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Abstract—Conventional processing infrastructures have been 

challenged by huge demand of stream-based applications. The 

industry responded by introducing traditional stream processing 

engines along-with emerged technologies. The ongoing paradigm 

embraces parallel computing as the most-suitable proposition. 

Pipelining and Parallelism have been intensively studied in recent 

years, yet parallel programming on multiprocessor architectures 

stands as one of the biggest challenges to the software industry. 

Parallel computing relies on parallel programs that may 

encounter internal memory constrains. In addition, parallel 

computing needs special skillset of programming as well as 

software conversions. This paper presents reconfigurable 

pipelined architecture. The design is especially aimed at Big Data 

clustering, and it adopts Symmetric multiprocessing (SMP) along 

with crossbar switch and forced interrupt. The main goal of this 

promising architecture is to efficiently process big data streams 

on-the-fly, while it can process sequential programs on parallel-

pipelined model. The system overpasses internal memory 

constrains of multicore architectures by applying forced 

interrupts and crossbar switching. It reduces complexity, data 

dependency, high-latency, and cost overhead of parallel 

computing. 
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I. INTRODUCTION 

Conventional computing has been thoroughly challenged 
by the emerging situation of Big Data. Big Data is the problem 
of managing huge amount of unstructured data. The 
complexity of Big Data calls for new form of software 
clustering and hardware organization. At the beginning of this 
centenary, studies reported enormous growth of information 
that exceeded Moore’s Law [1]. Big Data introduces 
unconventional pressure on time and memory performance. 
Consequently, new computation models are significantly 
required to cope up with Big Data situation. Researchers 
introduced “on-the-fly” clusterization of amorphous data. On-
the-fly processing deals with a continuous stream of data, and 
it must maintain certain throughput of information flow. In this 
pattern, hardware design should not tolerate any postponement 
of oncoming stream. Multicore pipelined architecture provides 
a simple yet effective solution to the on-the-fly computation by 
transferring the operating states from core to core down the 
pipeline [2]. This pipelining device requires practically the 
same sequential programs that are currently used based on 
single processor system. Pipeline computing offers very 

effective solution for big data streams. It increases the 
throughput considerably when processing intensive streams of 
data. Pipelined architectures consist of sequence of processing 
elements where the output of one processor is the input of the 
next one. “By pipelining, processing may proceed concurrently 
with input and output, and consequently overall execution time 
is minimized. Pipelining plus multiprocessing at each stage of 
a pipeline should lead to the best-possible performance “[3]. 

This paper investigates the previous work on multicore 
processing and parallel computing architectures. It discusses 
stream processing requirements, followed by general outlook 
over the current limitations of parallel systems. This paper 
suggests a hardware model that is especially intended to 
process Big Data clustering on-the-fly, while this model can 
process sequential programs using parallel-pipelined multicore 
design. Finally, it proposes the same model based on 
Symmetric multiprocessing (SMP) and forced interrupts. 

II. MULTICORE PROCESSING AND PARALLEL COMPUTING 

ARCHITECTURES 

A. Multi-Core processors 

Most modern processors include huge number of transistors 
on one chip. The architectures of general purpose multicore 
processors allow multiple related tasks for execution, this 
would be conducted in different cores such as IBM Cell 
processor, Intel and AMD multicore processors. Usually, these 
cores are heterogeneous in time requirement because of 
advanced scheduling algorithms that intend to exploit these 
architectures effectively. 

On the other hand, these architectures support shared access 
of global caches or memory, this support faces some 
limitations in accessing the same block by other cores which 
decreases their efficiency. Consequently, memory design has 
significant influence on high clock rates, and indexing 
references is important to attain high processing performance. 
Optimizing the instructions and developing the data queues 
may increase the performance. However, these solutions have 
obvious limitations in heavy processing queues like graphics 
manipulation [4]. 

For instance, SIMD (Single Instruction Multiple Data) 
technique was one of the earliest programming methods to 
stress parallelism in microarchitecture design. More 
instructions were added by Intel in 2004. The introduction of 
90 nm process-based Pentium games processor was followed 
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by (Streaming SIMD Extensions) SSE3 and SSE4. This was to 
improve thread synchronization and math capabilities. 

Nevertheless, computing field is extensively progressive, so 
conventional processors such as multicore CPUs (Central 
Processing Units) are replaced by power-aware multi-core 
CPUs coupled with GPUs (Graphics Processing units). The 
idea behind this new trend is to take the advantage of chip die 
area. This integration can increase the efficiency of SIMD, and 
it may provide superior environment that supports stream 
processing and vectorization. This approach uses large memory 
units and large register sets that are distributed among different 
levels of system hierarchy [5]. 

B. Parallel Programming Architectures 

HMPP (Hybrid Multicore Parallel Programming 
Environment) based on GPUs (Graphics Processing Units) can 
provide tremendous computing power. With current NVIDIA 
and AMD hardware group of graphic products, a peak 
performance can reach hundreds of gigaflops. GPUs designed 
originally for graphic cards, and it have emerged as the most 
powerful chip in high-performance workstations. Unlike CPUs 
with multicore architecture that uses two or four cores on chip, 
GPUs consist of manycore architecture that can run thousands 
of threads by hundreds of cores in parallel. 

CUDA and OpenCL is a coevolved hardware/software 
architectures that enable HPC (High-Performance Computing). 
Developers were encouraged to utilize GPUs’ tremendous 
power in computation and memory bandwidth, this by familiar 
programming environment -C programming language-. 
Apparently, the advantages of GPUs over CPUs are 
undoubtedly interesting. However, an application must retain 
certain characteristics in order to insure performance benefits: 
First, well-designed parallelism for massive amount of data. 
Second, Intensive Kernels that represent very large fraction of 
execution time should be computed (Amdahl’s law) [6]. Third, 
an application that requires arithmetic intensity and density. 
These types of applications usually favor the use of the multi-
computing units. Forth, Local memory access that is simple 
and regular, and it should avoid pointer tracking code. Last but 
not least, local memory accesses that can exploit the pipeline 
structure of GPU boards [7]. 

GPU programing mainly uses data-parallel paradigm, 
which frequently called stream computing. Stream computing 
relies on a map operation that consists of using the same 
computation on all elements of a stream such as arrays. 
Basically, a stream is one or multidimensional array with 
homogeneous points. Usually, parallel paradigm is based on 
operations such as Mapping were the map applies kernel 
function to all elements of stream, yet Kernel function can 
access elements from many input streams. Also it uses 
Reduction were an array of elements processes single value. 

Typically, there are two types of memory-access operations 
that can be executed. First, gather operation which assumes 
kernel is able to read any element of a stream. It is usually of 
the form of ( x = s1[s2[i]] ) . Second, Scatter operation that 
assumes kernel is able to write any element of a stream. The 
form of memory operation is similar to ( s1[s2[i]] = ). 

Previous hardware architecture of GPUs was not able to 
efficiently implement these operations. Luckily modern 
architectures have overcame this constraint, however, it should 
note that if ( s2[i] ) is not permutation of ( s1 ), then the result 
of this operation is non-deterministic. For example, if ( s2[i] = 
s2[j] = x ), we should consider that if ( i != j ) then ( s1[x] ) will 
be assigned more than once in undefined order. 

C. Systolic Arrays 

Another form of parallelism is systolic arrays, in which the 
data flows between processors in synchronization. Systolic 
arrays are specialized form of parallelism where different data 
may flow in different direction (down or right). Processors 
compute and store data independently. H. T. Kung and Charles 
Leiserson were the first to introduce systolic arrays in 1978 
showing multiple processors in arrays connected by short buses 
[8]. Typically, systolic arrays use joint form of parallel 
computing and pipelined flow of data. 

Systolic arrays miss two key features that we aim to 
achieve in the context of processing big data clusterization. 
First, Systolic arrays rely on parallel programing, and we target 
an architecture that would utilize sequential programs by 
forced interrupts.  Second, each processor stores data 
independently of each other, which adds unfavorable 
dependency in case we process variable-lengths of data. 
Finally, the multidirectional nature of systolic arrays adds 
global synchronization limits due to signal delays. Running 
time that allows parallel overhead on several processors may 
exceed the ideal program running time. 

D. Graphic Processing Units (GPUs) 

Recently, the use of modern GPU (Graphic Processing 
Unit) increased considerably. The GPUs have been evolving 
since the very first computer system placing number of key 
challenges that are facing programmers to fulfill future 
application demands and support various platforms. 

These challenges such as effective use of GPU's 
architecture and performance increase have led to outstanding 
results, yet this computational advancement stimulated 
software engineers to formulate innovative programming 
techniques in order to utilize GPUs' capability. 

The increasing interest of parallel software requirements 
heightened the need for deep analyzing and scientific 
comparison of software methods whether in programming or 
architecture. The development of GPUs’ technology has led to 
the hope that GPUs will contribute in many applied sciences 
and will open a new window for continuous growth. Recently, 
GPUs applications are being adopted by sciences which need 
processing massive data sets such as physical simulations, 
image processing, computer vision, data mining and text 
processing as well as smart phones and portable devices. 
Consequently, multicore processors and parallel programing 
has become favorable topic among HPC (High-performance 
computing) teams [9]. Many researches have been extensively 
studying general purpose GPUs coupled with multicore 
processors; they are looking for paralleling the tasks and 
keeping the sequential execution to its minimum. However, the 
optimal use of parallelism depends on GPUs architecture. 
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III. PROBLEM STATEMENT AND CONTRIBUTION 

A. The Limitations of GPUs 

In the context of big data streams, GPUs may not provide 
enough main memory for large chunks of data. GPUs mitigate 
this problematic situation by accessing multiple GPU boards to 
single node. PCIe (Peripheral Component Interconnect 
Express) can interface with many GPU boards providing an 
aggregated storage. For instance, eight GPU boards that 
contains 6 MB of internal memory can allow up-to 48 MB of 
shared memory. However, this solution does not work 
efficiently on algorithms that requires random access to large 
data due to local physics and multi-access constrains. Moving 
the data among GPUs by high-latency PCIe bus can create 
huge computational intensity. The moment when algorithms 
get larger than internal memory of GPU, the performance of 
PCIe’s net system decreases dramatically. In fact, transferring 
anything over PCIe can lower the speed twentyfold compared 
to onboard main memory [10]. 

B. Parallel Programming Constrains 

Real-time processing has led to widespread use of 
multicore architectures. Experts toke the advantage of 
multiprocessors by embracing parallel programming in order to 
exploit parallel cores. This approach provided promising 
opportunities in HPC (High Performance Computing). 
However, it created big challenge for software industry. Most 
existing programming languages are designed to perform 
sequential execution. Parallel Programming added extra skill-
set requirements whereas programmers already deal with many 
hardware and software complications. As a result, multicore 
processing unit such as GPU (Graphical Processing Units) has 
evolved to accommodate these challenges providing well-
distributed and properly managed parallel cores, yet software 
engineers have to place additional effort and time in 
developing GPU applications that adhere to the promising 
parallel-core architecture [11]. 

C. Contribution 

Clearly, this paradigm of parallel computing relies on 
parallel programming in order to utilize parallel hardware 
arrangement. It has memory limitation where variable lengths 
of Big Data streams may require processing data on-the-fly. 
Nevertheless, the hardware design may change this fact, and it 
can overcome these constrains. This paper presents a novel 
multicore pipelined architecture by forced interrupts. It is 
parallel model of computing that executes Big Data clusters 
on-the-fly, while it still can utilize sequential programs. Our 
promising architecture designed to handle variable lengths of 
data, and it can achieve very low-latency in time. This 
discourse proposes reconfigurable FPGA hardware 
architecture, where pipeline length can comply with Big Data 
clustering work-load. It provides scalable framework that can 
add more processing units, and it can change HW 
configuration according to our processing needs. The proposed 
hardware organization is especially aimed at Big Data 
clustering. It consists of three main components. First, 
pipelined multiprocessing elements that operates on multicore 
tasks in parallel. Second, sophisticated Main Memory 
management by crossbar switching. Third, forced-interrupt that 
allows conventional software programs to utilize our proposed 

platform, and it may eliminate the overhead cost of parallel 
programming effort. 

IV. DISCUSSION 

A. Multicore Pipelined Architecture for Executing Big Data 

Streams 

The conventional realization of parallel programming 
introduced three main approaches that have been used in 
multicore processing. First, Task Parallel that partitions input 
software into functions and tasks. This approach schedules 
each function or task onto multicore processor. Second, Data 
Parallel that partitions input data, then it schedules data 
segments onto multicore processor system. Third, Pipeline 
Parallel that uses elements of sequential processing capability. 
It decomposes a program into states then run each state 
simultaneously. 

While the first approach requires sophisticated software 
development, the second method is useful for data-independent 
applications.  These applications may require complicated 
modules for data-scheduling. Pipeline processing is common 
solution for high-intensive volumes of data; however, it is 
limited by the maximum length of processing stage and/or the 
ability for task-decomposition [2]. 

Multiprocessor Pipelined Architecture proposes hardware 
design that utilizes the benefits of these three methods in order 
to process Big Data streams. It uses parallel computation 
coupled with data-parallel method and pipeline-parallel 
approach. The main goal of this architecture is to progressively 
process incoming data flows. We determine the length of the 
pipeline by the size of data chunk that we receive [11]. 
Multiprocessor Pipelined Architecture divides the program into 
equal processing times by forced interrupts as it is described in 
[Ber90][Ber94][Ber00]. This technology has US PATENT No. 
6145071. Given specific time of processing for each processor, 
this pattern ensures the receiving of incoming data without 
interruption, while it still using the conventional 
implementation of sequential software [12][13]. 

B. The Multiprocessor Pipelined Architecture by Forced 

Interrupt 

Figure 1 shows multiprocessor pipeline architecture that 
uses forced interrupts in order to automatically slice each 
program into fixed durations. Each processing cycle starts with 
(L) loading, (P) processing and (U) unloading. Since each 
cycle has fixed duration, this design performs efficiently on 
large volume of data with relatively small algorithms. The 
initial design is limited by algorithm size that requires 
additional round of processing. 

Fig. 1. General diagram of data flow in the pipeline [12] 
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Figure 2 zooms in the internal structure of each stage. 
Every microprocessor interacts with three memory blocks M1-
M3. MPU sends addresses and control signals, while Sa1-Sa3 
direct the data flow from previous stage or to the next cycle 
[12]. 

Fig. 2. Internal structure of one stage [12] 

The challenges of algorithm size as well as the overhead of 
memory data transformation are well addressed in recent 
Multicore Pipeline Organization. The multicore system uses  

Fig. 3. Ideal situation where the blocks are in equal size 

program slicing and forced interrupts. Theoretically, it receives 
data, then it generates blocks of different sizes based on slice 
function. Figure 3 shows the ideal situation where the blocks 
are in equal size, and each processor would execute one block 
respectively. In this case, each processor executes the block 
with the same color timing/slicing is not a big issue. In 
contrast, figure 4 illustrates variable lengths processing. This 
situation presents data blocks that are not equal in size or 
processing time. Hence, we need special handling by forced 
interrupts and program slicing. Each processor may process 
certain amount of data, then it can be stopped. 

The number of processors required for one block execution 
may vary according to data length and processing time. The 
multiprocessor pipeline allows an arbitrary algorithm to be 
performed on-the-fly on a data chunk, given a sufficient 
number of processors. The major condition for continual mode 
of stream operations – equal durations of time intervals for 
computations at each section of the pipeline – is realized by 
forced interrupts at each processing stage. Time of processing 
is of no significance to this design due to forced interrupt. 
Figure 4 shows how different processors can share processing 
different blocks by forced interrupts. 

Fig. 4. Data blocks are not equal in size or processing time 

In the context of processing Big Data clusters, memory 
management plays important role, and novel technology of 
memory and cache management is proposed. This multicore 
pipelined architecture provides very simple, yet, effective 
solution by switching the state of processors among data 
blocks, and it eliminates the overhead of internal-data 
transformation. As a result, the performance of this pipeline 
architecture increases significantly. 
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C. Multicore Memory and Cache Architecture Based on 

Crossbar Switching 

This technology does not relocate memory data down the 
pipeline; instead, it uses crossbar switch in order to assign 
memory data blocks to the corresponding processor. Memory 
data may include program status information that allows the 
next processor to resume the work starting from last state. This 
approach has been applied on multi-memory/multi-cache 
design. Figure 5 illustrates the use of Crossbar Switch 
internally. 

Fig. 5. The use of crossbar switch and shared cache management internally 

This design does not assign corresponding memory for 
each processor; it reduces the cost of data relocation. Cache 
and memory can be grouped into one set, and Crossbar Switch 
would assign each processor to one group. The number of 
groups should be equal to processing elements. This  

Fig. 6. Processing steps of the pipeline 

P: Processor 
G: Memory Cache Group 
S: Switch 

organization eliminates the cost overhead behind memory 
relocation as well as additional round setup as it described by 
forced interrupts technique. This organization replaces 
loading/unloading operations by switching mechanism. 
Theoretically, we can add as much processing elements as we 
need to reasonably process any given input of Big Data 
clusters. 

Figure 6 shows the processing steps of Multicore Memory 
and Cache Architecture Based on Crossbar Switching. Once 
the data loaded in G1, the corresponding core P1 starts 
processing G1 data for fixed time, then crossbar switch assign 
the remaining data to P2. At this stage, P1 starts processing the 
new incoming assigned by crossbar switch [11]. 

D. New Multicore Architecture Based on Symmetric 

multiprocessing (SMP) 

This technology follows Symmetric multiprocessing (SMP) 
architecture whereas many processors can share single main 
memory. This approach solves the issue of algorithm size, one 
main memory can receive input data, and then it can assign 
each memory chunk to processor that would process the 
instruction set in fixed time. After-which it shifts to the next 
block of data respectively; that allow the next processor 
proceed operations where the previous processor stopped. 

Computer cluster systems have proved the efficiency of this 
technique on intensive amounts of data. However, this 
organization works at processing level. In stream processing, 
data storage can add high-cost operation within processing 
path, hence, the system must minimize unnecessary storage 
operations to archive low latency. Figure 7 shows an 
architecture that decreases time-intensive operations by 
processing messages on-the-fly. 

In real time situations, we try to avoid dependencies, the 
program must process messages in given time by timeouts 
during-which this architecture can proceed with partial data. 

The system promotes multi-threading by allowing data 
partition among processing blocks without having the 
developer writes low-level code. That would prevent blocking 
external data thereby minimizing latency. 

The objective of this system is to be able to efficiently 
process external data that can arrive in either variable-lengths, 
high-volumes or both. In order to achieve better performance, 
the system should optimize execution path, and it must 
minimize boundary-crossing overhead. The desired length of 
the pipeline must be tested with performance in mind to insure 
sufficient processing path while decreasing the additional cost 
of multi-processing passage. 

Figure 7 illustrates the desired communication between 
each processor and main memory. This architecture provides 
more flexibility to add more processing unites into the pipeline 
sharing the same data source. 

Raman and Clarkson [14] carried out interesting project 
that proof the efficiency of this specific type of architectures.  
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Time P1 P2 P3 

2 L-B1     

3 P-B1     

4 P-B1     

5 S-B1     

6 L-B2 P-B1   

7 L-B2 P-B1   

8 P-B2 P-B1   

9 P-B2 P-B1   

10 S-B2 S-B1   

11 L-B3 P-B2 P-B1 

12 L-B3 P-B2 P-B1 

13 P-B3 P-B2 P-B1 

14 P-B3 P-B2 P-B1 

15 S-B3 S-B2 S-B1 

 

 

Their project recognizes parallelism with non-identical 
processing unites. These unites can work simultaneously with 
one shared memory. 

Fig. 7.  The desired communication between each processor and main 

memory 

Conventionally, the design of multiprocessor pipeline 
moves data chunks when processor loading-state changes. In 
contrast, this new architecture offers two advantages over 
conventional models. First, the data blocks does not relocate 
when switch operation occurs. Second, it allows other 
processors to load data as long it is in ideal state in order to 
utilize the pipeline. 

E. Time Table and Analysis 

Table 1 demonstrates one-cycle processing throughout 
pipeline of three core processors. It explains how variable-
lengths of data blocks can be executed in different processors 

TABLE I.  ONE-CYCLE PROCESSING THROUGHOUT PIPELINE OF THREE 

CORE PROCESSORS. L: LOADING. P: PROCESSING. B: DATA BLOCK. S: 
SWITCHING 

using switching operations and forced interrupts. Switching 
Operations (S) and forced interrupts happen at the same time. 
Table 1 illustrates each data block (B) by one color throughout 
the pipeline. This design assure availability of processor 1 by a 
given input and hardware specification, and it hinders any 
complications behind scheduling and load balancing. 

Based on multi-cycle processing, we calculate the time 
required to perform system operation (T). We assume that a 
pipeline of (n) cores would execute an operation in (C) cycles. 
We discretize system operations in one cycle by (D). 

A typical processor may execute in time of 

  

Given a number of cores (n) to execute input-data on 
average, the number of cycles performed on each given core 
presented as 

  

Therefore, the time given for typical processor can be also 
described as 

  

The length of the required pipeline (L) can be found by 

  

factored by number of cycles that are required for equal 
duration process (m). 

  

Let us assume that the internal operations of the pipeline 
take O = Lp/m that is equal to 

  

  

In multicore system, switching operations can also increase 
system latency, and each hardware may have different 
switching capability. We present this overhead for each switch 
operation by (S). The total switch overhead expressed by 

  

Hence, the total number of cores required to process a 
given data block including switching overhead expressed by 
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  

and the time required to perform all operations described as 

  

This discretization allows us to estimate performance 
speedup of multicore parallel pipelined architecture compared 
to typical single core system where Improvement = (Tc)/T. 



 

F. Reconfigurable FPGA Design 

1) Overview 
The design consists of three processing units all processors 

share the same AXI stream bus, each processor samples the 
incoming data when it receives an interrupt signal from the 
control unit, the output of these processors is send to a 
multiplexer which selects which output stream AXI bus to be 
used, the select for the multiplexer is also received from the 
control unit. 

A MicroBlaze processor was chosen to collect the data 
from the processors; it receives no control signal from the 
control unit and it treats the data coming from the AXI stream 
bus as a data from single source. 

The control unit is responsible for controlling the 
multiplexers at the processors input and output also it send 
interrupt signals for the processors to start sampling data. 

2) Processors 
Each processor contains the following ports: 

a) AXI stream input 

b) AXI stream output. 

c) Interrupt input. 

d) Busy output. 

e) Offload input. 

The design consists of a finite state machine with 2 states 
and a 256 32-bit Ram. It stays on the first state waiting for the 
interrupt from the control unit, upon receiving an interrupt, the 
finite state machine goes to second state where it samples and 
stores the incoming data in the Ram. After storing 256 word, it 
goes to final state it enables the processor AXI stream output 
and reads from the Ram until it reaches final address then it 
goes back to first state. 

3) AXIS DEMUX 
The demultiplexer routes the system input stream AXI bus 

to any of the three processors according to the select signal it 
receives from the control unit. It has four main ports: 

a) One AXIS stream input. 

b) Three AXIS stream outputs. 

This module can be removed from the design of a single 
AXIS data source. It is used to feed the three processors (AXIS 
counter for example). 

4) AXIS DEMUX 
The AXIS multiplexer is responsible for selecting which 

processor output to be fed into the MicroBlaze, it receives its 
select input from the control unit, all parameters are adjustable 
However, the control sends the select signal for clock cycles 
which is the time required by the processor to offload the data 
in its Ram. 

5) Control unit 
The control unit is responsible for synchronizing the 

complete design, and it shares the same data valid signal with 
the processors from system AXIS input bus in order to track 
the number of data words in the design. It consists of a finite 
state machine with 3 states. In the first state, it gives control 
signals to enable the AXIS Input and output of processor 1, and 
it counts the incoming data words until it reaches 256 (all 
parameters are configurable). After that, it go to the second 
state where it selects the AXI input and output of the second 
processor and after 256 data word it go to final state where it 
selects the third processor and then it return back to first state 
to repeat the complete process. 

a) Interrupt: 

The control unit can send the interrupt signal for the 
processor according to processing requirements, in the initial 
design the control unit sends the interrupt signal when the data 
reaches 256 word. This can be adjusted to interrupt according 
to any data word length or to data rate if a timer is used. 

G. Design performance 

This is a system designed using AXIS stream bus. 
Therefore all data transfer are constrained by the AXIS 
protocol timing performance as a result a word can be send 
each clock cycle in case of holding the valid signal high and 
sending the data each clock cycle. 

Fig. 8. AXIS protocol stream bus 

In this design we assumed that TVALID is set high and a 
new data word is available each clock therefore the design 
processes a data word each clock cycle. 

The complete design is synthesized at 100 Mhz which is 
the available clock source in the FPGA Zedboard [15]. For 
future work, we recommend to upgrade the project to include 
AXI timer and embedded design to access the timer; this would 
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enable reading the number of clock cycles for any future 
processing operations which my effect the processing time. 

V. CONCLUSION AND FUTURE WORK 

Parallel programming on multiprocessing systems is 
challenging software domain. We proposed program slicing by 
novel method of dynamic resource management that allows 
organizing on-the-fly processing of arbitrary complexity 
without parallel programming. The new architecture is very 
suitable for handling Big Data systems. The experimental 
results and performance comparison with existing multicore 
architectures demonstrate the effectiveness, flexibility, and 
diversity of the new architecture, in particular, for large data 
parallel processing. 

The considered pipelining processing is of especial 
significance for applications of the presented technique of 
Golay Code clustering [16] as it involves very diverse and 
rather sophisticated computations for realization of multiple 
data cross-sections with sophisticated “Meta Knowledge” 
templates. Performance analysis introduces promising 
opportunity in real-time processing from pre-processing steps 
of clustering algorithms until final visualization. 
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