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Abstract—Recent years have seen a growing requirement for 

accurate and agile attitude control of spacecraft. To both quickly 

and accurately control the attitude of a spacecraft, Control 

Moment Gyros (CMGs) which can generate much higher torque 

than conventional spacecraft actuators are used as actuators of 

the spacecraft. The drive on the motors is needed for rapid 

maneuverability, negatively affecting their life. Thus, in 

designing spacecraft the conflicting requirements are rapid 

maneuverability and reduced the drive on motors. Furthermore, 

the attitude control system needs to be fault-tolerant. The 

dominant requirement is different for each spacecraft mission, 

and therefore the relationship between the requirements should 

be shown. In this study, a design method is proposed for the 

attitude control system, using multi objective optimization of the 

skew angle and parameters of the control system. Pareto 

solutions that can show the relationship between the 

requirements are obtained by optimizing the parameters. 

Through numerical analysis, the effect with fault-tolerance and 

parameter differences for the dominant requirement are 

confirmed and the method to guide for determining parameters 

of the attitude control system is established. 

Keywords—Control Moment Gyros; Spacecraft; Attitude 

Control; Multi-objective Optimization 

I. INTRODUCTION 

These days spacecraft require rapid rotational 
maneuverability because of the diversity and complexity of 
missions. Rapid rotational agility as well as a precision steady 
attitudinal state are required for the attitude control of 
spacecraft[1]. Rapid rotational agility as well as a precision 
steady attitudinal state are required for an attitude control of 
spacecraft. To meet this demand, Control Moment Gyros 
(CMGs) are ideal as an attitude control actuator of an agile 
spacecraft. Compared with previously used actuators, for 
example Reaction Wheels (RWs), CMGs can effectively 
generate higher torque. Many methods have been proposed to 
solve CMG’s specific singularity problem[2]. 

The pyramid-type four-CMG system, as shown in Fig. 1, is 
commonly used with a skew angle set to 54.74 degree. In 
actual operation, it is necessary to combine several CMGs for 
redundancy. Skew angle is usually selected as 54.74 degree 
because the maximum angular momentum for each axis in Fig. 
2 is the same. However, it is not necessary for the three axes to 
have the same angular momentum in the case of a spacecraft 
such as earth observation satellites whose mission angle is 
fixed. In fact, the skew angle is set to 30 degree for Pleiades-
HR1 because a roll slew maneuver is assumed to be the main 
mission[3]. 

Therefore the author previously proposed optimizing the 
skew angle and parameters of the control system in Fig. 3 to 
achieve the shortest settling time, assuming a specific 
mission[4]. However, the load on the motor and bearings 
cannot be ignored for a long term mission because the drive on 
the gimbal motor is needed to shorten the settling time merely 
to achieve rapid maneuverability. At the same time reduced 
drive on CMG is required for spacecraft. 

 

Fig. 1. Skew array CMG system 
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Fig. 2. Coordinate of spacecraft 

 

Fig. 3. Attitude control system of agile spacecraft with CMG system 

The failure of the ISS CMGs in 2002 was mainly caused by 
excessive accumulation of the load as a result of metal fatigue 
of the gimbal axis, especially in the bearing[5],[6]. Therefore, 
reduced the drive on the gimbal can be effective in extending 
the operating life of CMGs, as well as reducing power 
consumption. To achieve rapid maneuverability is important 
for spacecraft with CMGs but it is not necessary to achieve the 
shortest settling time because the mission should be achievable 
within a given preset time. Therefore it is appropriate to design 
the attitude control system taking into account the conflicting 
requirements, which are to achieve rapid maneuverability and 
reduce the drive on the gimbal, for a long operating life. 

In this study, multi-objective optimization of skew angle 
and parameters of control system considering conflicting 
requirements is proposed. The Pareto solutions considering 
conflicting objectives are obtained using optimization of 
parameters. The relationship between requirements and 
parameters is shown by calculating Pareto solutions from the 
optimization of parameters. As a specific design method, the 
settling time and motion of gimbal axes are evaluation criteria 
when considering rapid maneuverability and reduced the drive 
on CMG. The combination of parameters that minimizes both 
evaluation values is obtained by multi objective genetic 
algorithm (MOGA)[7]. 

In numerical simulation, the three types of optimization 
were conducted in addition to the proposed method, as 
comparative methods. From simulation results, the changes in 
the parameters with or without consideration of the drive on 

the gimbal, the effectiveness of optimizing skew angle, effect 
with fault-tolerance and the parameter differences for the 
dominant requirement are confirmed. Therefore, the method to 
guide for determining parameters of the attitude control system 
is established. 

II. CMG SYSTEM 

A. Schema of CMG 

CMG is an actuator that can generate torque using the gyro 
effect with a swinging wheel that rotates at a constant rate in a 
gimbal axis, perpendicular to the axis of wheel rotation. In 
actual operation, it is necessary to combine several CMGs for 
redundancy. In this study, an agile spacecraft is considered to 
have a CMG system that has a pyramid arrangement of four 
single-gimbal CMGs as shown in Fig. 1. 

B. Modeling of CMGs 

A block diagram representation of the CMG-based attitude 
control system of the agile spacecraft is illustrated in Fig. 3. 
When a target angle is required, a torque command vector is 
calculated using both the current Euler angle and angular 

velocity vector of the spacecraft ω , which are detected by the 

spacecraft’s own sensors of angular position and velocity. The 
CMG gimbal angular velocity vector command, which is 
needed to achieve the torque command, is calculated using the 
equation of inverse kinematics, named steering logic[8]. 
Torque is generated from the gimbal angular velocity which, in 
turn, is generated by activating CMGs to follow the gimbal 
angular velocity vector command. 

The attitude quaternion error vector  1 2 3 4

T
e e e ee  is 

computed using the quaternion of the reference angle of 

spacecraft  1 2 3 4

T

d d d d dq q q qq  and the quaternion of the 

current angle of the spacecraft  1 2 3 4

T
q q q qq , as follows: 
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The linear state feedback controller is defined as: 
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where 
pK  is the proportional controller gain, and dK  is the 

derivative controller gain, of the spacecraft and 
rτ  is the torque 

command vector.  

The angular momentum for four skew type CMGs shown 
in Fig. 1 is a function depending on the CMG gimbal angle 

vector 1 2 3 4[ ]
T

   δ  as follows: 
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where 
CMGh  is the angular momentum of the CMG wheel, 

( 1,2,3,4)i i H  is the angular momentum vector of the ith 

CMG,   is the skew angle of the four CMGs, cosc   and 

sins  . A time derivative of the CMG angular momentum 

vector is given by: 
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where 1 2 3 4[ ]T   δ  is the CMG gimbal angular 

velocity vector, A  is a 3 4  Jacobian matrix, and τ  is the 

torque vector. From Eq. (4), the gimbal angular velocity vector 
command is calculated and determines the gimbal angular 
velocity to generate the torque command. This is called 
Steering Logic[8] and is an inverse kinematics equation for 
calculating the gimbal angular velocity vector command. Most 
simple CMG steering logic uses a pseudo inverse matrix of A : 

-1T T

r rδ A (AA ) τ
                                                                  (5) 

where 
rδ  is the gimbal angular velocity command vector, 

-1T T A A (AA ) , which is often referred to as the pseudo 

inverse steering logic. Most CMG steering laws determine the 
gimbal rate commands with some variant of the pseudo inverse. 
If the rank of (A) < 3 for certain sets of gimbal angles, or, 
equivalently, the rank of (AA

T
) < 3, the pseudo inverse does 

not exist and the pseudo inverse steering logic encounters 
singular states. This singular situation occurs when all the 
individual CMG torque output vectors are perpendicular to the 
commanded torque direction. Equally, the singular situation 
occurs when all the individual CMG momentum vectors have 
external projections onto the commanded torque vector 
direction. This is needed to avoid singular states when the 
chance of failure increases because the value of the gimbal 
angular velocity vector command is extremely high and would 
be a strain on the gimbal axis of the CMG at the singularity. 

In this study, Generalized Singularity Robust (GSR)-
Inverse logic[8],[9], proposed by Bong Wie, is used for the 
steering logic. This is a method for avoiding a singularity by 
generating a torque with given gimbal angular velocity 
command, even in a singular situation, as follows. The GSR-
Inverse steering logic can be represented as: 
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where 0 sin( ) ( 1,2,3)i it i      , 
2- m

0×e   , / 2  , 

(1 ) ( / 2) ( 1,2,3)i i i     .  

t  is the current time, and m det( ) T
AA  is the singularity 

measure. 
0 , 

0  and   are constant parameters to be properly 

selected. The GSR-Inverse logic is used for singularity-
avoidance steering logic in this study. 

The equation to calculate the gimbal angular acceleration of 

ith CMG  i  is obtained from: 

 ( ) 1, ,4    i g ri iK J i
                               (9)

 

where 
gK  is the feedback gain of the CMG control system, 

, i ri  are the gimbal angular velocity and command of ith  

CMG and J  is the inertia moment matrix of the CMG wheel. 

III. DESIGN OF A FALUT TOLERANT ATTITUDE CONTROL 

SYSTEM CONSIDERING CONFILICTING REQUIREMENTS 

The purpose of this chapter is to describe a specific design 
method for a fault-tolerant attitude control system, considering 
conflicting requirements.  

Initially, the parameters to be optimized are shown. Second, 
the conflicting requirements, such as rapid maneuverability and 
reduced drive on gimbals, are defined as the evaluation 
functions. Finally, the optimization of the parameters is defined 
using the Multi Objective Genetic Algorithm (MOGA) taking 
fault-tolerance into consideration. 

A. Design Parameters 

1) Skew angle 
The maximum angular momentum of each axis can be 

changed by changing skew angle   in Fig. 1. For a typical 

pyramid configuration of four single-gimbal CMGs with a 
skew angle of β, the angular momentum for the three axes 

[ ]h
T

x y zh h h  can be obtained analytically as[3],[9]: 
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where 
2sinxu  , 

1 2sin cosyu     and 
1 2cos coszu   . 

1  and 
2  are the rotation angles of two successive rotations 

about the x and y axes. From these equations, it is apparent that 
the maximum angular momentum is directly related to the 
skew angle  . 

Fig. 4 shows the relationship between the skew angle and 

the maximum angular momentum [ ]
T

x y zH H HH  for each 

axis in normal time when the skew angle was changed from 0 
degree to 90 degree every 10 degree and 54.74 degree, which is 
commonly used. From Fig. 4, it can be seen that the maximum 
angular momentums of the roll and pitch axes decrease, 
whereas the maximum angular momentum of the yaw axis 
increases with the increasing skew angle. Furthermore, it is 
also apparent that the maximum angular momentums of the 
three axes are almost the same when the skew angle is 54.74 
degree. However, the skew angle needs to be designed taking 
into consideration the requirements for this study, which are 
rapid maneuverability and reduced drive on the gimbals. 
Moreover, the conventional design only considers normal 
situations, whereas the control system should be designed to 
consider fault-tolerance when failure of CMGs has been 
reported during the operation. 

A method for dynamically changing the skew angle when 
the spacecraft is in use has also been proposed[10],[11] 
because the maximum angular momentum of each axis can be 
changed by changing the skew angle, which is a valid method 
when using CMGs. However, the design of a unique skew 
angle before the launch, is proposed in this study, because 
potential failure of the added moving element must be taken 
into consideration when dealing with the failure of a CMG. In 
this study, it is assumed that one CMG can be shut down 
entirely in use. 

It is apparent that CMG shutdown can be classified into 
two patterns, the failure of CMG 1 or CMG 3, or failure of 
CMG 2 or CMG 4. Figs. 5 and 6 show the relationships 

between the skew angle and the maximum angular momentum 
in each situation. These figures show that the maximum 
angular momentums for every axis decrease than when the 
CMGs are functioning normally. Moreover, it is the same as 
the normal situation in that the maximum angular momentums 
of the roll and pitch axes decrease, while the maximum angular 
momentum of the yaw axis increases with an increasing skew 
angle. Comparing the failure of CMG 1 or CMG 3 with the 
failure of CMG 2 or CMG 4, it is apparent that the values of 

xH  and 
yH  switch place, although the value of 

zH  remains 

the same, which is verified by a deformation Eqs (10) to (16). 
For that reason, three situations, normal, failure of CMG 1 and 
failure of CMG 2, are dealt with in this study. 

2) Parameters of the control system 
In this study, both the skew angle and parameters of control 

system are tuned simultaneously because there is the 
possibility that the parameters of system, which can achieve 
the preset goal within target time, can be changed depending 
on the skew angle. 

The parameters to be designed are the gains of the 

spacecraft attitude control system pK  and dK , the gain of the 

CMG control system gK , the parameters of the GSR-Inverse 

logic, 0 , 0  and  . 

B. Method for design of a fault-tolerant attitude control 

system considering the conflicting requirements 

In this section, the method to determine skew angle and 
parameters of the control system using MOGA is outlined. As 
shown in the previous section, the unique skew angle and the 
six parameters of the control system which are appropriate to 
each situation are optimized. 

First, several initial chromosomes are generated for 19 
parameters, as shown in Fig. 7. They contain the gains of the 

spacecraft attitude control system 
pK  and 

dK , the gain of the 

CMG control system 
gK , the parameters of the GSR-Inverse 

logic 
0 , 

0 , and   in each of the three situations and the 

unique skew angle. 
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The range of the skew angle is set from 10 degree to 55 
degree which provides the large maximum angular momentum 
for the roll and pitch axes from the results in Fig. 4. 
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Fig. 4. Relationship between the skew angle and the maximum angular 
momentum 

 
Fig. 5. Relationship between the skew angle and the maximum angular 

momentum (Failure of CMG 1 or CMG 3) 

 
Fig. 6. Relationship between the skew angle and the maximum angular 

momentum (Failure of CMG 2 or CMG 4) 

The settling time 
jt  and drive on the gimbal (gimbal angle, 

velocity and acceleration) in each of the three situations are 
evaluated for each chromosome. Where j  means the situation, 

1j   is the normal situation, 2j   is the situation of a failure 

of CMG 1 and 3j   is the situation of a failure of CMG 2. 

The settling time and drive on the gimbal for each chromosome 

are defined as 
1f  and 

2f , and these are the summation of the 

evaluation value for each situation. Here the weight of the 

evaluation value for each situation ja  is designed according to 

the preferred situation.In this paper, 1ja to deal every 

situation equivalently. 
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where 
 i ,

 i  and 
 i  are the i th gimbal angle, velocity and 

acceleration. max 6 
, max 1 

 and max 3 
 because the 

values of the terms should be the same. In Eqs (21) to (23), the  

 

Fig. 7. Gene of an individual for genetic algorithm 

summation of the data for each gimbal ( 1, ,4i  ) is divided 

by 4 t, which means the evaluation value is the average of the 
drive on the gimbal of a CMG for 1 s. 

Pareto solutions are obtained by optimizing the 
combination of parameters which minimizes both evaluation 

values with the evaluation function 
1f  for the settling time and 

the evaluation function 2f  for the drive on the gimbal using 

MOGA[7]. 

In this study, the mission assumed is a rest-to-rest 
maneuver, which means that the spacecraft body must rest at 
the beginning and end of a maneuver to observe a ground 
target, and is analyzed assuming a rigid body spacecraft. The 
spacecraft model is assumed to be a middle-sized earth- 
observing satellite whose directional axis is the yaw axis. The 
parameters used in the numerical simulations are given in 
TABLE II. The mission assumed for the analysis is to perform 
a 60 degree roll (cross-track) slew maneuver based on an actual 
earth-observing satellite, the ALOS-2[12]. The settling time is 
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defined as when the Euler angle has settled to the target 
maneuver angle within ±0.01 degree, and is the same for the 
pitch and yaw axes. The parameters of the CMG are the same 
as the CMG, 15-4S, in Pleiades-HR1 manufactured by 
Astrium[13]. 

IV. NUMERICAL ANALYSIS 

Fig. 8 shows the Pareto solutions obtained using MOGA, 
referred to in the last section. 

The three types of optimization were conducted in addition 
to the proposed method, as comparative methods. TABLE III.  
shows the comparison of each method. Fig. 8 shows the 
comparative results from the three methods. 

A. The changes in the parameters with or without 

consideration of the drive on the gimbal 

In this section, the change in the optimized parameters 
when the evaluation function of the drive on the gimbal is or is 
not considered is compared for Methods 1 and 3. TABLE IV. 
shows the average and standard deviation of parameters for 
normal situation in each method. 

From Fig. 8, the solution which satisfies smaller drive on 
gimbal than Method 1 when settling time is same as Method 1 
is obtained in Method 3. From TABLE IV. smaller skew angle 
than for Method 3 is obtained in Method 1 to make settling 
time shorter because the angular momentum is larger for roll 
axis. On the other hand, the solution which satisfies smaller 
drive on the gimbal with same settling time than Method 1 is 
obtained even though skew angle in Method 3 is larger than in 
Method 1. It is because that appropriate parameters of the 
control system which satisfies both requirements are obtained 
using the evaluation function for the drive on the gimbal in 
addition to for the settling time. 

B. Difference with and without optimizing skew angle 

In this section, comparing Methods 2 and 3, the changes in 
the values of the evaluation functions are discussed when the 
skew angle is optimized and when it is set at 54.74degree. 

In Method 3, skew angle is selected at 31.98 ±7.64 degree 
which is smaller than 54.74 degree. It is noted that the settling 
time could have been shorter by optimizing the skew angle 
compared with when it was set at 54.74 degree. This is because 
a larger torque can be generated when skew angle is smaller as 
shown in the previous section. From this result, making the 
skew angle smaller can make the settling time shorter, but the 
drive on the gimbal could be greater when the settling time is 
longer for a skew angle of 54.74 degree. It is confirmed that 
skew angle can be designed according to requirements. 

C. Effect with or without consideration of fault tolerance 

In this section, comparing Methods 2 and 3, the effect with 
or without consideration of fault-tolerance is discussed. 

From TABLE IV.  skew angle is smaller when considering 
fault-tolerance. It can be assumed that smaller skew angle is 
obtained with fault-tolerance because the maximum angular 
momentum is smaller in failure situations than in a normal 
situation. Moreover, standard deviations of parameters in 
Method 4 are smaller than in Method 3. Fig. 9 shows the 

Pareto solutions for normal situation in Methods 3 and 4. From 
Fig. 9, the range of solution in Method 4 is smaller than in 
Method 3. It is assumed that range of solution for normal 
situation in Method 4 is smaller because of the consideration of 
fault-tolerance. Therefore, wider design of the attitude control 
system in normal situation is available without consideration of 
fault-tolerance. 

D. Parameter differences for the dominant requirement 

In this section, parameter differences in Method 4 for the 
dominant requirement are discussed. Fig. 10 shows Pareto 
solution obtained by Method 4. The parameters in the normal 
situation for the three solutions in Fig. 10 which correspond to 
the dominant requirement as a discriminative solution of Pareto 
solutions in Method 4 are discussed: 

1) Solution in which rapid maneuverability is dominant, 

2) Solution in which both requirements are equivalently 

dominant, 

3) Solution in which reduced the drive on the gimbal is 

dominant 
TABLE V. shows the values of parameters in each solution. 

Figs. 11 to 13 show the time histories of the singularity 
parameter, gimbal velocity and torque as three solutions It is 
assumed that the solution satisfying the requirement of rapid 
maneuverability because the gimbal is driven rapidly in a 
singularity situation as a result of the combination of 

parameters of GSR Inverse logic 
0 0, ,   , is obtained in I. 

Therefore torque errors for pitch and yaw axes are larger than 
other solutions to avoid singularity as quick as possible. In 
addition, it is assumed that the solution satisfying the 
requirement of reduced drive on the gimbal because the gimbal 
is driven slowly even in a singularity situation as a result of the 

combination of parameters of GSR Inverse logic 
0 0, ,   , is 

obtained in III. From these results, it is verified that the fault-
tolerant attitude control system which satisfies the dominant 
requirement by changing characteristic of the control system 
by parameters of the control system. 

TABLE I.  THE VALUES OF THE SYMBOLS USED IN THE EVALUATION 

FUNCTIONS 

Symbols Values 

maxt  40 

m  6 

m  1 

m  3 

TABLE II.  PARAMETERS AND VALUES FOR THE NUMERICAL 

SIMULATIONS 

Parameters Symbols Values 

Inertia moment of spacecraft sI  2diag(5000,5000,3000) kgm  

Inertia moment of CMG 

wheel 
J  20.19 kgm  

Angular momentum of CMG CMGh  75 Nms 

Max. gimbal rate max  1.0 rad/s　  

Max. gimbal acceleration max  23.0 rad/s　  

Control cycle dt  0.01 s 
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TABLE III.  COMPARISON OF EACH METHOD 

Method 

Evaluation function 
Fault-

tolerance 

Optimizing 

skew angle Settling 

time 

Drive on 

gimbal 

1 ○ × × ○ 

2 ○ ○ × 54.74 degree 

3 ○ ○ × ○ 

4 (Proposed) ○ ○ ○ ○ 

TABLE IV.  AVERAGE AND STANDARD DEVIATION OF PARAMETERS FOR 

NORMAL SITUATION IN EACH METHOD 

Paramete

r 

Average ± Standard deviation 

Method 1 Method 2 Method 3 Method 4 

Skew 
angle 

[deg] 

18.1 54.74 31.98 7.64  28.77 0.58  

pK  171.15 
101.97 28.38

 
70.33 15.53  92.37 3.77  

dK  299.1 282.68 15.59  211.27 28.38  247.10 4.24  

gK  0.284 0.281 0.004  0.277 0.0022  0.280 0.003  

10 0log   -1.84 0.21 0.57   0.83 0.25   0.92 0.11   

10 0log   0.19 0.99 0.25   1.22 0.34   1.12 0.15   

10log   -1.42 1.66 0.72   0.11 0.91   0.97 0.32  

 

Fig. 8. Pareto solutions 

 
Fig. 9. Pareto solutions (Normal situation in Methods 3 and 4) 

 
Fig. 10. Pareto solutions (Method 4) 

V. CONCLUSIONS 

This study proposed multi-objective optimization of the 
skew angle and parameters of the control system to design of a 
fault-tolerant attitude control system that would take into 
account conflicting requirements for a spacecraft with a skew 
array of Control Moment Gyros. The relationship between the 
requirements and the relationship between the requirements 
and parameters can be shown by calculating the Pareto 
solutions which is a class of solutions that comprehensively 
consider conflicting requirements. 

From simulation results, the changes in the parameters with 
or without consideration of the drive on the gimbal, the 
effectiveness of optimizing skew angle, effect with fault-
tolerance and the parameter differences for the dominant 
requirement were confirmed. Therefore, the method to guide 
for determining parameters of the attitude control system was 
established. To optimize the parameters considering constraint 
of spacecraft and to verify the effectiveness of the proposed 
method using an actual operation are the future works. 
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TABLE V.  THE VALUES OF PARAMETERS IN EACH SOLUTION (METHOD 4) 

 
Settling 

time [s] 2f  
Skew angle 

[deg] pK  
dK  gK  

10 0log   
10 0log   10log   

I 28.71 1.26 28.06 89.93 247.07 0.280 -0.86 -0.95 0.83 

II 32.96 1.05 28.40 90.63 245.81 0.277 -0.97 -1.15 0.87 

III 34.32 1.03 29.31 92.50 252.87 0.280 -1.09 -1.10 0.76 

 

(a) I 

 
(b) II 

 
(c) III 

Fig. 11. Time histories of the singularity parameters 

 

(a) I 

 
(b) II 

 
(c) III

Fig. 12. Time histories of gimbal angle velocity 

 
(a) I 

 
(b) II 

 
(c) III 

Fig. 13. Time histories of torque 
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