
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

23 | P a g e

www.ijacsa.thesai.org

A Design of Pipelined Architecture for on-the-Fly

Processing of Big Data Streams

Usamah Algemili

Department of Computer Science

The George Washington University

Washington, DC 20052, USA

Simon Berkovich

Department of Computer Science

The George Washington University

Washington, DC 20052, USA

Abstract—Conventional processing infrastructures have been

challenged by huge demand of stream-based applications. The

industry responded by introducing traditional stream processing

engines along-with emerged technologies. The ongoing paradigm

embraces parallel computing as the most-suitable proposition.

Pipelining and Parallelism have been intensively studied in recent

years, yet parallel programming on multiprocessor architectures

stands as one of the biggest challenges to the software industry.

Parallel computing relies on parallel programs that may

encounter internal memory constrains. In addition, parallel

computing needs special skillset of programming as well as

software conversions. This paper presents reconfigurable

pipelined architecture. The design is especially aimed at Big Data

clustering, and it adopts Symmetric multiprocessing (SMP) along

with crossbar switch and forced interrupt. The main goal of this

promising architecture is to efficiently process big data streams

on-the-fly, while it can process sequential programs on parallel-

pipelined model. The system overpasses internal memory

constrains of multicore architectures by applying forced

interrupts and crossbar switching. It reduces complexity, data

dependency, high-latency, and cost overhead of parallel

computing.

Keywords—Big Data; Clustering; Computer Architecture;

Parallel Processing; Pipeline Design; Variable Lengths; Symmetric

Multiprocessing; Crossbar Switch; Forced Interrupt

I. INTRODUCTION

Conventional computing has been thoroughly challenged
by the emerging situation of Big Data. Big Data is the problem
of managing huge amount of unstructured data. The
complexity of Big Data calls for new form of software
clustering and hardware organization. At the beginning of this
centenary, studies reported enormous growth of information
that exceeded Moore’s Law [1]. Big Data introduces
unconventional pressure on time and memory performance.
Consequently, new computation models are significantly
required to cope up with Big Data situation. Researchers
introduced “on-the-fly” clusterization of amorphous data. On-
the-fly processing deals with a continuous stream of data, and
it must maintain certain throughput of information flow. In this
pattern, hardware design should not tolerate any postponement
of oncoming stream. Multicore pipelined architecture provides
a simple yet effective solution to the on-the-fly computation by
transferring the operating states from core to core down the
pipeline [2]. This pipelining device requires practically the
same sequential programs that are currently used based on
single processor system. Pipeline computing offers very

effective solution for big data streams. It increases the
throughput considerably when processing intensive streams of
data. Pipelined architectures consist of sequence of processing
elements where the output of one processor is the input of the
next one. “By pipelining, processing may proceed concurrently
with input and output, and consequently overall execution time
is minimized. Pipelining plus multiprocessing at each stage of
a pipeline should lead to the best-possible performance “[3].

This paper investigates the previous work on multicore
processing and parallel computing architectures. It discusses
stream processing requirements, followed by general outlook
over the current limitations of parallel systems. This paper
suggests a hardware model that is especially intended to
process Big Data clustering on-the-fly, while this model can
process sequential programs using parallel-pipelined multicore
design. Finally, it proposes the same model based on
Symmetric multiprocessing (SMP) and forced interrupts.

II. MULTICORE PROCESSING AND PARALLEL COMPUTING

ARCHITECTURES

A. Multi-Core processors

Most modern processors include huge number of transistors
on one chip. The architectures of general purpose multicore
processors allow multiple related tasks for execution, this
would be conducted in different cores such as IBM Cell
processor, Intel and AMD multicore processors. Usually, these
cores are heterogeneous in time requirement because of
advanced scheduling algorithms that intend to exploit these
architectures effectively.

On the other hand, these architectures support shared access
of global caches or memory, this support faces some
limitations in accessing the same block by other cores which
decreases their efficiency. Consequently, memory design has
significant influence on high clock rates, and indexing
references is important to attain high processing performance.
Optimizing the instructions and developing the data queues
may increase the performance. However, these solutions have
obvious limitations in heavy processing queues like graphics
manipulation [4].

For instance, SIMD (Single Instruction Multiple Data)
technique was one of the earliest programming methods to
stress parallelism in microarchitecture design. More
instructions were added by Intel in 2004. The introduction of
90 nm process-based Pentium games processor was followed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

24 | P a g e

www.ijacsa.thesai.org

by (Streaming SIMD Extensions) SSE3 and SSE4. This was to
improve thread synchronization and math capabilities.

Nevertheless, computing field is extensively progressive, so
conventional processors such as multicore CPUs (Central
Processing Units) are replaced by power-aware multi-core
CPUs coupled with GPUs (Graphics Processing units). The
idea behind this new trend is to take the advantage of chip die
area. This integration can increase the efficiency of SIMD, and
it may provide superior environment that supports stream
processing and vectorization. This approach uses large memory
units and large register sets that are distributed among different
levels of system hierarchy [5].

B. Parallel Programming Architectures

HMPP (Hybrid Multicore Parallel Programming
Environment) based on GPUs (Graphics Processing Units) can
provide tremendous computing power. With current NVIDIA
and AMD hardware group of graphic products, a peak
performance can reach hundreds of gigaflops. GPUs designed
originally for graphic cards, and it have emerged as the most
powerful chip in high-performance workstations. Unlike CPUs
with multicore architecture that uses two or four cores on chip,
GPUs consist of manycore architecture that can run thousands
of threads by hundreds of cores in parallel.

CUDA and OpenCL is a coevolved hardware/software
architectures that enable HPC (High-Performance Computing).
Developers were encouraged to utilize GPUs’ tremendous
power in computation and memory bandwidth, this by familiar
programming environment -C programming language-.
Apparently, the advantages of GPUs over CPUs are
undoubtedly interesting. However, an application must retain
certain characteristics in order to insure performance benefits:
First, well-designed parallelism for massive amount of data.
Second, Intensive Kernels that represent very large fraction of
execution time should be computed (Amdahl’s law) [6]. Third,
an application that requires arithmetic intensity and density.
These types of applications usually favor the use of the multi-
computing units. Forth, Local memory access that is simple
and regular, and it should avoid pointer tracking code. Last but
not least, local memory accesses that can exploit the pipeline
structure of GPU boards [7].

GPU programing mainly uses data-parallel paradigm,
which frequently called stream computing. Stream computing
relies on a map operation that consists of using the same
computation on all elements of a stream such as arrays.
Basically, a stream is one or multidimensional array with
homogeneous points. Usually, parallel paradigm is based on
operations such as Mapping were the map applies kernel
function to all elements of stream, yet Kernel function can
access elements from many input streams. Also it uses
Reduction were an array of elements processes single value.

Typically, there are two types of memory-access operations
that can be executed. First, gather operation which assumes
kernel is able to read any element of a stream. It is usually of
the form of (x = s1[s2[i]]) . Second, Scatter operation that
assumes kernel is able to write any element of a stream. The
form of memory operation is similar to (s1[s2[i]] =).

Previous hardware architecture of GPUs was not able to
efficiently implement these operations. Luckily modern
architectures have overcame this constraint, however, it should
note that if (s2[i]) is not permutation of (s1), then the result
of this operation is non-deterministic. For example, if (s2[i] =
s2[j] = x), we should consider that if (i != j) then (s1[x]) will
be assigned more than once in undefined order.

C. Systolic Arrays

Another form of parallelism is systolic arrays, in which the
data flows between processors in synchronization. Systolic
arrays are specialized form of parallelism where different data
may flow in different direction (down or right). Processors
compute and store data independently. H. T. Kung and Charles
Leiserson were the first to introduce systolic arrays in 1978
showing multiple processors in arrays connected by short buses
[8]. Typically, systolic arrays use joint form of parallel
computing and pipelined flow of data.

Systolic arrays miss two key features that we aim to
achieve in the context of processing big data clusterization.
First, Systolic arrays rely on parallel programing, and we target
an architecture that would utilize sequential programs by
forced interrupts. Second, each processor stores data
independently of each other, which adds unfavorable
dependency in case we process variable-lengths of data.
Finally, the multidirectional nature of systolic arrays adds
global synchronization limits due to signal delays. Running
time that allows parallel overhead on several processors may
exceed the ideal program running time.

D. Graphic Processing Units (GPUs)

Recently, the use of modern GPU (Graphic Processing
Unit) increased considerably. The GPUs have been evolving
since the very first computer system placing number of key
challenges that are facing programmers to fulfill future
application demands and support various platforms.

These challenges such as effective use of GPU's
architecture and performance increase have led to outstanding
results, yet this computational advancement stimulated
software engineers to formulate innovative programming
techniques in order to utilize GPUs' capability.

The increasing interest of parallel software requirements
heightened the need for deep analyzing and scientific
comparison of software methods whether in programming or
architecture. The development of GPUs’ technology has led to
the hope that GPUs will contribute in many applied sciences
and will open a new window for continuous growth. Recently,
GPUs applications are being adopted by sciences which need
processing massive data sets such as physical simulations,
image processing, computer vision, data mining and text
processing as well as smart phones and portable devices.
Consequently, multicore processors and parallel programing
has become favorable topic among HPC (High-performance
computing) teams [9]. Many researches have been extensively
studying general purpose GPUs coupled with multicore
processors; they are looking for paralleling the tasks and
keeping the sequential execution to its minimum. However, the
optimal use of parallelism depends on GPUs architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

25 | P a g e

www.ijacsa.thesai.org

III. PROBLEM STATEMENT AND CONTRIBUTION

A. The Limitations of GPUs

In the context of big data streams, GPUs may not provide
enough main memory for large chunks of data. GPUs mitigate
this problematic situation by accessing multiple GPU boards to
single node. PCIe (Peripheral Component Interconnect
Express) can interface with many GPU boards providing an
aggregated storage. For instance, eight GPU boards that
contains 6 MB of internal memory can allow up-to 48 MB of
shared memory. However, this solution does not work
efficiently on algorithms that requires random access to large
data due to local physics and multi-access constrains. Moving
the data among GPUs by high-latency PCIe bus can create
huge computational intensity. The moment when algorithms
get larger than internal memory of GPU, the performance of
PCIe’s net system decreases dramatically. In fact, transferring
anything over PCIe can lower the speed twentyfold compared
to onboard main memory [10].

B. Parallel Programming Constrains

Real-time processing has led to widespread use of
multicore architectures. Experts toke the advantage of
multiprocessors by embracing parallel programming in order to
exploit parallel cores. This approach provided promising
opportunities in HPC (High Performance Computing).
However, it created big challenge for software industry. Most
existing programming languages are designed to perform
sequential execution. Parallel Programming added extra skill-
set requirements whereas programmers already deal with many
hardware and software complications. As a result, multicore
processing unit such as GPU (Graphical Processing Units) has
evolved to accommodate these challenges providing well-
distributed and properly managed parallel cores, yet software
engineers have to place additional effort and time in
developing GPU applications that adhere to the promising
parallel-core architecture [11].

C. Contribution

Clearly, this paradigm of parallel computing relies on
parallel programming in order to utilize parallel hardware
arrangement. It has memory limitation where variable lengths
of Big Data streams may require processing data on-the-fly.
Nevertheless, the hardware design may change this fact, and it
can overcome these constrains. This paper presents a novel
multicore pipelined architecture by forced interrupts. It is
parallel model of computing that executes Big Data clusters
on-the-fly, while it still can utilize sequential programs. Our
promising architecture designed to handle variable lengths of
data, and it can achieve very low-latency in time. This
discourse proposes reconfigurable FPGA hardware
architecture, where pipeline length can comply with Big Data
clustering work-load. It provides scalable framework that can
add more processing units, and it can change HW
configuration according to our processing needs. The proposed
hardware organization is especially aimed at Big Data
clustering. It consists of three main components. First,
pipelined multiprocessing elements that operates on multicore
tasks in parallel. Second, sophisticated Main Memory
management by crossbar switching. Third, forced-interrupt that
allows conventional software programs to utilize our proposed

platform, and it may eliminate the overhead cost of parallel
programming effort.

IV. DISCUSSION

A. Multicore Pipelined Architecture for Executing Big Data

Streams

The conventional realization of parallel programming
introduced three main approaches that have been used in
multicore processing. First, Task Parallel that partitions input
software into functions and tasks. This approach schedules
each function or task onto multicore processor. Second, Data
Parallel that partitions input data, then it schedules data
segments onto multicore processor system. Third, Pipeline
Parallel that uses elements of sequential processing capability.
It decomposes a program into states then run each state
simultaneously.

While the first approach requires sophisticated software
development, the second method is useful for data-independent
applications. These applications may require complicated
modules for data-scheduling. Pipeline processing is common
solution for high-intensive volumes of data; however, it is
limited by the maximum length of processing stage and/or the
ability for task-decomposition [2].

Multiprocessor Pipelined Architecture proposes hardware
design that utilizes the benefits of these three methods in order
to process Big Data streams. It uses parallel computation
coupled with data-parallel method and pipeline-parallel
approach. The main goal of this architecture is to progressively
process incoming data flows. We determine the length of the
pipeline by the size of data chunk that we receive [11].
Multiprocessor Pipelined Architecture divides the program into
equal processing times by forced interrupts as it is described in
[Ber90][Ber94][Ber00]. This technology has US PATENT No.
6145071. Given specific time of processing for each processor,
this pattern ensures the receiving of incoming data without
interruption, while it still using the conventional
implementation of sequential software [12][13].

B. The Multiprocessor Pipelined Architecture by Forced

Interrupt

Figure 1 shows multiprocessor pipeline architecture that
uses forced interrupts in order to automatically slice each
program into fixed durations. Each processing cycle starts with
(L) loading, (P) processing and (U) unloading. Since each
cycle has fixed duration, this design performs efficiently on
large volume of data with relatively small algorithms. The
initial design is limited by algorithm size that requires
additional round of processing.

Fig. 1. General diagram of data flow in the pipeline [12]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

26 | P a g e

www.ijacsa.thesai.org

Figure 2 zooms in the internal structure of each stage.
Every microprocessor interacts with three memory blocks M1-
M3. MPU sends addresses and control signals, while Sa1-Sa3
direct the data flow from previous stage or to the next cycle
[12].

Fig. 2. Internal structure of one stage [12]

The challenges of algorithm size as well as the overhead of
memory data transformation are well addressed in recent
Multicore Pipeline Organization. The multicore system uses

Fig. 3. Ideal situation where the blocks are in equal size

program slicing and forced interrupts. Theoretically, it receives
data, then it generates blocks of different sizes based on slice
function. Figure 3 shows the ideal situation where the blocks
are in equal size, and each processor would execute one block
respectively. In this case, each processor executes the block
with the same color timing/slicing is not a big issue. In
contrast, figure 4 illustrates variable lengths processing. This
situation presents data blocks that are not equal in size or
processing time. Hence, we need special handling by forced
interrupts and program slicing. Each processor may process
certain amount of data, then it can be stopped.

The number of processors required for one block execution
may vary according to data length and processing time. The
multiprocessor pipeline allows an arbitrary algorithm to be
performed on-the-fly on a data chunk, given a sufficient
number of processors. The major condition for continual mode
of stream operations – equal durations of time intervals for
computations at each section of the pipeline – is realized by
forced interrupts at each processing stage. Time of processing
is of no significance to this design due to forced interrupt.
Figure 4 shows how different processors can share processing
different blocks by forced interrupts.

Fig. 4. Data blocks are not equal in size or processing time

In the context of processing Big Data clusters, memory
management plays important role, and novel technology of
memory and cache management is proposed. This multicore
pipelined architecture provides very simple, yet, effective
solution by switching the state of processors among data
blocks, and it eliminates the overhead of internal-data
transformation. As a result, the performance of this pipeline
architecture increases significantly.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

27 | P a g e

www.ijacsa.thesai.org

C. Multicore Memory and Cache Architecture Based on

Crossbar Switching

This technology does not relocate memory data down the
pipeline; instead, it uses crossbar switch in order to assign
memory data blocks to the corresponding processor. Memory
data may include program status information that allows the
next processor to resume the work starting from last state. This
approach has been applied on multi-memory/multi-cache
design. Figure 5 illustrates the use of Crossbar Switch
internally.

Fig. 5. The use of crossbar switch and shared cache management internally

This design does not assign corresponding memory for
each processor; it reduces the cost of data relocation. Cache
and memory can be grouped into one set, and Crossbar Switch
would assign each processor to one group. The number of
groups should be equal to processing elements. This

Fig. 6. Processing steps of the pipeline

P: Processor
G: Memory Cache Group
S: Switch

organization eliminates the cost overhead behind memory
relocation as well as additional round setup as it described by
forced interrupts technique. This organization replaces
loading/unloading operations by switching mechanism.
Theoretically, we can add as much processing elements as we
need to reasonably process any given input of Big Data
clusters.

Figure 6 shows the processing steps of Multicore Memory
and Cache Architecture Based on Crossbar Switching. Once
the data loaded in G1, the corresponding core P1 starts
processing G1 data for fixed time, then crossbar switch assign
the remaining data to P2. At this stage, P1 starts processing the
new incoming assigned by crossbar switch [11].

D. New Multicore Architecture Based on Symmetric

multiprocessing (SMP)

This technology follows Symmetric multiprocessing (SMP)
architecture whereas many processors can share single main
memory. This approach solves the issue of algorithm size, one
main memory can receive input data, and then it can assign
each memory chunk to processor that would process the
instruction set in fixed time. After-which it shifts to the next
block of data respectively; that allow the next processor
proceed operations where the previous processor stopped.

Computer cluster systems have proved the efficiency of this
technique on intensive amounts of data. However, this
organization works at processing level. In stream processing,
data storage can add high-cost operation within processing
path, hence, the system must minimize unnecessary storage
operations to archive low latency. Figure 7 shows an
architecture that decreases time-intensive operations by
processing messages on-the-fly.

In real time situations, we try to avoid dependencies, the
program must process messages in given time by timeouts
during-which this architecture can proceed with partial data.

The system promotes multi-threading by allowing data
partition among processing blocks without having the
developer writes low-level code. That would prevent blocking
external data thereby minimizing latency.

The objective of this system is to be able to efficiently
process external data that can arrive in either variable-lengths,
high-volumes or both. In order to achieve better performance,
the system should optimize execution path, and it must
minimize boundary-crossing overhead. The desired length of
the pipeline must be tested with performance in mind to insure
sufficient processing path while decreasing the additional cost
of multi-processing passage.

Figure 7 illustrates the desired communication between
each processor and main memory. This architecture provides
more flexibility to add more processing unites into the pipeline
sharing the same data source.

Raman and Clarkson [14] carried out interesting project
that proof the efficiency of this specific type of architectures.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

28 | P a g e

www.ijacsa.thesai.org

Time P1 P2 P3

2 L-B1

3 P-B1

4 P-B1

5 S-B1

6 L-B2 P-B1

7 L-B2 P-B1

8 P-B2 P-B1

9 P-B2 P-B1

10 S-B2 S-B1

11 L-B3 P-B2 P-B1

12 L-B3 P-B2 P-B1

13 P-B3 P-B2 P-B1

14 P-B3 P-B2 P-B1

15 S-B3 S-B2 S-B1

Their project recognizes parallelism with non-identical
processing unites. These unites can work simultaneously with
one shared memory.

Fig. 7. The desired communication between each processor and main

memory

Conventionally, the design of multiprocessor pipeline
moves data chunks when processor loading-state changes. In
contrast, this new architecture offers two advantages over
conventional models. First, the data blocks does not relocate
when switch operation occurs. Second, it allows other
processors to load data as long it is in ideal state in order to
utilize the pipeline.

E. Time Table and Analysis

Table 1 demonstrates one-cycle processing throughout
pipeline of three core processors. It explains how variable-
lengths of data blocks can be executed in different processors

TABLE I. ONE-CYCLE PROCESSING THROUGHOUT PIPELINE OF THREE

CORE PROCESSORS. L: LOADING. P: PROCESSING. B: DATA BLOCK. S:
SWITCHING

using switching operations and forced interrupts. Switching
Operations (S) and forced interrupts happen at the same time.
Table 1 illustrates each data block (B) by one color throughout
the pipeline. This design assure availability of processor 1 by a
given input and hardware specification, and it hinders any
complications behind scheduling and load balancing.

Based on multi-cycle processing, we calculate the time
required to perform system operation (T). We assume that a
pipeline of (n) cores would execute an operation in (C) cycles.
We discretize system operations in one cycle by (D).

A typical processor may execute in time of

  

Given a number of cores (n) to execute input-data on
average, the number of cycles performed on each given core
presented as

  

Therefore, the time given for typical processor can be also
described as

  

The length of the required pipeline (L) can be found by

  

factored by number of cycles that are required for equal
duration process (m).

  

Let us assume that the internal operations of the pipeline
take O = Lp/m that is equal to

  

  

In multicore system, switching operations can also increase
system latency, and each hardware may have different
switching capability. We present this overhead for each switch
operation by (S). The total switch overhead expressed by

  

Hence, the total number of cores required to process a
given data block including switching overhead expressed by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

29 | P a g e

www.ijacsa.thesai.org

  

and the time required to perform all operations described as

  

This discretization allows us to estimate performance
speedup of multicore parallel pipelined architecture compared
to typical single core system where Improvement = (Tc)/T.



 

F. Reconfigurable FPGA Design

1) Overview
The design consists of three processing units all processors

share the same AXI stream bus, each processor samples the
incoming data when it receives an interrupt signal from the
control unit, the output of these processors is send to a
multiplexer which selects which output stream AXI bus to be
used, the select for the multiplexer is also received from the
control unit.

A MicroBlaze processor was chosen to collect the data
from the processors; it receives no control signal from the
control unit and it treats the data coming from the AXI stream
bus as a data from single source.

The control unit is responsible for controlling the
multiplexers at the processors input and output also it send
interrupt signals for the processors to start sampling data.

2) Processors
Each processor contains the following ports:

a) AXI stream input

b) AXI stream output.

c) Interrupt input.

d) Busy output.

e) Offload input.

The design consists of a finite state machine with 2 states
and a 256 32-bit Ram. It stays on the first state waiting for the
interrupt from the control unit, upon receiving an interrupt, the
finite state machine goes to second state where it samples and
stores the incoming data in the Ram. After storing 256 word, it
goes to final state it enables the processor AXI stream output
and reads from the Ram until it reaches final address then it
goes back to first state.

3) AXIS DEMUX
The demultiplexer routes the system input stream AXI bus

to any of the three processors according to the select signal it
receives from the control unit. It has four main ports:

a) One AXIS stream input.

b) Three AXIS stream outputs.

This module can be removed from the design of a single
AXIS data source. It is used to feed the three processors (AXIS
counter for example).

4) AXIS DEMUX
The AXIS multiplexer is responsible for selecting which

processor output to be fed into the MicroBlaze, it receives its
select input from the control unit, all parameters are adjustable
However, the control sends the select signal for clock cycles
which is the time required by the processor to offload the data
in its Ram.

5) Control unit
The control unit is responsible for synchronizing the

complete design, and it shares the same data valid signal with
the processors from system AXIS input bus in order to track
the number of data words in the design. It consists of a finite
state machine with 3 states. In the first state, it gives control
signals to enable the AXIS Input and output of processor 1, and
it counts the incoming data words until it reaches 256 (all
parameters are configurable). After that, it go to the second
state where it selects the AXI input and output of the second
processor and after 256 data word it go to final state where it
selects the third processor and then it return back to first state
to repeat the complete process.

a) Interrupt:

The control unit can send the interrupt signal for the
processor according to processing requirements, in the initial
design the control unit sends the interrupt signal when the data
reaches 256 word. This can be adjusted to interrupt according
to any data word length or to data rate if a timer is used.

G. Design performance

This is a system designed using AXIS stream bus.
Therefore all data transfer are constrained by the AXIS
protocol timing performance as a result a word can be send
each clock cycle in case of holding the valid signal high and
sending the data each clock cycle.

Fig. 8. AXIS protocol stream bus

In this design we assumed that TVALID is set high and a
new data word is available each clock therefore the design
processes a data word each clock cycle.

The complete design is synthesized at 100 Mhz which is
the available clock source in the FPGA Zedboard [15]. For
future work, we recommend to upgrade the project to include
AXI timer and embedded design to access the timer; this would

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

30 | P a g e

www.ijacsa.thesai.org

enable reading the number of clock cycles for any future
processing operations which my effect the processing time.

V. CONCLUSION AND FUTURE WORK

Parallel programming on multiprocessing systems is
challenging software domain. We proposed program slicing by
novel method of dynamic resource management that allows
organizing on-the-fly processing of arbitrary complexity
without parallel programming. The new architecture is very
suitable for handling Big Data systems. The experimental
results and performance comparison with existing multicore
architectures demonstrate the effectiveness, flexibility, and
diversity of the new architecture, in particular, for large data
parallel processing.

The considered pipelining processing is of especial
significance for applications of the presented technique of
Golay Code clustering [16] as it involves very diverse and
rather sophisticated computations for realization of multiple
data cross-sections with sophisticated “Meta Knowledge”
templates. Performance analysis introduces promising
opportunity in real-time processing from pre-processing steps
of clustering algorithms until final visualization.

REFERENCES

[1] Brown, John Seely, and Paul Duguid. The social life of information.
Harvard Business Press, 2002.

[2] Liao, Duoduo, and Simon Y. Berkovich. "A new multi-core pipelined
architecture for executing sequential programs for parallel geospatial
computing." In Proceedings of the 1st International Conference and
Exhibition on Computing for Geospatial Research & Application, p. 23.
ACM, 2010.

[3] Dewdney, A.K. The (New) Turing Omnibus. Henry Holt and Company.
New York. 1993.

[4] Raman, S. & Clarkson, T. (1990) Parallel image processing system – a
modular architecture using dedicated image processing modules and a
graphics processor. IEEE, Conference on Computer and Communication
Systems, September 1990, Hong Kong, pp. 319–323.

[5] Che. S, Boyer. M and others. (2009), Rodinia: A Benchmark Suite for
Heterogeneous Computing, Department of Computer Science,
University of Virginia.

[6] Amdahl, Gene M. "Validity of the single processor approach to
achieving large scale computing capabilities." Proceedings of the April
18-20, 1967, spring joint computer conference. ACM, 1967.

[7] Bodin, F., & Bihan, S. (2009). Heterogeneous multicore parallel
programming for graphics processing units. Scientific Programming,

17(4), 325-336. doi:10.3233/SPR-2009-0292 From :
http://ehis.ebscohost.com.proxygw.wrlc.org/eds/pdfviewer/pdfviewer?si
d=0dc925aa-da7b-4e0e-852d-
2df3c6def810%40sessionmgr112&vid=3&hid=2

[8] Quinton, Patrice, and Yves Robert. Systolic algorithms & architectures.
Prentice Hall, 1991.

[9] Brown, J.D.; , "High Performance Processor Development for Consumer
Electronics Game Processor Perspective," VLSI Circuits, 2007 IEEE
Symposium on , vol., no., pp.112-115, 14-16 June 2007 doi:
10.1109/VLSIC.2007.4342680 URL:
http://ieeexplore.ieee.org.proxygw.wrlc.org/stamp/stamp.jsp?
tp=&arnumber=4342680&isnumber=4342661

[10] Novakovic, Nebojsa A. "CPUs Will Fight Back as GPU Computing Hits
the Limits." - The Inquirer. The Inquirer, 1 Aug. 2012. Web. 02 Dec.
2014. <http://www.theinquirer.net/inquirer/feature/2195344/cpus-will-
fight-back-as-gpu-computing-hits-the-limits/page/2>.

[11] Liao, Duoduo. Real-time solid voxelization using multi-core pipelining.
Diss. The George Washington University, 2009.

[12] [Ber00] S. Berkovich, Z. Kitov, A. Meltzer: On-the-fly processing of
continuous data streams with a pipeline of microprocessors. In
Proceedings of the International conference on Databases, Parallel
Architectures, and Their Applications (PARBASE-90), IEEE Computer
Society, Maiami Beach, Florida, March 1990, pp. 85-97.

[13] [Ber00] S. Berkovich, E. Berkovich, and M. Loew, 2000. "Multi-Layer
Multi-Processor Information Conveyor with Periodic Transferring of
Processor's States for On-The-Fly Transformation of Continuous
Information Flows and Operating Method Therefor", US PATENT No.
6145071, owned by George Washington University. Date issued -
November 7, 2000.

[14] Raman, S. & Clarkson, T. (1990) Parallel image processing system – a
modular architecture using dedicated image processing modules and a
graphics processor. IEEE, Conference on Computer and Communication
Systems, September 1990, Hong Kong, pp. 319–323.

[15] Zynq, Xilinx. "7000,“." Zynq-7000 all programmable soc overview,
advance product specification-ds190(v1. 2) available on: http://www.
xilinx. com/support/documentation-/data sheets/-ds190-Zynq-7000-
Overview. pdf,” August (2012).

[16] F. Alsaby and S. Berkovich. Realization of clustering with Golay code
transformations. Global Science and Technology Forum, J. on
Computing (JoC) Vol 4 No 1, 2014.

[17] Alhudhaif, Adi, Tong Yan, and Simon Berkovich. "On the organization
of cluster voting with massive distributed streams." Computing for
Geospatial Research and Application (COM. Geo), 2014 Fifth
International Conference on. IEEE, 2014.

[18] Spafford, Kyle L., Jeremy S. Meredith, Seyong Lee, Dong Li, Philip C.
Roth, and Jeffrey S. Vetter. "The tradeoffs of fused memory hierarchies
in heterogeneous computing architectures." In Proceedings of the 9th
conference on Computing Frontiers, pp. 103-112. ACM, 2012.

[19] Vivado, H. L. S. "Vivado high level synthesis." (2012).

