where gyroData is the angular movement in ◦/s, dt is the
time passed since the last reading and accData is the angle
calculated by the accelerometer. The variable ii is a value
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between 0 and 1 and will directly decide the influence of
the different sensors. Bigger ii will result in an angle where
the accelerometer has more influence. How to choose the best
possible ii depends a lot of the kind of movement that the
IMU will be used for. As mentioned before, the gyroscope is
good for reading fast movements during a short time but will
drift over time and the accelerometer is very reliable when
the speed is constant. How can these principles be applied to
optimize the filter for a walking movement?

V. OPTIMIZING THE FILTER

The basic idea for the optimization is simple: use data
from the two different sensors when it is the most reliable.
This means using gyroscope data when the movement is big
and many disturbing forces is acting on the accelerometer and
using accelerometer data as much as possible when the sensor
is in a resting state to correct the drift caused by the gyroscope.
To do this we must know when and how much (varying values
of ii) to use the data according to when it is the most reliable.
Figure 2 shows the angle estimation of both sensors alone,
without combining any data and with no filters. The angle
from the gyroscope is very smooth and behaves in a logical
way for a walking motion. But one can see that already after
10 seconds the angle has drifted away and after 48 seconds the
angle has drifted around 60◦. The angle from the accelerometer
on the other hand is very noisy during a lot of movement but
when standing still again after 48 seconds the angle is back to
where it started, no drift at all.

Fig. 2: Angle estimation from gyroscope (green) and ac-
celerometer (red) (y axis: angle, x axis: seconds)

First, the accelerometer data alone can be filtered to get
rid of some noise during movement. We know now that angle
estimation by the accelerometer is almost 100% accurate when
gravity is the only force that is acting on it. This means that in
a position where one axis is directed straight to earth that axis
will measure an acceleration of 1G and the other two axes 0G
which makes the total acceleration 1G. If the device is tilted
45◦, two of the axes will measure an acceleration of 0.75G and
the third 0G which makes the total 1.5G. So, when gravity is
the only force the total acceleration must measure between
1G and 1.5G and that is when the accelerometer angle should
have the most influence. This can be programmed as shown
below.

totalAcc = fabsf(x) + fabsf(y) + fabsf(z);
if totalAcc ≥ 1.0 && totalAcc ≤ 1.5 then
{Calculations of the desired angles}
{according to the algorithm}
{presented in section IV}

end if

Fig. 3: Improved angle estimation of accelerometer (y axis:
angle, x axis: seconds)

Figure 3 shows the result of this method. The improvements
from figure 2 where no filtering of the accelerometer data was
done is very clear. The spikes are almost gone, the data is less
noisy and the angle estimation behaves more logical (more
like the gyroscope in figure 2). After knowing how to use the
accelerometer data the next step is to find out how much of
the data to use. If the accelerometer angle estimation have
too much influence there will be too much disturbance in the
filtered angle. If it has too little influence the angle will start to
drift away with the gyroscope angle estimation. Experiments
were made with different values of ii (0.5, 0.1, 0.15, 0.2, 0.25,
0.3, 0.35) and the result is presented in the next section.

VI. RESULT

The figures 4 to 10 presents the resulted angles of the
complementary filter discussed in previous sections using
different values of ii and with the accelerometer filter. The
data is extracted from the same test session, starting from the
22:nd second.

Fig. 4: ii=0.05 (y axis: angle, x axis: seconds)

Fig. 5: ii=0.1 (y axis: angle, x axis: seconds)

If ii is too small like in figure 4 where it is 0.05 we can
see that the angle is drifting away with the gyroscope. On the
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Fig. 6: ii=0.15 (y axis: angle, x axis: seconds)

Fig. 7: ii=0.2 (y axis: angle, x axis: seconds)

Fig. 8: ii=0.25 (y axis: angle, x axis: seconds)

Fig. 9: ii=0.3 (y axis: angle, x axis: seconds)

other hand, we can also see the effects of ii being too big as
in figure 10 where it is 0.35. The angle doesn’t drift at all
but the angle estimation when movement is occurring is way
too noisy because of the accelerometers big influence. When
ii = 0.1 there is still some drift on the angle but at ii >=
0.15 there is not much difference when considering the drift
problem. From ii = 0.2 and up we mostly just gain noise and
making the angle estimation less and less smooth.

The iOS application includes a simple visualization of a
leg which is wearing the sensors. In figure 11, three samples

Fig. 10: ii=0.35 (y axis: angle, x axis: seconds)

has been taken of the visualization, starting when the foot is
about to leave the ground and ends when it is making contact
again. The data is the same as in the previous figures of the
complementary filter output and the filter is using ii = 0.15.

(a) 36.1s (b) 36.4s (c) 36.7s

Fig. 11: (a) The leg is behind the body and the foot is just
about to get released from the ground. (b) The leg is in the
middle of the forward swing. No contact with the ground. (c)
The forward swing is complete and the foot is just about to
make contact with the ground again.

VII. CONCLUSION

A system with a pair of IMU’s that’s connected with
an iOS device have been developed for angle estimation of
a persons leg while walking. Optimizations of the sensor
data was applied considering the specific application. The
complementary filter has been studied and with help of several
experiments we can see how the performance of the filter
changes by adjusting how much of each sensor’s data is used.
The result shows how different values of ii in the filter affects
the outcome of the angle estimation. For the best performance
we end up with ii around 0.15-0.2, depending a little on what
factor is most important: no drifting or making the angle
smoother while moving. After 36 seconds of walking, the
system is still capturing the angles of the leg which is shown
by the simple leg visualization in figure 11.

The filter can be improved even further by analyzing more
accurately when each sensor is reliable and from there we can
make ii change with the reliability. For example, if at one point
the accelerometer data is 80% reliable then 80% of that data
should be used but at another point it is calculated to be 5%
reliable then only that much is used.
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