
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

16 | P a g e

www.ijacsa.thesai.org

Model Driven Testing of Web Applications Using

Domain Specific Language

Viet-Cuong Nguyen

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague

Prague, Czech Republic

Abstract—As more and more systems move to the cloud, the

importance of web applications has increased recently. Web

applications need more strict requirements in order to sup-port

higher availability. The techniques in quality assurance of these

applications hence become essential, the role of testing for web

application becomes more significant. Model-driven testing is a

promising paradigm for the automation of software testing. In

the web domain, the challenge however remains in the creation of

models and the complexity of configuring, launching, and testing

big number of valid configuration and testing cases. This paper

proposes a solution towards this challenge with an approach

using Domain Specific Language (DSL) for model driven testing

of web application. Our techniques are based on building

abstractions of web pages using domain specific language. We

introduce WTML - a domain specific language for modeling web

pages and provide automatic code generation with a web-testing

framework. This methodology and techniques aim at helping

software developers as well as testers to become more productive

and reduce the time-to-market, while maintaining high standards

of web application quality.

Keywords—Domain specific language (DSL); model-driven

development; model-driven testing; WTML

I. INTRODUCTION

Advances in web-based technologies today has led to the
rapid growth in the number of web applications used in
business. As the demand for mobility and internet-of-things
requires more complexity in web applications, the existing
testing frameworks used to test software system struggle to get
up to speed. Methods from model driven can support the rapid
evolution of such system by building an abstract model of a
web application and use the created models instead of specific
code to generate tests. In general, the model of the web
application does not need to include all the details of the
implementation, but should be precise enough to guarantee
that the test cases represent actual use scenarios of the web
application [1].

In this paper, we present an attempt to build an approach
using Domain Specific Language for model driven testing of
web application.

Our techniques are based on building abstractions of web
pages and modeling state-machine-based test behavior using
domain specific language. This is used to form a more generic
testing framework that can apply to many web-based systems
to save time and cost.

This paper is structured as follows: In the next section, we
review some knowledge of Model-driven Development
(MDD), model-based testing and domain specific language as
background information. The subsequent section discusses the
current challenge to build a testing platform that can automate
the process from development to execution. In the next
section, we introduce WTML (our designed DSL) for test
modeling and test development of web-based applications. In
the last section, we present some conclusions on the
methodology of using a domain specific language in model-
driven testing of web applications.

II. BACKGROUND

Automated model driven testing has received much
attention in recent years, both in academia and in industry.
This interest has been stimulated by the success of model-
driven development in general, by the improved understanding
of testing and formal verification as complementary activities,
and by the availability of efficient tool support [2]. Model
driven engineering approach as a methodology could be
described as follow:

A. Model driven engineering

Model-driven engineering (MDE) is a software
development methodology, which focuses on creating and
exploiting domain models. Models can be perceived as
abstract representations of the knowledge and activities that
govern a particular application domain. Models are developed
though-out various phases of the development life cycle with
extensive communication among product managers, designers,
developers and users of the application domain. MDE aims to
increase productivity by maximizing compatibility between
systems, simplifying the process of design and promoting
communication between individuals and teams working on the
system [3].

The Object Management Group’s (OMG) initiatives on
MDE contain the Model-driven Architecture (MDA)
specification. MDA allows definition of machine-readable
applications and data models that enable long-term flexibility
with regards to implementation, integration, maintenance,
testing and simulation [4] [5]. There are two main modeling
classes in MDA:

 Platform Independent Models (PIMs): these are models
of the structure or functionality, which are independent
of the specific technological platform used to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

17 | P a g e

www.ijacsa.thesai.org

implement it.

 Platform Specific Models (PSMs): these are models of
a software or business system, which are bound to a
specific technological platform.

In the MDA, models are first-class artifacts, which are
later integrated into the development process through the
chain of transformations from PIMs through PSMs to coded
application. The mapping and transformation between PIMs
and PSMs are based on meta-model concepts. These concepts
can be described by technologies such as Unified Modeling
Language (UML), Meta Object Facility (MOF) or Common
Warehouse Meta-model [3], [6], [12]. These languages are
considered as general-purpose modeling languages. Currently,
there are many challenges in implementing model driven
testing due to the lack of standardization and tools. There are
specific desired aspects for each application within its domain
and this makes it difficult to design a tool that can be applied
to all situations.

B. Model based testing

Model-based testing is application of model-based design
for designing and optionally also executing artifacts to
perform software testing or system testing. Models can be
used to represent the desired behavior of a System Under Test
(SUT), or to represent testing strategies and a test
environment.

A model describing a SUT is usually an abstract, partial
presentation of the SUT's desired behavior. Test cases derived
from such a model are functional tests on the same level of
abstraction as the model [10].

Currently, testing usually comprises between 30% and
70% of all software development projects. Hence, a good
testing methodology and toolset will enable software
developers and testers to become more productive and reduce
the time-to-market, while maintaining high standards of
software quality.

The purpose of the model-driven testing in the web
domain is to provide a framework that helps developers
perform the following tasks:

 Create models of web applications or pages: This
enables developers to create the abstraction of the
components. Developers can later use the model
created as a skeleton for the test project. In this way,
the test plan can be reviewed and simulated to discover
problems in the implementation or model before the
actual code is ready for test.

 Model behaviors: The behaviors and interactions of the
web application are modeled using the modeling
language to later support test case generation. These
behavior models simulate the features of the web
application.

 Generate test cases for the web components. The tools
generate tests using data from the component (page)
models and the behavior models. It is often a good
practice to have the test cases that cover all required
test specifications.

Test execution: The generated tests can be later executed
either manually or automatically by some triggers. This test
execution automatically compares the observed results with
the results predicted by the model. Thus, developers can walk
through a unit test case to examine each test interaction and
identify where the test failed.

C. Domain specific language

In software development and domain engineering, a
domain specific language is a programming or specification
language dedicated to a particular problem domain, a
particular problem representation technique, and/or a
particular solution technique. The concept is not new. Special-
purpose programming languages and all kinds of modeling or
specification languages have always existed, but the term has
become more popular due to the rise of domain specific
modeling [7].

Adoption of domain specific language can be a solution to
several problems encountered in various software
development aspects. A DSL can reduce the costs related to
maintaining software [8]. In comparison to other techniques,
DSL is considered as one of the main solutions to software
reuse [9]. On the other hand, using DSL also promotes
program readability and makes its understanding easier. This
enables users without experience in programming to create the
models or programs as long as they possess knowledge of the
targeted domain.

Another advantage of a DSL for modeling is the ability to
generate more verification on the syntax and semantics than a
general modeling language. This can reduce errors (and
burden) on the debugging process.

III. CHALLENGE

The process of web application development starts with
concepts, mock-ups and requirements. After that, following a
lot of iterations, more and more mature prototypes are
gradually created towards a working solution. Testing needs to
be performed within every iteration in this process. This
nature makes testing web applications a routine task from
designing the tests to tests execution and report. When
maintaining such systems, any change to the system also
requires the execution of a complete regression test.
Therefore, there is a need to build a testing platform that can
automate this testing process from development to execution.

There exist many model-based testing approaches and
tools that vary significantly in their specific designs, testing
target, tool support, and evaluation strategies. In the web
domain, there is a noticeable increase in the number of model-
driven testing techniques in recent years. Firstly, the challenge
in this area is to have a good design of a modeling language
that used to represent the system. Secondly, there is the
challenge for effectively defining the process of test case
generation and evaluation. There are several aspects of a
model-driven testing technique that need to be considered:

 Effective Modeling Language: The modeling language
used to model system, can be a generic UML approach
or a domain specific language, should bring up good
solution on the web domain while being easy to read

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

18 | P a g e

www.ijacsa.thesai.org

and to understand. This language needs to be effective
and designed with agility support to ensure that models
can adapt to changes seamlessly.

 Automation: This is an important aspect in model
driven development, it is the ability to generate final
artifacts from high-level specifications. Automation
also enables test case generation and execution
mechanism to perform easily without manual
refinements.

 Good Tool Support: The tool chain and platform
support is essential for any approach. This allows the
integration with other parts of the development
process. This means that the platform should provide
tools for editing, debugging, compiling and
transformation. The tools should also be able to be
integrated together with other languages and platforms
without a lot of effort.

Although there exist many techniques that tend to vary
significantly in their design, they usually don't provide
adequate results in every applicable domain [11]. There are
also challenges in other aspects of the modeling process. On
one hand, the model has to be written in a notation powerful
enough to describe any elements of the web page. At the same
time, it has to be abstract enough to ease the process of model
creation and promote software reuse.

IV. OUR APPROACH: DSL FOR WEB PAGE MODELING

Our approach is based on the principle of raising the level
of abstraction by modeling web pages and describes their
behaviors using the theory of State Machines. In order to
check the conformance between the application and the
model, the automated process for generating test cases from
the model is used. Our approach uses DSL to develop the
testing model together with the functional web page model
development. We aim at introducing a DSL and the tool set
that fit for this purpose.

In this approach, designing a new DSL with the support
for modeling at a good abstraction level is crucial. This DSL
can later be used for automatic generation of the model
artifacts and code that implement the services. In theory, a
general modeling language could also be used for this purpose
but an appropriately designed DSL can perform the same job
much more effectively.

There are three essential requirements to the DSL design
that we aim to achieve during the creation of a DSL to ensure
the quality of the language. Firstly, the language needs to be
effective, while being easy to read and to understand.
Secondly, as the modeling language can raise the level of
abstraction away from programming code by directly using
domain concepts, automation needs to be achieved to generate
final artifacts from these high-level specifications. This
automatic transformation at the same time has to fit the
requirements of the specific domain. Finally, the DSL has to
be able to provide support via tools and platforms. The DSL
needs to be able to integrate with other parts of the
development process. This means that the language is used for
editing, debugging, compiling and transformation. It should

also be able to be integrated together with other languages and
platforms without a lot of effort.

The starting point for a DSL for web page modeling is an
abstraction of a web page. This abstraction model comprises
the effective elements that are involved in the testing process
and, optionally, the behavior of the transitions to be simulated
and validated during the test execution. Following diagram
depicts the simplified syntax rules of a page model:

Fig. 1. Simplified syntax of a Page in WTML

The semantics of the language expressions starts with the
page definition identified by its name (ID). In order to have
package information for code generation, a package name can
be optionally declared. Base URL is then assigned to each
page. This gives us the possibility for customization of the
parameters for the URL. Main information for a page is the
elements. A page can have arbitrary number of elements. In
order to query elements in a web page, we identified it with
the XPath expression. The syntax for an element can be seen
as in Fig. 2.

Fig. 2. Syntax of an Element model in a page

Each element starts with the keyword element followed by
its name (ID). We then use a string literal to store its XPath
expression. An element can optionally be clickable, this can
be declared by the keyword clickable.

We then define the parameters of the page. A page can
have any number of parameters. Each parameter starts with
the keyword param as in Fig. 3.

Fig. 3. Syntax of parameters in a page

Another type of parameter can be seen in the next block in
a page as in Fig. 1 is the set of parameters to later be used in
the code generation process to repeatedly test against. This is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

19 | P a g e

www.ijacsa.thesai.org

defined by the keyword iterateParam. The parameters for
iteration are comma-separated.

This information is enough if we just simply want to
model a page for testing. The last components are the actions
and transitions. These are the optional components to define
the actions and transition between pages. This can be used
later when we want to use state machine to model the test
cycle of the whole web platform.

To demonstrate the simplicity of the model creation
process in this approach, we can see how simple it is to write a
textual model of a web component from a web application in a
case study.

page RatingPage{
 baseUrl "http://www.webtest.org/login"
 element content "//*[@id='content']"
 element user "//*[@id='user']"
 element submit "//*[@id='submit']" clickable
 iterateParam itemID "12,13,14,15,16"
 param action "add"
}
This eight-line-of-code model at this abstraction level

allows us to be very flexible on building the elements and
logic needed for the test. At this level code reused is heavily
promoted. This can be reused on many pages yet enables us to
generate large amount of codes for test automation. Our
benchmark pointed out that 90 lines of Java code were
generated from this. This means we saved a significant
amount of time that was otherwise supposed to be spent on
test development. Overall, even if we take into account the
time spent on developing and learning a new DSL such as
WTML, this could still potentially provide a good productivity
gain in test development.

V. AUTOMATION OF TEST GENERATION WITH WTML

According to IEEE standards, a test case is “a
documentation specifying inputs, predicted results, and a set
of execution conditions for a test item”. As the definition
states, there are three required elements in a test case; test
inputs, predicted results and conditions of execution. IEEE’s
definition also clarifies the difference between test data and
test case.

In order to generate test cases, test data must first be
generated. Test data can be generated using different sources
that describe the system, system’s behavior or how the system
will be used, such as source code, system specifications,
system requirements, business scenarios and use cases. Our
approach utilizes specification-based method for test case
generation.

In this approach, we focus on the verification of the web
system against the design specification that was available on
the test models. This comprises of abstract information on the
available operations and its parameters. Information from the
specifications allows generation of test cases for boundary-
value analysis, equivalence class testing or random testing
[13].

In WTML platform, in order to generate the tests, we first
need to generate the model implementation of the page to be

tested against. A sample on how the page in Java was
generated is as bellow:

@Page
@ComponentScan(basePackages=
 {"net.webmodeling.testing"})
public class FirstPage {
 private final static String
 baseUrl = "http://www.testpage.org/";
 private final static String
 iterateParamName = "value";
 @Autowired
 private AutoBrowser browser;

 @Value("#{'AAA,BBB,CCC'.split(',')}")
 private List<String> iterateParams;
 private static final By
 rating = By.xpath("//*[@id='viewcomments_click']");

 public String getRating() {
 return browser.getTextValue(rating);
 }
 public void clickOnRating() {
 browser.clickOn(rating);
 }
...

From the web page model syntax as seen on previous
section, iterateParam is used when we want to iterate over a
set of input parameters when testing a page. This becomes
handy especially on the development of regression tests.

Another important aspect is @Page annotation, we
introduced this annotation to inject special configuration to a
page. This allows us to use Spring framework for processing
pre- and post- Java bean creation. Testing data is injected
directly into the page from the test models by using Spring
@Value annotation. All setters and getters are also
automatically generated from elements in the models.

This approach also provides a solution for automating
regression testing. These tests are the reuse of the existing test
cases from the previous system tests. Regression testing is
performed when additions or modifications are made to an
existing system. Since this could be run and generated
automatically, regression testing could be performed anytime
using WTML platform when there is a requirement.

VI. INTEGRATION WITH OTHER PLATFORM

One of the essential features of the modeling tool is the
ability to integrate with other platforms. Selenium is a suite of
tools to automate web browsers across many environments.
WTML can utilize Selenium to provide automatic simulation
with browser. WTML raises the level of abstraction by
modeling the elements and actions on the web page. This
model will then be used as input to generate code for
modeling page accordingly. We use Java as the target
language. Using Spring framework dependency injection we
then can integrate layered architecture in the code generated.
Configurations are injected into JUnit tests via Spring
annotation.

To support WTML platform, we created our defined
annotations in Java, this Page annotation consists of
Configuration that can be later injected and directives to load

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

20 | P a g e

www.ijacsa.thesai.org

the application context. We also defined our browser
implementation in order to integrate with web driver from
Selenium and provide automatic processing. In general this
browser is defined in the following way:

...
@Component
public class AutoBrowser {
 private static final int TIME_OUT_SEC = 10;
 private static final Logger LOGGER =
 LoggerFactory.getLogger(AutoBrowser.class);
 @Autowired
 private WebDriver webDriver;

 public void clickOn(By location) {
 webDriver.findElement(location).click();

 }

 public WebElement findElement(By location) {
 return webDriver.findElement(location);
 }
 public void goToPage(String url) {

 webDriver.get(url);
 }
 public void goToUrlWithParam(String baseUrl,
 Map<String,String> params) {
 final StringBuilder pageUrl =
 new StringBuilder();
 pageUrl.append(baseUrl + "?");

 for (Map.Entry<String, String>
 entry : params.entrySet()) {
 pageUrl.append(entry.getKey());
 pageUrl.append("=");
 pageUrl.append(entry.getValue());
 pageUrl.append("&");
 }
 goToPage(pageUrl.toString());
 }
 public void goToUrlWithSingleParam
 (String baseUrl, String paramName,
 String paramValue) {
 final StringBuilder pageUrl =
 new StringBuilder();
 pageUrl.append(baseUrl + "?");
 pageUrl.append(paramName);
 pageUrl.append("=");
 pageUrl.append(paramValue);

 goToPage(pageUrl.toString());
 }

 @PreDestroy
 private void destroy() {
 webDriver.quit();
 }
 public int getNumberOfElements(By location) {
 return webDriver.findElements(location)
 .size();
 }
 public String getTextValue(By location) {
 return webDriver.findElement(location)
 .getText();
 }
 public String getAttributeValue(By location,
 String attributeName) {
 return webDriver.findElement(location)
 .getAttribute(attributeName);

 }
 public String getCssValue(By location,
 String propertyName) {
 return webDriver.findElement(location)
 .getCssValue(propertyName);
 }
...

After the configuration of Selenium web driver is defined
and loaded, we inject web driver into our AutoBrowser, this
way we keep the Selenium code separated from our browser
logic. This allows us to only focus on the requirements and
logics of code generation and automation test runners. After
that we define all necessary methods for our automated
browser such as getNumberOfElements from a given XPath
address inside any page.

With the integration of Selenium, we are able to perform
automatic browser actions. This enables us to write automated
tests for a web application directly in WTML, which allows
for better integration in existing unit test frameworks.

VII. RELATED WORK

In the UML world, there has been effort on proposing
techniques to automatically generate and execute test cases
starting from a UML model of the Web Application by Filippo
Ricca and Paolo Tonella [14]. This approach requires a
manual work in several phases. There is manual work on the
creation of models for testing and in the test refinement phase.
Our approach has an advantage of fully automation in test case
generation using the abstract web model and its action.

Alessandra Cavarra, Charles Crichton, Jim Davies, Alan
Hartman and Laurent Mounier [15] presented the approach on
test case generation utilizing UML. The authors' approach is
based on extending UML using UML profiling capabilities. In
these approaches, two profiles are created for different
purposes. The first one is used to model the system under test
by extending class diagrams, object diagrams, and state
diagrams to support testing properties. The other profile is
used to capture the test directives which are composed of the
object diagrams and state diagrams. A transformation is then
used to verify and produce scripts that can later be used to
generate test cases.

A model-based testing approach is presented by Bouquet
et al. in [16]. Their approach is based on a combination of
class, object, and state diagrams, which can be found in UML
and OCL expressions to automatically generate test cases from
these models. Test cases are generated using a test generator
that takes these diagrams and constraints as input. The authors
discuss the need to alter the semantics of OCL to allow OCL
expressions to have a side effect on the system state. In an
overview of model driven testing techniques from the work of
Mussa M., Ouchani S., Al Sammane W. and Hamou-Lhadj A.
[11], the authors pointed out the shortcomings of this approach
that it violates OCL semantics, which may hinder the
acceptance of the approach by the UML community. One
possible solution is to use an action language to express
expressions that change the state of the system.

There has been also a direct attempt to use UML activity
diagrams to generate test cases for Java programs in the work
of Chen, Qiu and Li [17]. The approach is based on the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

21 | P a g e

www.ijacsa.thesai.org

generation of test cases then compares the running traces with
the activity diagram to reduce the test case set. The
disadvantage of this approach is the limitation to the UML
activity diagram that makes it impossible to obtain
concurrency or loops for the tests.

Deutsch, Sui and Vianu in [18] introduced an approach
that models data-driven web applications. This approach used
Abstract State Machine to model the transitions between
pages, determined by the input provided to the application.
The structure and contents of web pages, as well as the actions
to be taken, are determined dynamically by querying the
underlying database as well as the state and inputs. The
properties to be verified concern the sequences of events
(inputs, states, and actions) resulting from the interaction, and
are expressed in linear or branching-time temporal logic. This
approach has an advantage of wide-range error detection.
However, this leads to complex models that can make the
integration with development methodologies not feasible.

Q. Yuan, J. Wu, C. Liu and L. Zhang [19] present an
automatic approach to generate test cases of a given business
process of a web service. The modeling of business process
uses notations from Business Process Execution Language and
UML activity diagrams. This approach is an example of
applying MDA and the conformed transformation techniques.
This approach aimed to build concise test models using given
notations and generate test cases from this models. The
advantage of this approach is the ability to apply in many
types from unit testing to integration testing.

VIII. CONCLUSIONS

With the strict requirements of web-based systems,
techniques to assure the quality of these systems play a very
important role in the development process. Model-driven
testing tools reduce overall testing time by supporting the
reuse of many common testing functions. They also enhance
test quality and complexity by offering a systematic approach
to test suite generation. In this paper, we outlined the
theoretical ideas and analysis from lessons learned during the
real industry implementation of the framework. The approach
introduced in our research provides a methodology for using a
domain specific language in model-driven testing of web
applications. Adopting WTML in combination with the MDA
initiative allows early testing of model-driven systems and
eases the sharing of models between the system developers
and the system testers.

WTML was designed at the appropriate abstraction level
to have better model readability and more support for
integration. This is aimed at reducing test maintenance costs,
since changes happen at the model level and are captured by
the test models. When there are changes, we only have to
regenerate the tests from the test models and all test cases are
updated to the new specifications. This framework also
enhances team communication because the model, test cases
provide a clear, unambiguous, and unified view of both the
system under test and the test. This technique decouples the
testing logic from the actual test implementation. This makes
the test architecture more robust and scalable. The
shortcomings of this approach include a learning curve needed
to adopt a new modeling language and the limitation of test

behaviors based only on the possible elements modeled in a
page abstraction.

Domain specific language such as WTML can be applied
to automation testing of web-based applications and pages. In
practice, this approach has initially gain adoption in testing of
web systems in the financial industry where the authors had
the chance to work with. Our future work will continue on the
improvement of the framework in terms of consistent
methodology, wider code generation coverage and more
efficient notations and syntax.

ACKNOWLEDGMENT

This work has been supported by the Department of
Computer Science and Engineering, Faculty of Electrical
Engineering and by the grant of Czech Technical University in
Prague number SGS14/078/OHK3/1T/13.

REFERENCES

[1] F. Bolis, A. Gargantini, M. Guarnieri, E. Magri, L. Musto, "Model-
Driven Testing for Web Applications Using Abstract State Machines",
in M. Grossniklaus, M. Wimmer, ed., Current Trends in Web
Engineering vol. 7703, (Springer Berlin Heidelberg, 2012), pp. 71-78.

[2] J. Peleska, "Industrial-Strength Model-Based Testing - State of the Art
and Current Challenges", Electronic Proceedings in Theoretical
Computer Science 111 (2013), pp. 3-28.

[3] X. Qafmolla, V. Nguyen, Automation of Web Services Development
Using Model-driven Techniques. In Institute of Electronics Engineers,
The 2nd International Conference on Computer and Automation
Engineering (ICCAE 2010), pp. 190-194, 2010.

[4] Object Management Group (OMG): Meta Object Facility (MOF) Core.
Retrieved March 20, 2012, http://www.omg.org/spec/MOF/2.4.1/, 2012.

[5] Object Management Group (OMG): The Architecture of Choice for a
Changing World. Retrieved April 20, 2013, http://www.omg.org/mda,
2013.

[6] V. Nguyen, X. Qafmolla, Agile Development of Platform Independent
Model in Model Driven Architecture. In Proceedings of the 2010 Third
International Conference on Information and Computing , Vol. 2. IEEE
Computer Society, Washington, DC, USA, pp. 344-347, 2010.

[7] Wikipedia: Domain specific language. Retrieved January 15, 2013, from
http://en.wikipedia.org/wiki/Domain specific_language, 2013.

[8] A. Deursen, P. Klint, Little languages: Little maintenance. Journal of
Software Maintenance, pp. 75-93, 1998.

[9] C. W. Krueger, "Software reuse", ACM Computing Surveys (CSUR) 24,
2 (1992), pp. 131--183.

[10] Wikipedia, "Model Driven Testing", Model Driven Testing (2014).

[11] M. Mussa, S. Ouchani, W. Al Sammane, A. Hamou-Lhadj, "A Survey of
Model-Driven Testing Techniques", in Quality Software, 2009. QSIC
'09. 9th International Conference on (, 2009), pp. 167-172.

[12] X.Yu, Y. Zhang, T. Zhang, L. Wang, J. Hu, J. Zhao, X. Li, A model-
driven development framework for enterprise Web services. Information
Systems Frontiers, pp. 391-409, 2007.

[13] M. Bozkurt, M. Harman, Y. Hassoun, "Testing Web Services: A
Survey", Department of Computer Science, King's College London
(2010).

[14] F. Ricca, P. Tonella, "Analysis and Testing of Web Applications", in
Proceedings of the 23rd International Conference on Software
Engineering (Washington, DC, USA: IEEE Computer Society, 2001),
pp. 25--34.

[15] A. Cavarra, C. Crichton, J. Davies, A. Hartman, L. Mounier, "Using
UML for automatic test generation", in In international symposium on
testing and analysis ISSTA (Springer-Verlag, 2002).

[16] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, "A Test Generation
Solution to Automate Software Testing", in Proceedings of the 3rd
International Workshop on Automation of Software Test (New York,
NY, USA: ACM, 2008), pp. 45-48.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

22 | P a g e

www.ijacsa.thesai.org

[17] C. Mingsong, Q. Xiaokang, L. Xuandong, "Automatic Test Case
Generation for UML Activity Diagrams", in Proceedings of the 2006
International Workshop on Automation of Software Test (New York,
NY, USA: ACM, 2006), pp. 2-8.

[18] A. Deutsch, L. Sui, V. Vianu, "Specification and verification of data-
driven Web applications", Journal of Computer and System Sciences 73,
3 (2007), pp. 442 - 474. Special Issue: Database Theory 2004.

[19] Q. Yuan, J. Wu, C. Liu, L. Zhang, "A model driven approach toward
business process test case generation", in Proc. of the 10th International
Symposium on Web Site Evolution (WSE) (2008), pp. 41-44.

